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Abstract—We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains “4,372” images with
“1.51 million” annotations. In comparison to existing datasets, the proposed dataset is collected under a variety of diverse scenarios
and environmental conditions. Specifically, the dataset includes several images with weather-based degradations and illumination
variations, making it a very challenging dataset. Additionally, the dataset consists of a rich set of annotations at both image-level and
head-level. Several recent methods are evaluated and compared on this dataset. The dataset can be downloaded from
http://www.crowd-counting.com.
Furthermore, we propose a novel crowd counting network that progressively generates crowd density maps via residual error
estimation. The proposed method uses VGG16 as the backbone network and employs density map generated by the final layer as a
coarse prediction to refine and generate finer density maps in a progressive fashion using residual learning. Additionally, the residual
learning is guided by an uncertainty-based confidence weighting mechanism that permits the flow of only high-confidence residuals in
the refinement path. The proposed Confidence Guided Deep Residual Counting Network (CG-DRCN) is evaluated on recent complex
datasets, and it achieves significant improvements in errors.

Index Terms—crowd counting, dataset.
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1 INTRODUCTION

W ITH burgeoning population and rapid urbanization,
crowd gatherings have become more prominent

in the recent years. Consequently, computer vision-based
crowd analytics and surveillance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17] have received increased interest. Fur-
thermore, algorithms developed for the purpose of crowd
analytics have found applications in other fields such as
agriculture monitoring [18], microscopic biology [19], urban
planning and environmental survey [2, 20]. Current state-
of-the-art counting networks achieve impressive error rates
on a variety of datasets that contain numerous challenges.
Their success can be broadly attributed to two major factors:
(i) development and publication of challenging datasets
[3, 4, 5, 21], and (ii) design of novel convolutional neural net-
work (CNN) architectures specifically for improving count
performance [4, 7, 22, 23, 24, 25, 26, 27]. In this paper, we
consider both of the above factors in an attempt to further
improve the crowd counting performance.

First, we identify the next set of challenges that require
attention from the crowd counting research community and
collect a large-scale dataset collected under a variety of
conditions. Existing efforts like UCF CROWD 50 [3], World
Expo ’10 [4] and ShanghaiTech [28] have progressively in-
creased the complexity of the datasets in terms of average
count per image, image diversity etc. While these datasets
have enabled rapid progress in the counting task, they suffer
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from shortcomings such as limited number of training sam-
ples, limited diversity in terms of environmental conditions,
dataset bias in terms of positive samples, and limited set of
annotations. Idrees et al.[21] proposed a new dataset called
UCF-QNRF that alleviates some of these challenges. Most
recently, Wang et al.[29] released a large-scale crowd count-
ing dataset consisting of 5,109 images with 2.13 million
annotations. Specifically, the images are collected under a
variety of illumination conditions. Nevertheless, they do
not specifically consider some of the challenges such as
adverse environmental conditions, dataset bias and limited
annotation data1.

To address these issues, we propose a new large-scale
unconstrained dataset (JHU-CROWD++) with a total of
4,372 images (containing 1,515,005 head annotations) that
are collected under a variety of conditions. Specific care is
taken to include images captured under various weather-
based degradations. Additionally, we include a set of dis-
tractor images that are similar to the crowd images that
contain complex backgrounds which may be confused for
crowd. Fig. 1 illustrates representative samples of the im-
ages in the JHU-CROWD++ dataset under various cate-
gories. Furthermore, the dataset also provides a much richer
set of annotations at both image-level and head-level. These
annotations include point-wise annotations, approximate
sizes, blur-level, occlusion-level, weather-labels, etc. We also
benchmark several representative counting networks, pro-
viding an overview of the state-of-the-art performance.

Next, we consider the design of network architecture for
the task of counting. Design of novel networks specifically
for the task of counting has improved the counting error by

1. Existing datasets provide only point-wise annotations.

http://www.crowd-counting.com
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(a) (b) (c) (d) (e)
Fig. 1. Representative samples of the images in the JHU-CROWD++ dataset. (a) Overall (b) Rain (c) Snow (d) Haze (e) Distractors.

large margins. Architectures have evolved from the simple
ones like [4] which consisted of a set of convolutional
and fully connected layers, to the most recent complex
architectures like SA-Net [26] which consists of a set of
scale aggregation modules. Typically, most existing works
([4, 5, 6, 7, 22, 23, 24, 25, 26, 26, 30, 31]) have designed their
networks by laying a strong emphasis on addressing large
variations of scale in crowd images. While this strategy of
developing robustness towards scale changes has resulted
in significant performance gains, it is nevertheless important

to exploit other properties like in [25, 32, 33] to further the
improvements.

In a similar attempt, we exploit residual learning mecha-
nism for the purpose of improving crowd counting. Specif-
ically, we present a novel design based on the VGG16 net-
work [34], and it employs residual learning to progressively
generate better quality crowd density maps. This use of
residual learning is inspired by its success in several other
tasks like super-resolution [35, 36, 36, 37, 38]. Although
this technique results in improvements in performance, it is
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important to ensure that only highly confident residuals are
used in order to ensure the effectiveness of residual learning.
To address this issue, we draw inspiration from the success
of uncertainty-based learning mechanism [39, 40, 41]. We
propose an uncertainty-based confidence weighting module
that captures high-confidence regions in the feature maps
to focus on during the residual learning. The confidence
weights ensure that only highly confident residuals get
propagated to the output, thereby increasing the effective-
ness of the residual learning mechanism. Furthermore, we
exploit the additional image-level labels in the proposed
dataset to extend the uncertainty-based confidence weight-
ing module by conditioning it on the labels to improve the
performance specifically in the adverse weather conditions.

To summarize, the following are our key contributions:
• We propose a new large-scale unconstrained crowd count-

ing dataset that contains 4,372 images and 1.51 million
annotations. The dataset specifically includes a number of
images collected under adverse weather conditions. Fur-
thermore, this is the first counting dataset that provides a
rich set of annotations such as occlusion, blur, scale, and
image-level labels, etc.

• We propose a crowd counting network that progressively
incorporates residual mechanism to estimate high quality
density maps. Furthermore, a set of uncertainty-based
confidence weighting modules are introduced in the
network to improve the efficacy of residual learning.

