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Abstract. Recent crowd counting approaches have achieved excellent
performance. However, they are essentially based on fully supervised
paradigm and require large number of annotated samples. Obtaining
annotations is an expensive and labour-intensive process. In this work, we
focus on reducing the annotation efforts by learning to count in the crowd
from limited number of labeled samples while leveraging a large pool of
unlabeled data. Specifically, we propose a Gaussian Process-based iterative
learning mechanism that involves estimation of pseudo-ground truth for
the unlabeled data, which is then used as supervision for training the
network. The proposed method is shown to be effective under the reduced
data (semi-supervised) settings for several datasets like ShanghaiTech,
UCF-QNRF, WorldExpo, UCSD, etc. Furthermore, we demonstrate that
the proposed method can be leveraged to enable the network in learning
to count from synthetic dataset while being able to generalize better to
real-world datasets (synthetic-to-real transfer).

Keywords: Crowd counting, semi-supervised learning, pseudo-labeling,
domain adaptation, synthetic to real transfer

1 Introduction

Due to its significance in several applications (like video surveillance [12,50,44],
public safety monitoring [58], microscopic cell counting [15], environmental studies
[23], etc.), crowd counting has attracted a lot of interest from the deep learning re-
search community. Several convolutional neural network (CNN) based approaches
have been developed that address various issues in counting like scale varia-
tions, occlusion, background clutter [17,59,18,36,42,22,39,37,3,28,19,43,33,34,2],
etc. While these methods have achieved excellent improvements in terms of the
overall error rate, they follow a fully-supervised paradigm and require several
labeled data samples. There is a wide variety of scenes and crowded scenarios
that these networks need to handle to in the real world. Due to a distribution gap
between the training and testing environments, these networks have limited gener-
alization abilities and hence, procuring annotations becomes especially important.
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(a) (b)

Fig. 1. Results of semi-supervised learning experiments. (a) ShanghaiTech A (b) UCF-
QNRF. For both datasets, the error increases with reduction in the %-age of labeled
data. By leveraging the unlabeled dataset using the proposed GP-based framework, we
are able to reduce the error considerably. Note that DL and DU indicate labeled and
unlabeled dataset, respectively.

However, annotating data for crowd counting typically involves obtaining point-
wise annotations at head locations, and this is a labour intensive and expensive
process. Hence, it is infeasible to procure annotations for all possible scenarios.
Considering this, it is crucial to reduce the annotation efforts, especially for crowd
counting methods which get deployed in a wide variety of scenarios.

With the exception of a few works [6,22,?], reducing annotation efforts while
maintaining good performance is relatively less explored for the task of crowd
counting. Hence, in this work, we focus on learning to count using limited labeled
data while leveraging unlabeled data to improve the performance. Specifically,
we propose a Gaussian Process (GP) based iterative learning framework where
we augment the existing networks with capabilities to leverage unlabeled data,
thereby resulting in overall improvement in the performance. Inspired by [57],
the proposed framework follows a pseudo-labeling approach, where we estimate
the pseudo-ground truth (pseudo-GT) for the unlabeled data, which is then
used to supervise the network. The network is trained iteratively on labeled
and unlabeled data. In the labeled stage, the network weights are updated by
minimizing the L2 error between predictions and the ground-truth (GT) for
the labeled data. In addition, we save the latent space vectors of the labeled
data along with the ground-truths. In the unlabeled stage, we first model the
relationship between the latent space vectors of the labeled images along with
the corresponding ground-truth and unlabeled latent space vectors jointly using
GP. Next, we estimate the pseudo-GT for the unlabeled inputs using the GP
modeled earlier. This pseudo-GT is then used to supervise the network for the
unlabeled data. Minimizing the error between the unlabeled data predictions and
the pseudo-GT results in improved performance. Fig. 1 illustrates the effectiveness
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of the proposed GP-based framework in exploiting unlabeled data on two datasets
(ShanghaiTech-A [61] and UCF-QNRF[10]) in the reduced data setting. It can be
observed that the proposed method is able to leverage unlabeled data effectively
resulting in lower error across various settings.

The proposed method is evaluated on different datasets like ShanghaiTech [61],
UCF-QNRF [10], WorldExpo [59], UCSD [4], etc. in the reduced data settings.
In addition to obtaining lower error as compared to the existing methods [22],
the performance drop due to less data is improved by a considerable margin.
Furthermore, the proposed method is effective for learning to count from syn-
thetic data as well. More specifically, we use labeled synthetic crowd counting
dataset (GCC [55]) and unlabeled real-world datasets (ShanghaiTech [61], UCF-
QNRF [10], WorldExpo [59], UCSD [5]) in our framework, and show that it is
able to generalize better to real-world datasets as compared to recent domain
adaptive crowd counting approaches [55]. To summarize, the following are our
contributions:

– We propose a GP-based framework to effectively exploit unlabeled data during
the training process, resulting in improved overall performance. The proposed
method consists of iteratively training over labeled and unlabeled data. For
the unlabeled data, we estimate the pseudo-GT using the GP modeled during
labeled phase.

– We demonstrate that the proposed framework is effective in semi-supervised and
synthetic-to-real transfer settings. Through various ablation studies, we show
that the proposed method is generalizable to different network architectures
and various reduced data settings.