Note that this work is an extension of our ICCV 2019
work [42]. Compared to our earlier work, we attempt to
improve both dataset and proposed method. These im-
provements are summarized below:
• Dataset: Specifically, we provide 3 key improvements as

compared to the JHU-CROWD dataset [42]:
(i) More number of images: We increase the number of
images in the dataset from 4,250 to 4,372.
(ii) More number of annotations: The new dataset contains
31% more annotations. (1.51 million v/s 1.15 million).
(iii) Better scale annotations: The earlier version of the
dataset contains size indicators for each head in the image.
In the new dataset, we provide better scale annotations
which consist of approximate width and height of each
head.

• Method: We provide the following improvements in the
proposed method:
(i) Class conditioning: We extend the CGDRN method
proposed in [42] to improve the counting performance in
the adverse weather conditions. Specifically, we condition
the uncertainty-guided residual estimation on the image
level labels to incorporate weather-based information into
the learning process.
(ii) New backbone:We demonstrate that the proposed
uncertainty-based residual learning mechanism general-
izes to other backbone networks like Res101 [43]. This
results in further improvements on all the datasets.

• Experiments: We conduct the following new experiments:
(i) Ablation study: We conduct additional ablation studies
where we evaluate the efficacy of number of branches and
different network architecture.
(ii)Benchmarking: We benchmark recently published
methods on the newly proposed JHU-CROWD++ dataset.

2 RELATED WORK

Crowd Datasets. Crowd counting datasets have evolved
over time with respect to a number of factors such as size,
crowd densities, image resolution, and diversity. UCSD [8]
is among one of the early datasets proposed for counting
and it contains 2000 video frames of low resolution with
49,885 annotations. The video frames are collected from
a single frame and typically contain low density crowds.
Zhang et al.[4] addressed the limitations of UCSD dataset by
introducing the WorldExpo dataset that contains 108 videos
with a total of 3,980 frames belonging to 5 different scenes.
While the UCSD and WorldExpo datasets contain only
low/low-medium densities, Idrees et al.[3] proposed the
UCF CROWD 50 dataset specifically for very high density
crowd scenarios. However, the dataset consists of only 50
images rendering it impractical for training deep networks.
Zhang et al.[5] introduced the ShanghaiTech dataset which
has better diversity in terms of scenes and density levels as
compared to earlier datasets. The dataset is split into two
parts: Part A (containing high density crowd images) and
Part B (containing low density crowd images). The entire
dataset contains 1,198 images with 330,165 annotations.
Recently, Idrees et al.[21] proposed a new large-scale crowd
dataset containing 1,535 high density images images with a
total of 1.25 million annotations. Wang et al.[44] introduced
a synthetic crowd counting dataset that is based on GTA
V electronic game. The dataset consists of 15,212 crowd
images under a diverse set of scenes. In addition, they
proposed a SSIM based CycleGAN [45] for adapting the
network trained on synthetic images to real world images.
Most recently, Wang et al.[29] released a large-scale crowd
counting dataset (NWPUCrowd) consisting of 5,109 images
with 2.13 million annotations.

Crowd Counting. Traditional approaches for crowd count-
ing from single images are based on hand-crafted repre-
sentations and different regression techniques. Loy et al.[46]
categorized these methods into (1) detection-based methods
[47] (2) regression-based methods [3, 48, 49] and (3) density
estimation-based methods [19, 50, 51]. Interested readers
are referred to [1, 49] for a more comprehensive study of
different crowd counting methods.

Recent advances in CNNs have been exploited for the
task of crowd counting and these methods [4, 5, 6, 7, 7,
22, 23, 52, 53, 54, 55, 56] have demonstrated significant
improvements over the traditional methods. A recent survey
[57] categorizes these approaches based on the network
property and the inference process. Walach et al.[22] used
CNNs with layered boosting approach to learn a non-linear
function between an image patch and count. Recent work
[5, 23] addressed the scale issue using different architectures.
Sam et al.[7] proposed a VGG16-based switching classifier
that first identifies appropriate regressor based on the con-
tent of the input image patch. More recently, Sindagi et
al.[6] proposed to incorporate global and local context from
the input image into the density estimation network. In
another approach, Cao et al.[26] proposed a encoder-decoder
network with scale aggregation modules.

In contrast to these methods that emphasize on specif-
ically addressing large-scale variations in head sizes, the
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most recent methods ([30] ,[32], [33], [58], [25]) have focused
on other properties of the problem. For instance, Babu et
al.[30] proposed a mechanism to incrementally increase the
network capacity conditioned on the dataset. Shen et al.[32]
overcame the issue of blurred density maps by utilizing
adversarial loss. In a more recent approach, Ranjan et al.[25]
proposed a two-branch network to estimate density map in
a cascaded manner. Shi et al.[33] employed deep negative
correlation based learning for more generalizable features.
Liu et al.[58] used unlabeled data for counting by proposing
a new framework that involves learning to rank.

Recent approaches like [31, 59, 60, 61, 62, 63] have aimed
at incorporating various forms of related information like at-
tention [59], semantic priors [60], segmentation [61], inverse
attention [62], and hierarchical attention [31] respectively
into the network. Other techniques such as [64, 65, 66, 67, 68]
leverage features from different layers of the network using
different techniques like trellis style encoder decoder [64],
explicitly considering perspective [65], context information
[66], adaptive density map generation [68] and multiple
views [67]. More recently, Sam et al.[69] introduced a de-
tection framework for densely crowded scenarios where the
network is trained using estimated bounding-boxes. Ma et
al.[70] proposed a novel Bayesian loss function for training
counting networks, which involves supervision on the count
expectation at each annotated point. While most of the
existing approaches are focused on counting in 2D plane,
Zhang et al.[71] propose to solve the multi-view crowd
counting task through 3D feature fusion with 3D scene-
level density maps. For a comprehensive study on various
crowd counting techniques, the reader is referred to detailed
surveys like [57, 72].

3 JHU-CROWD++: LARGE-SCALE CROWD
COUNTING DATASET

In this section, we first motivate the need for a new crowd
counting dataset, followed by a detailed description of the
various factors and conditions while collecting the dataset.

3.1 Motivation and dataset details

As discussed earlier, existing datasets (such as
UCF CROWD 50 [3], World Expo ’10 [4] and ShanghaiTech
[28]) have enabled researchers to develop novel counting
networks that are robust to several factors such as
variations in scale, pose, view etc. Several recent methods
have specifically addressed the large variations in scale
by proposing different approaches such as multi-column
networks [5], incorporating global and local context [6],
scale aggregation network [26], etc. These methods are
largely successful in addressing issues in the existing
datasets, and there is pressing need to identify newer set of
challenges that require attention from the crowd counting
community.

In what follows, we describe the shortcomings of exist-
ing datasets and discuss the ways in which we overcome
them:
(i) Limited number of training samples: Typically, crowd count-
ing datasets have limited number of images available for
training and testing. For example, ShanghaiTech dataset

[5] has only 1,198 images and this low number of images
results in lower diversity of the training samples. Due to this
issue, networks trained on this dataset will have reduced
generalization capabilities. Although datasets like Mall [49],
WorldExpo ’10 [4] have higher number of images, it is
important to note that these images are from a set of video
sequences from surveillance cameras and hence, they have
limited diversity in terms of background scenes and number
of people. Most recently, Idrees et al.[21] addressed this issue
by introducing a high-quality dataset (UCF-QNRF) that has
images collected from various geographical locations under
a variety of conditions and scenarios. Although it has a
large set of diverse scenarios, the number of samples is
still limited from the perspective of training deep neural
networks.

To address this issue, we collect a new large scale
unconstrained dataset with a total of 4,372 images that are
collected under a variety of conditions. Such a large number
of images results in increased diversity in terms of count,
background regions, scenarios, etc. as compared to existing
datasets. The images are collected from several sources
on the internet using different keywords such as crowd,
crowd+marathon, crowd+walking, crowd+India, etc. A
summary of the keywords used for the search purpose is
illustrated in Fig. 3.

(ii) Absence of adverse conditions: Typical application of crowd
counting is video surveillance in outdoor scenarios which
involve regular weather-based degradations such as haze,
snow, rain etc. It is crucial that networks, deployed under
such conditions, are robust.

To overcome this issue, specific care is taken during our
dataset collection efforts to include images captured under
various weather-based degradations such as rain, haze,
snow, etc. (as as shown in Fig. 1(b-d)). Table 2 summarizes
images collected under adverse conditions.

(iii) Dataset bias: Existing datasets focus on collecting only
images with crowd, due to which a deep network trained on
such a dataset may end up learning bias in the dataset. Due
to this error, the network will erroneously predict crowd
even in scenes that do not contain crowd.

In order to address this, we include a set of distractor
images that are similar to crowd images but contain very
few people. These images can enable the network to
avoid learning bias in the dataset. The total number of
distractor images in the dataset is 106. Fig. 1(e) shows
sample distractor images.

(iv) Limited annotations: Typically, crowd counting datasets
provide point-wise annotations for every head/person in
the image, i.e.,each image is provided with a list of x, y
locations of the head centers. While these annotations enable
the networks to learn the counting task, absence of more
information such as occlusion level, head sizes, blur level
etc. limits the learning ability of the networks. For instance,
due to the presence of large variations in perspective, size
of the head is crucial to determine the precise count. One
of the reasons for these missing annotations is that crowd
images typically contain several people and it is highly labor
intensive to obtain detailed annotations such as size.
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(a) (b) (c)
Fig. 2. Examples of head-level annotations: (a) Dots (b) Approximate sizes (c) Blur-level.

TABLE 1
Comparison of different datasets. P: Point-wise annotations for head locations, O: Occlusion level per head, B: Blur level per head, S: Size

indicator per head, S†: Approximate size (w×h), I: Image level labels.

Dataset
Num of
Images

Num of
Annotations

Avg
Count

Max
Count

Avg
H×W

Weather
degradations Distractors

Type of
annotations

UCSD [8] 2,000 49,885 25 46 158×238 7 7 P
Mall [49] 2,000 62,325 - 53 320×240 7 7 P
UCF CROWD 50 [3] 50 63,974 1,279 4,543 2101×2888 7 7 P
WorldExpo ’10 [4] 3,980 199,923 50 253 576×720 7 7 P
ShanghaiTech [5] 1,198 330,165 275 3,139 598×868 7 7 P
UCF-QNRF [21] 1,535 1,251,642 815 12,865 2,013×2,902 7 7 P
NWPU-CROWD [29] 5,109 2,133,238 418 20,033 2,311× 3,383 7 3 P
JHU-CROWD (ours) 4,250 1,114,785 262 7,286 900×1,450 3 3 P, O, B, S, I
JHU-CROWD++ (ours) 4,372 1,515,005 346 25,791 910×1,430 3 3 P, O, B, S†, I

TABLE 2
Summary of images collected under adverse conditions.

Degradation type Rain Snow Fog/Haze Total
No. of images 145 201 168 514
No. of annotations 40,328 47,347 48,821 136,496

To enable more effective learning, we collect a much
richer set of annotations at both head-level/point-level and

image-level. These are described below:

• Head-level/point-level annotations include x, y locations
of heads and corresponding occlusion level, blur level and
size level. The total number of point-level annotations in
the dataset are 1,515,005. Occlusion label has three levels:
{un-occluded, partially occluded, fully occluded}. Blur level
has two labels: {blur, no-blur}. In JHU-CROWD [42], each
head is labeled with a size indicator. We improve over
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Fig. 3. Summary of keywords used to scrape the internet for images.

TABLE 3
Distribution of images under different densities.

Density Low (0-50) Med (51-500) High (500+) Total
No. of images 1,228 2,512 632 4,372

these size annotations by providing “approximate” size
(width and height) for each head annotation. To obtain
these, annotators were instructed to annotate bounding
boxes for a set of neighbouring heads which have similar
sizes. Note that these bounding boxes are only “approximate”
and are not as accurate as the ones found in detection datasets.
Fig. 2 illustrates sample annotations provided in our
dataset.

• Image level annotations include scene-labels (such as
marathon, mall, railway station, stadium, etc.) and the
weather-labels (rain, snow and fog). Fig. 4 illustrates the
distribution of scene-labels in the proposed dataset.

3.2 Data collection process
We used different sources like google images, bing images,
flickr, etcfor collecting the images. The keywords used for
searching were carefully selected to ensure diversity in
terms of density, weather, geographical locations, scene-
type, resolution, events, physical structures etc. The key-
words are summarized in Fig. 3 and Table 4. After the collec-
tion process, duplicate images were detected and eliminated
from the dataset. The remaining images were annotated
with the help of Amazon Mechanical Turk workers. The
workers were explicitly instructed to annotate the center of
head. Additionally, they were also instructed to label the oc-
clusion type and blur-level. The annotated images were then
evaluated manually verified to filter out incorrectly labeled
images. Such images were sent again to the annotation and
verification processes.

TABLE 4
List of keywords used for searching.

Factor Keyword
Crowd density low crowd, small crowd, large crowd, high density crowd
Geographical location US, China, India, Iran, Iraq, Canada
Structures airport, mall, railway station, street, park, stadium, traffic

Events
concert, protest, rally, festival, sports, cricket, football,
soccer, hockey, premier league, conference, marathon

Weather rain, snow, fog, haze, low-light

3.3 Summary and evaluation protocol
Fig. 1 illustrates representative samples of the images in
the JHU-CROWD++ dataset under various categories. Table
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Fig. 4. Distribution of image-level labels.
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Fig. 5. Distribution of images of different density levels in train, val and
test sets.
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Fig. 6. Distribution of images of weather conditions in train, val and test
sets.

1 summarizes the proposed dataset in comparison with
the existing ones. It can be observed that the proposed
dataset enjoys a host of properties such as a richer set
of annotations, weather-based degradations and distractor
images. With these properties, the proposed dataset will
serve as a good complementary to other datasets such as
UCF-QNRF and NWPU-CROWD. The dataset is randomly
split into train, val and test sets, which contain 2722, 500 and
1600 images respectively.

Following the existing works, we perform evaluation
using the standard MAE and MSE metrics. Furthermore,
these metrics are calculated for the following sub-categories
of images:
(i) Low density: images containing count between 0 and 50,
(ii) Med density: images with count between 51 and 500,
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Fig. 7. Overview of the proposed method. Coarse density map from the deepest layer of the base network is refined using the residual map
estimated by the shallower layer. The residual estimation is performed by U -REBi. In the residual maps, red indicates negative values and cyan
indicates positive value.

(iii) High density: images with count more than 500 people,
(iv) Weather degraded images, and
(v) Overall.
The metrics under these sub-categories will provide a holis-
tic understanding of the network performance.

Fig. 5 and Fig. 6 illustrate the distribution the number
of images among the density and weather sub-categories
respectively. Table 3 shows the distribution of images for
different density-levels.

4 PROPOSED METHOD

In this section, we present the details of the proposed
Confidence Guided Deep Residual Crowd Counting (CG-
DRCN) along with the training and inference specifics. Fig.
7 shows the architecture of the proposed network.

4.1 Base network

Following recent approaches [6, 7, 26], we perform counting
based on the density estimation framework. In this frame-
work, the network is trained to estimate the density map
(Ŷ ) from an input crowd image (X). The target density
map (Y ) for training the network is generated by imposing
normalized 2D Gaussian at head locations provided by the
dataset annotations:

Y (x) =
∑
xg∈S

N (x− xg, σ), (1)

where, S is the set of all head locations (xg) in the input
image and σ is scale parameter of 2D Gaussian kernel.
Due to this formulation, the density map contains per-pixel
density information of the scene, which when integrated
results in the count of people in the image.

The proposed network consists of conv1∼conv5 layers
(C1 − C5) of the VGG16 architecture as a part of the
backbone, followed by a conv block (CB6) and a max-
pooling layer with stride 2. First, the input image (of size

W × H) is passed through C1 − C5, CB6 and the max
pooling layer to produce the corresponding density map
(Ŷ6) of size W

32 ×
H
32 . CB6 is defined by {conv512,32,1-relu-

conv32,32,3-relu-conv32,1,3}2). Due to its low resolution, (Ŷ6)
can be considered as a coarse estimation, and learning this
will implicitly incorporate global context in the image due
the large receptive field at the deepest layer in the network.

4.2 Residual learning

Although Ŷ6 provides a good estimate of the number of
people in the image, the density map lacks several local
details as shown in Fig. 9 (a). This is because deeper layers
learn to capture abstract concepts and tend to lose low level
details in the image. On the other hand, the shallower layers
have relatively more detailed local information as compared
to their deeper counterparts [73]. Based on this observation,
we propose to refine the coarser density maps by employing
shallower layers in a residual learning framework. This
refinement mechanism is inspired in part by several leading
work on super-resolution [35, 36, 37] that incorporate resid-
ual learning to learn finer details required to generate a high
quality super-resolved image. Specifically, features from C5

are forwarded through a uncertainty guided residual esti-
mation block (U-REB5 to generate a residual map R̂5, which
is then added to an appropriately up-sampled version of Ŷ6
to produce the density map Ŷ5 of size W

16 ×
H
16 , i.e.,

Ŷ5 = R̂5 + up(Ŷ6). (2)

Here, up() denotes up-sampling by a factor of 2× via bilin-
ear interpolation. By enforcing U-REB5 to learn a residual
map, the network focuses on the local errors emanating
from the deeper layer, resulting in better learning of the
offsets required to refined the coarser density map. U-REB
is described in Section 4.3.

2. convNi ,No ,k denotes conv layer (with Ni input channels, No output
channels, k×k filter size), relu denotes ReLU activation
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The above refinement is further repeated to recursively
generate finer density maps Ŷ4 and Ŷ3 using the feature
maps from the shallower layers C4 and C3, respectively.
Specifically, the output of C4 and C3 are forwarded through
U-REB4, U-REB3 to learn residual maps R̂4 and R̂3, which
are then added to the appropriately up-sampled versions of
the coarser maps Ŷ5 and Ŷ4 to produce Ŷ4 and Ŷ3 respec-
tively in that order. Specifically, Ŷ4 and Ŷ3 are obtained as
follows:

Ŷ4 = R̂4 + up(Ŷ5), Ŷ3 = R̂3 + up(Ŷ4) (3)

4.3 Uncertainty guided residual learning (U-REB)

In this section, we provide a detailed description of the
uncertainty guided residual estimation block (U-REB ) that
is used to refine the residual estimation process. Specifically,
features (Fi) from the main branch are forwarded through
a conv block (CBi) which estimates the residual map Ri.
In order to improve the efficacy of the residual learning
mechanism, we propose an uncertainty guided confidence
estimation block (CEB) that guides the refinement process.
The task of conv blocksCBi is to capture residual errors that
can be incorporated into the coarser density maps to pro-
duce high quality density maps in the end. For this purpose,
these conv blocks employ feature maps from shallower conv
layers Ci from the main branch.

Fig. 8. Uncertainty-guided residual estimation block (U-REB).

Since the conv layers in the main branch are primarily
trained for estimating the coarsest density map, their
features have high responses in regions where crowd is
present, and hence, they may not necessarily produce
effective residuals. In order to overcome this issue, we
propose to gate the residuals that are not effective. This
is achieved by using uncertainty estimation. Inspired by
uncertainty estimation in CNNs [39, 40, 41, 74], we aim
to model pixel-wise aleatoric uncertainty of the residuals
estimated by CBi. That is we, predict the pixel-wise
confidence (inverse of the uncertainties) of the residuals
which are then used to gate the residuals before being
passed on to the subsequent outputs. This ensures that only
highly confident residuals get propagated to the output.
Note that CB5, CB4, CB3 are defined as follows:

CB5: {conv512,32,1-relu-conv32,32,3-relu-conv32,1,3}2.
CB4: {conv512,32,1-relu-conv32,32,3-relu-conv32,1,3}2.
CB3: {conv256,32,1-relu-conv32,32,3-relu-conv32,1,3}2.

In terms of the overall architecture, we introduce a set
of U-REBs as shown in Fig. 7. Each residual branch consists

of one such block. Fig. 8 illustrates the mechanism of the
proposed U-REB. UREBi takes the feature map Fi from the
main branch and forwards them through a conv block CBi

to produce residual map (Ri). This residual map is then
concatenated with dimensionality reduced features3 from
the main branch and forwarded through confidence estima-
tion block (CEBi). This block is defined by {conv33,32,1-relu-
conv32,16,3-relu-conv16,16,3-relu-conv16,1,1} and it produces a
confidence map CMi which is then multiplied element-wise
with the input to form the refined residual map:

R̂i = Ri � CMi, (4)

where � denotes element-wise multiplication.
In order to learn these confidence maps, the loss function

Lf used to train the network is defined as follows,

Lf = Ld − λcLc, (5)

where, λc is a regularization constant, Ld is the pixel-wise
regression loss to minimize the density map prediction error
and is defined as:

Ld =
∑

i∈{3,4,5,6}

‖(CMi � Yi)− (CMi � Ŷi)‖2, (6)

where, Ŷi is the predicted density map, i indicates the index
of the conv layer from which the predicted density map is
taken, Yi is the corresponding target.

Lc is the confidence guiding loss, defined as,

Lc =
∑

i∈{3,4,5,6}

H∑
j=1

W∑
k=1

log(CM j,k
i ), (7)

where, W × H is the dimension of the confidence map
CMi. As it can be seen from Eq. (5), the loss Lf has two
parts Ld and Lc. The first term minimizes the Euclidean
distance between the prediction and target features, whereas
Lc maximizes the confidence scores CMi by making them
closer to 1.

Note that optimizing Lc (Equation 7) forces the values of
confidence map close to 1. This is true when the loss func-
tion is Equation 7 alone. However, our final loss function
(Equation 5) contains both Ld and Lc. When we minimize
Equation 5, if CMi is driven to “one” due to loss Lc, the first
loss in Equation 6 (Ld) increases. Due to this, the network
tries to reduce Ld by forcing the network to predict lower
values of CMi in addition to learning to predict accurate
density maps. Hence, due to the presence of CMi in both
the parts of the loss function Lf (Equation 5), the network
“does not” learn to trivially predict ones for CMi. This is
analogous to the use of aleatoric uncertainty prediction for
improving the network performance described in [39].

Fig. 9 illustrates the output density maps (Ŷ6, Ŷ5, Ŷ4, Ŷ3)
generated by the proposed network for a sample crowd im-
age. It can be observed that the density maps progressively
improve in terms of fine details and the count value.

Fig. 10 illustrates the residual maps generated with and
without the confidence gating. It can be clearly observed
that the use of confidence scores aids in better feature
learning.

3. We use a dimensionality reduction (DR) block which consists of
1× 1 conv layer to reduce the number of channels to 32.
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(a) (b) (c) (d) (e)
Fig. 9. Density maps estimated by different layers of the proposed network. (a) Ŷ6 (b) Ŷ5 (c) Ŷ4 (d) Ŷ3 (e) Y (ground-truth). It can be observed that
the output of the deepest layer (Ŷ6) looks very coarse, and it is refined in a progressive manner using the residual learned by U-REB5, U-REB4,
U-REB3 to obtain the Ŷ5, Ŷ4, Ŷ3 respectively. Note that fine details and the total count in the density maps improve as we move from Ŷ6 to Ŷ3.

4.4 Class-conditioned Uncertainty guided residual
learning (U-REBC)

In order to leverage additional information provided in the
proposed JHU-CROWD++ dataset, we propose to condition
the residual estimation based on the image-level labels
(specifically, weather labels). That is, we augment the U-
REB module with additional class conditioning (CC) block
as shown in Fig. 11. This block consists of a set of 2
conv relu-layers ( {conv32,32,3-relu-conv32,4,3}2) followed by
an average-pool layer and a soft-max layer. Note that the
output of this block is 4 classes corresponding to rain, fog,
haze and normal. The CC block is trained via cross-entropy
error using labels available in the dataset. To condition the
uncertainty estimation on the classes, the feature maps (F c

i )
prior to the average-pool layer in CC are concatenated
with the residual map Ri and the dimensionality reduced
features from the main branch. These concatenated feature
maps are then forwarded through the confidence estimation
block CEBi to predict the confidences as described earlier
in Section 4.3.

For training the network, we modify the loss function in
Eq. 5 as follows:

Lf = Ld − λcLc + λwLw, (8)

where, Lw is the cross-entropy loss for the weather clas-
sification and λw is a weighting factor and we set it to 0.01.
Note that the distribution of weather images is imbalanced.
Hence, we weight the each class proportionately based on
the number of samples in each category.

4.5 Training and inference details

The training dataset is obtained by cropping patches from
multiple random locations in each training image. The
cropped patch-size is 256×256. For JHU-CROWD++, we use

(a) (b) (c)
Fig. 10. Residual maps. Top row : Without confidence gating. Bottom
row : With confidence gating. (a) R5 (b) R4 (c) R3. Red indicates
negative values and cyan indicates positive values. The use of confi-
dence gating improves the residual maps significantly, especially for the
shallower layers.

Fig. 11. Class-conditioned uncertainty-guided residual estimation block
(U-REBC).

the validation set for model selection and hyper-parameter
tuning. For other datasets, we use 10% of the training
images as validation set. We use the Adam optimizer to
train the network. We use a learning rate of 0.00001 and
a momentum of 0.9 with a batch-size of 24. Before cropping,
we resize all the images such that the minimum dimension
is 512 and maximum dimension is 2048 while maintaining
the aspect ratio.

For inference, the density map Ŷ3 is considered as the
final output. The count performance is measured using the
standard error metrics: mean absolute error (MAE) and
mean squared error (MSE). These metrics are defined as
follows:

MAE =
1

N

N∑
i=1

|C(Y i)− C(Ŷ i
3 )|,

MSE =

√√√√ 1

N

N∑
i=1

|C(Y i)− C(Ŷ i
3 )|2,

(9)

where N is the number of test samples, Y i is the ground-
truth count and Ŷ i

3 is the estimated count corresponding to
the ith sample, and C(Y ) denotes the sum of all the values
in Y .

5 ABLATION STUDY

In this section, we discuss the results of different abla-
tion studies conducted to analyze (i) the effect of different
components in the proposed network, (ii) generalizability
to other network architectures, (iii) the effect of different
branches in the proposed architecture for residual estima-
tion, and (iv) effect of reduced data during training. Due to
the presence of various complexities such as high density
crowds, large variations in scales, occlusion, etc. we choose
to perform the ablation study on JHU-CROWD++ val set.
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5.1 Residual Learning, Uncertainty and Class-
conditioning

The ablation study consisted of evaluating the following
configurations of the proposed method:
(i) Base network: VGG16 network with an additional conv
block (CB6) at the end.
(i) Base network + R: the base network with residual learning.
(iii) Base network + R + U-REB (λc = 0): the base network
with residual learning guided by the confidence estimation
blocks as discussed in Section 4.3. In this configuration,
we aim to measure the performance due to the addition of
the confidence estimation blocks without the uncertainty
estimation mechanism by setting λc is set to 0.
(iv) Base network + R + U-REB (λc = 1): the base network
with residual learning guided by the confidence estimation
blocks as discussed in Section 4.3.
(v) Base network + R + U-REBC (λw = 0): the base network
with residual learning guided by the class-conditioned
confidence estimation blocks as discussed in Section 4.4. In
this configuration, we aim to measure the performance due
to the addition of conv block in the class conditioning CC
module without image-level training by setting λw is set to
0.
(vi) Base network + R + U-REBC (λw = 0.01): the base
network with residual learning guided by the class-
conditioned confidence estimation blocks as discussed in
Section 4.4.

The results of these experiments are shown in Table 5. It
can be seen that there are considerable improvements in the
performance due to the inclusion of residual learning into
the network. The use of confidence-based weighting of the
residuals results in further improvements, thus highlighting
its significance in improving the efficacy of uncertainty-
based residual learning.

TABLE 5
Results of ablation study using “VGG16” base network on the

JHU-CROWD++ dataset (val-set).

Method MAE MSE
Base network 81.1 300.5
Base network + R 77.5 290.6
Base network + R + UREB (λc = 0) 77.1 290.5
Base network + R + UREB (λc = 1) 74.1 275.5
Base network + R + UREB-C (λw = 0) 74.6 274.1
Base network + R + UREB-C (λw = 0.01) 67.9 262.1

Further, we perform additional ablation studies to
demonstrate the effectiveness of conditioning the estima-
tion based on the class labels. Specifically, we conduct the
following three experiments (see Table 6):
(i) W/o conditioning: This is the baseline experiment that
does not involve any use of the weather labels,
(ii) With multi-task learning: Here, we use the weather labels
to train the CC block. However, the feature maps from the
CC block “are not” concatenated with the residual map Ri.
This experiment demonstrates the benefit of using the class
labels in a naive manner.
(iii) With multi-task learning & conditioning: This corre-
sponds to the proposed method of conditioning the residual
estimation on the class labels (as described in 4.4). It can be
observed that conditioning results in better improvements

as compared to the naive use class labels. This leads to
significant improvements in the overall error.

Fig. 12 visualizes the density map estimation results
from the above experiments. It can be observed that class-
conditioning improves the quality of density maps and
prediction error.

TABLE 6
Ablation results: “Class-conditioning” for weather-conditions study on

the JHU-CROWD++ weather dataset (val-set).

Method MAE MSE
W/o conditioning 78.4 170.5
With multi-task learning 74.4 140.1
With multi-task learning & conditioning 63.6 116.6

5.2 Res101 backbone network
In order to demonstrate that the proposed uncertainty-
guided residual learning mechanism is not network-
dependent, we evaluate the method using a different base
network: Res101 [43]. To employ the Res101 architecture as
the base network: we (i) add the uncertainty-based residual
estimation blocks U -REB3, U -REB4 and U -REB5 after
layers 2, 3 and 4 in Res101 respectively, (ii) add conv6 layer
after layer 5 with the input number of channels changed
appropriately to match the number of output channels of
layer 4 in Res101, and (iii) change the number of input
channels in the conv blocks in U -REBi’s to match the
number of output channels of the respective blocks in the
main branch of Res101. Furthermore, since the U -REB3

is added to a shallower layer, we weight the loss function
corresponding to Ŷ6. That is, we modify Eq. 6 as follows:

Ld =
∑

i∈{3,4,5,6}

λi‖(CMi � Yi)− (CMi � Ŷi)‖2. (10)

In the above equation, we set λ3 = 0.1 and λ4 = λ5 = λ6 = 1.
Table 7 shows the results of the proposed network using

Res101 backbone network. We make similar observations
as in the case of VGG16 base network. That is, the use of
residual learning results in better performance compared
to the base network. Further, incorporating uncertainty-
guided residual estimation and class conditioning results
in further improvements. From this experiment, we can
observe that the proposed method can generalize to other
types of network architectures.

TABLE 7
Results of ablation study using “Res101” base network on the

JHU-CROWD++ dataset (val-set).

Method MAE MSE
Base network 72.1 280.5
Base network + R 68.5 270.9
Base network + R + UREB (λc = 0) 68.2 271.2
Base network + R + UREB (λc = 1) 62.5 258.1
Base network + R + UREB-C (λw = 0) 63.1 259.9
Base network + R + UREB-C (λw = 0.01) 57.6 244.4

5.3 Number of branches
Since the proposed method involves residual learning at
multiple scales of the base network, we conduct a set of ex-
periments to understand the effectiveness of using multiple
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(a) (b) (c) (d)

Fig. 12. Ablation results: “Class-conditioning” for weather-conditions study on the JHU-CROWD++ weather dataset (val-set). (a) Input (b) Without
class-conditioning (c) With class-conditioning (d) Ground truth. Class-conditioning improves the quality of density maps and prediction error. Boxes
marked in red highlight the regions where class-conditioning improves the quality.

TABLE 8
Results of ablation on the “branches” used for density estimation on

the JHU-CROWD++ dataset (val-set).

Base network VGG16 Res101
Branch MAE MSE MAE MSE

Ŷ6 81.1 300.5 72.1 280.5
Ŷ6 + Ŷ5 72.1 280.1 60.6 251.4
Ŷ6 + Ŷ5 + Ŷ4 70.7 270.5 58.8 249.4
Ŷ6 + Ŷ5 + Ŷ4 + Ŷ3 67.9 262.1 57.6 244.4

scales. We evaluate for two backbone architectures: VGG16
and Res101. Specifically, we conduct experiments where we
sequentially add the residual estimation blocks at conv5,
conv4 and conv3 for VGG16 and at layer4, layer 3 and layer
2 for Res101. Table 8 shows the results of these experiments.
It can be observed for both architectures that as we add
more residual estimation blocks at different layers, the errors
drops by considerable margins.

5.4 Effect of reduced training data

In order to demonstrate the need for a large dataset with
high diversity, we conducted a set of experiments by vary-
ing the number of data samples. More specifically, we
trained CG-DRCN-CC-Res101 with different percentages
(5%, 25%, 50%, 75% and 100%) of the JHU-CROWD++ train
dataset. Note that the evaluation is performed on the val
set. The results of this experiment are provided in Table 9.
As it can be observed, the error reduces as we increase the
number of training data samples.

TABLE 9
Results with varying training dataset size. MAE reduces with increase

in the number of samples used for training.

% of training data 5% 25% 50% 75% 100%
MAE 124.3 105.4 93.1 78.9 57.6



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 10
Results on JHU-CROWD++ dataset (“Val Set”). RED indicates best error and BLUE indicates second-best error.

Category Low Medium High Weather Overall
Method Model MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
MCNN [5] (CVPR 16) Custom 90.6 202.9 125.3 259.5 494.9 856.0 241.1 532.2 160.6 377.7
CMTL [24] (AVSS 17) Custom 50.2 129.2 88.1 170.7 583.1 986.5 165.0 312.9 138.1 379.5
CSR-Net [75](CVPR 18) VGG16 22.2 40.0 49.0 99.5 302.5 669.5 83.0 168.7 72.2 249.9
SA-Net [26](ECCV 18) VGG16 13.6 26.8 50.4 78.0 397.8 749.2 72.2 126.7 82.1 272.6
CACC [66] (CVPR 19) VGG16 34.2 69.5 65.6 115.3 336.4 619.7 101.8 179.3 89.5 239.3
DSSI-Net [76] (ICCV 19) VGG16 50.3 85.9 82.4 164.5 436.6 814.0 155.7 314.8 116.6 317.4
MBTTBF [63] (ICCV 19) VGG16 23.3 48.5 53.2 119.9 294.5 674.5 88.2 200.8 73.8 256.8
LSC-CNN [69] (PAMI 20) VGG16 6.8 10.1 39.2 64.1 504.7 860.0 77.6 187.2 87.3 309.0
CG-DRCN-CC-VGG16 (ours) VGG16 17.1 44.7 40.8 71.2 317.4 719.8 63.5 116.6 67.9 262.1
SFCN [44] (CVPR 19) ResNet-101 11.8 19.8 39.3 73.4 297.3 679.4 52.3 93.6 62.9 247.5
BCC [70](ICCV 19) VGG19 6.9 10.3 39.7 85.2 279.8 620.4 58.9 124.7 59.3 229.2
CG-DRCN-CC-Res101 (ours) ResNet-101 11.7 24.8 35.2 57.5 273.9 676.8 54.0 106.8 57.6 244.4

TABLE 11
Results on JHU-CROWD++ dataset (“Test Set”). RED indicates best error and BLUE indicates second-best error.

Category Low Medium High Weather Overall
Method Model MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
MCNN [5] (CVPR 16) Custom 97.1 192.3 121.4 191.3 618.6 1,166.7 330.6 852.1 188.9 483.4
CMTL [24] (AVSS 17) Custom 58.5 136.4 81.7 144.7 635.3 1,225.3 261.6 816.0 157.8 490.4
CSR-Net [75] (CVPR 18) VGG16 27.1 64.9 43.9 71.2 356.2 784.4 141.4 640.1 85.9 309.2
SA-Net [26] (ECCV 18) VGG16 17.3 37.9 46.8 69.1 397.9 817.7 154.2 685.7 91.1 320.4
CACC [66] (CVPR 19) VGG16 37.6 78.8 56.4 86.2 384.2 789.0 155.4 617.0 100.1 314.0
DSSI-Net [76] (ICCV 19) VGG16 53.6 112.8 70.3 108.6 525.5 1,047.4 229.1 760.3 133.5 416.5
MBTTBF [63] (ICCV 19) VGG16 19.2 58.8 41.6 66.0 352.2 760.4 138.7 631.6 81.8 299.1
LSCCNN [69] (PAMI 20) VGG16 10.6 31.8 34.9 55.6 601.9 1,172.2 178.0 744.3 112.7 454.4
CG-DRCN-CC-VGG16 (ours) VGG16 19.5 58.7 38.4 62.7 367.3 837.5 138.6 654.0 82.3 328.0
SFCN [44] (CVPR 19) ResNet-101 16.5 55.7 38.1 59.8 341.8 758.8 122.8 606.3 77.5 297.6
BCC [70] (ICCV 19) VGG19 10.1 32.7 34.2 54.5 352.0 768.7 140.1 675.7 75.0 299.9
CG-DRCN-CC-Res101 (ours) ResNet-101 14.0 42.8 35.0 53.7 314.7 712.3 120.0 580.8 71.0 278.6

6 BENCHMARKING ON JHU-CROWD++ DATASET

In this section, we present results of benchmarking of sev-
eral recent algorithms including the proposed method on
the JHU-CROWD++ dataset. Specifically, we evaluate the
following recent works: mulit-column network (MCNN) [5],
cascaded multi-task learning for crowd counting (CMTL)
[24], CSR-Net [75], SA-Net [26], context-aware crowd count-
ing (CACC) [76], spatial fully convolutional network (SFCN)
[44], deep structured scale integration network (DSSI-Net)
[76], multi-level bottom-top and top-bottom feature fusion
[63], Bayesian loss for counting (BCC) [70] and locate-size-
count-CNN (LSC-CNN) [69]. In addition, we also evaluate
the proposed class-conditioned uncertainty-guided residual
estimation method (CG-DRCN-CC) and demonstrate its
effectiveness over the other methods.

All the networks are trained using the training set. We
use the validation set for model selection. Table 10 and 11
show the results of the above experiments for various sub-
categories of images. Based on these results we make the
following observations:
(i) The proposed method (CG-DRCN-CC) with Res101 base
network achieves lowest overall MAE while obtaining com-
parable performance for validation set.
(ii) The proposed method (CG-DRCN-CC) with Res101 base
network achieves lowest overall MAE/MSE as compared to

all the other methods on the test set. In addition, it achieves
best errors for the “high-density” and “weather” categories
while obtaining comparable performance for the rest of the
categories.
(iii) The proposed method (CG-DRCN-CC) with VGG16
base network achieves comparable performance in all cat-
egories with respect to the other methods.
(iv) BCC [70] and LSC-CNN [69] achieve lowest errors in the
“low-density” categories. These methods do not follow the
traditional density-estimation based approach for supervis-
ing the networks. Instead they incorporate size information
during the training through strategies like Bayesian-loss and
bounding box-based supervision.
(v) Res101-based methods tend to perform better compared
to VGG16-based approaches in terms of overall error.

7 EVALUATION ON OTHER DATASETS

In this section, we evaluate the proposed method on other
datasets like ShanghaiTech [5] and UCF-QNRF [21]. In addi-
tion, we compare the proposed method with several recent
methods and demonstrate that our method is able to achieve
comparable performance with respect to the state-of-the-art
methods.
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(a) (b) (c)

Fig. 13. Results of the proposed dataset on sample images from the JHU-CROWD++ dataset. (a) Input image (b) Ground-truth density map (c)
Estimated density map.

7.1 ShanghaiTech Dataset [5]

This dataset contains 1,198 annotated images with a total of
330,165 people. This dataset consists of two parts: Part A
with 482 images and Part B with 716 images. Both parts are
further divided into training and test datasets with training
set of Part A containing 300 images and that of Part B
containing 400 images. Rest of the images are used as test
set.

The proposed network is trained on the train splits using
the same strategy as discussed in Section 4.5. Table 12 shows

the results of the proposed method on ShanghaiTech as
compared with several recent approaches: CP-CNN[6], IG-
CNN [30], D-ConvNet [33], Liu et al.[58], CSR-Net [75], ic-
CNN [25], SA-Net[26], ACSCP [32] and Jian et al.[64], CA-
Net [76], BCC [70], DSSI-Net [76], MBTTBF [63] and LSC-
CNN [69]. It can be observed that the proposed method
outperforms all existing methods on Part A of the dataset,
while achieving comparable performance on Part B.
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TABLE 12
Results on “ShanghaiTech” dataset [5].

Part-A Part-B
Method MAE MSE MAE MSE
CP-CNN [6] 73.6 106.4 20.1 30.1
IG-CNN [30] 72.5 118.2 13.6 21.1
Liu et al.[58] 73.6 112.0 13.7 21.4
D-ConvNet [33] 73.5 112.3 18.7 26.0
CSRNet [75] 68.2 115.0 10.6 16.0
ic-CNN [25] 69.8 117.3 10.7 16.0
SA-Net [26] 67.0 104.5 8.4 13.6
ACSCP [32] 75.7 102.7 17.2 27.4
Jian et al.[64] 64.2 109.1 8.2 12.8
CA-Net [66] 61.3 100.0 7.8 12.2
BCC [70] 62.8 117.0 8.1 12.7
DSSI-Net [76] 60.6 96.0 6.8 10.3
MBTTBF [63] 60.2 94.1 8.0 15.5
LSC-CNN [69] 66.5 101.8 7.7 12.7
CG-DRCN-VGG16 (ours) 64.0 98.4 8.5 14.4
CG-DRCN-Res101 (ours) 60.2 94.0 7.5 12.1

7.2 UCF-QNRF Dataset[21]

UCF-QNRF is a large crowd counting dataset with 1535
high-resolution images and 1.25 million head annotations.
There are 1201 training images and 334 test images. It
contains extremely congested scenes where the maximum
count of an image can reach up to 12,865.

Table 13 shows results on the UCF-QNRF dataset. The
proposed method is compared with the following recent
methods: Idrees et al.[3], MCNN [5], CMTL [24], Switching-
CNN [7], Idrees et al.[21], Jian et al.[64], CA-Net [76], BCC
[70], DSSI-Net [76], MBTTBF [63] and LSC-CNN [69]. It can
be observed that the proposed method achieves compara-
ble performance with respect to the recent state-of-the-art
methods.

TABLE 13
Results on “UCF-QNRF ” dataset [21].

Method MAE MSE
Idrees et al.[3] 315.0 508.0
Zhang et al.[4] 277.0 426.0
CMTL et al.[24] 252.0 514.0
Switching-CNN [7] 228.0 445.0
Idrees et al.[21] 132.0 191.0
Jian et al.[64] 113.0 188.0
CA-Net [66] 107.0 183.0
DSSI-Net [76] 99.1 159.2
MBTTBF [63] 97.5 165.2
BCC [70] 88.7 154.8
LSC-CNN [69] 120.5 218.2
CG-DRCN-VGG16 (ours) 112.2 176.3
CG-DRCN-Res101 (ours) 95.5 164.3

8 CONCLUSIONS

In this work, we introduce a new large scale unconstrained
crowd counting dataset (JHU-CROWD++) consisting of
4,372 images with 1.51 million annotations. The new dataset
is collected under a variety of conditions and includes
images with weather-based degradations and other dis-
tractors. Additionally, the dataset provides a rich set of

annotations such as head locations, blur-level, occlusion-
level, approximate bounding boxes and other image-level
labels. In addition, we benchmark several recent state-of-
the-art crowd counting techniques on the new dataset.

Furthermore, we present a novel crowd counting net-
work that employs residual learning mechanism in a pro-
gressive fashion to estimate coarse to fine density maps. The
efficacy of residual learning is further improved by intro-
ducing an uncertainty-based confidence weighting mecha-
nism that is designed to enable the network to propagate
only high-confident residuals to the output. Additionally,
we incorporate class-conditioning mechanism to leverage
the image-level labels in the new dataset for improving the
performance in adverse weather conditions. The proposed
method is evaluated on recent datasets and we demonstrate
that it achieves comparable performance with respect to the
state-of-the-art methods.
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