2 Related Work

Crowd Counting. Traditional approaches in crowd counting ([16,31,7,9,15,27,56])
typically involved feature extraction techniques and training regression algorithms.
Recently, CNN-based approaches like [54,59,36,1,51,26,61,36,42] have surpassed
the traditional approaches by a large margin in terms of the overall error rate.
Most of these methods focus on addressing the issue of large variations in scales.
Approaches like [61,36,42] focus on improving the receptive field. Different from
these, approaches like [28,41,47,32] focus on effective ways of fusing multi-scale
information from deep networks. In addition to scale variation, recent approaches
have addressed other issues in crowd counting like improving the quality of
predicted density maps using adversarial regularization [42,?], use of deep neg-
ative correlation-based learning for obtaining more generalizable features, and
scale-based feature aggregation [3]. Most recently, several methods have employed
additional information like segmentation and semantic priors [62,53], attention
[20,45,46], perspective [38], context information [21], multiple-views [60] and
multi-scale features [11], adaptive density maps [52] into the network. In other
efforts, researchers have made important contributions by creating large-scale
datasets for counting like UCF-QNRF [10], GCC [55] and JHU-CROWD [48,49].
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For a more detailed discussion on these methods, the reader is referred to recent
comprehensive surveys [43,8].
Learning from limited data. Recent research in crowd counting has been
largely focused on improving the counting performance in the fully-supervised
paradigm. Very few works like [6,?,55] have made efforts on minimizing annota-
tion efforts. Loy et al.[6] proposed a semi-supervised regression framework that
exploit underlying geometric structures of crowd patterns to assimilate the count
estimation of two nearby crowd pattern points in the manifold. However, this
approach is specifically designed for video-based crowd counting.

Recently, Liu et al.[22] proposed to leverage additional unlabeled data for
counting by introducing a learning to rank framework. They assume that any
sub-image of a crowded scene image is guaranteed to contain the same number or
fewer persons than the super-image. They employ pairwise ranking hinge loss to
enforce this ranking constraint for unlabeled data in addition to the L2 error to
train the network. In our experiments we observed that this constraint is almost
always satisfied, and it provides relatively less supervision over unlabeled data.

Babu et al.[35] focus on a different approach, where they train 99.9% of their
parameters from unlabeled data using a novel unsupervised learning framework
based on winner-takes-all (WTA) strategy. However, they still train the remaining
set of parameters using labeled data.

Wang et al.[55] take a totally different approach to minimize annotation
efforts by creating a new synthetic crowd counting dataset (GCC). Additionally,
they propose a Cycle-GAN based domain adaptive approach for generalizing the
network trained on synthetic dataset to real-world dataset. However,there is a
large gap in terms of the style and also the crowd count between the synthetic
and real-world scenarios. Domain adaptive approaches have limited abilities in
handling such scenarios. In order to obtain successful adaptation, the authors
in [55] manually select the samples from the synthetic dataset that are closer
to the real-world scenario in terms of crowd count for training the network.
This selection is possible when one has information about the count from the
real-world datasets, which violates the assumption of lack of unlabeled data in
the target domain for unsupervised domain adaptation.

Considering the drawbacks of existing approaches, we propose a new GP-based
iterative training framework to exploit unlabeled data.

3 Preliminaries

In this section, we briefly review the concepts (crowd counting, semi-supervised
learning and Gaussian Process) that are used in this work.

Crowd counting. Following recent works [59,61], we employ the approach of
density estimation technique. That is, an input crowd image is forwarded through
the network, and the network outputs a density map. This density map indicates
the per-pixel count of people in the image. The count in the image is obtained
by integrating over the density map. For training the network using labeled data,
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the ground-truth density maps are obtained by imposing 2D Gaussians at head
location xg using D(x) =

∑
xg∈S N (x− xg, σ). Here, σ is the Gaussian kernel’s

scale and S is the list of all locations of people.

Problem formulation. We are given a set of labeled dataset of input-GT pairs
({x, y} ∈ DL) and a set of unlabeled input data samples x ∈ DU . The objective is
to fit a mapping-function f(x|φ) (with parameters defined by φ) that accurately
estimates target label y for unobserved samples. Note that this definition applies
to both semi-supervised setting and synthetic-to-real transfer setting. In the case
of synthetic-to-real transfer, the synthetic dataset is labeled and hence, can be
used as the labeled dataset (DL). Similarly, the real-world dataset is unlabeled
and can be used as the unlabeled dataset (DU ).

In order to learn the parameters, both labeled and unlabeled datasets are
exploited. Typically, loss functions such as L1, L2 or cross entropy error are
used for labeled data. For exploiting unlabeled data DU , existing approaches
augment f(x|φ) with information like shape of the data manifold [25] via different
techniques such as enforcing consistent regularization [13], virtual adversarial
training [24] or pseudo-labeling [14]. In this work, we employ pseudo-labeling
based approach where we estimate pseudo-GT for unlabeled data, and then use
them for supervising the network using traditional supervised loss functions.

Gaussian process. A Gaussian process (GP) f(v) is an infinite collection of
random variables, any finite subset of which have a joint Gaussian distribution.
A GP is fully specified by its mean function (m(v)) and covariance function
K(v, v′). These are defined below:

m(v) = E[f(v)], (1)

K (v, v′) = E [(f(v)−m(v)) (f (v′)−m (v′))] , (2)

where v, v′ ∈ V denote the possible inputs that index the GP. The covariance
matrix is computed from the covariance function K which expresses the notion
of smoothness of the underlying function. GP can then be formulated as follows:

f(v) ∼ GP(m(v),K(v, v′) + σ2
ε I), (3)

where I is identity matrix and σ2
ε is the variance of the additive noise. Any

collection of function values is then jointly Gaussian as follows

f(V ) = [f (v1) , . . . , f (vn)]
T ∼ N

(
µ,K(V, V ′) + σ2

ε I
)
, (4)

with mean vector and covariance matrix defined by the GP as mentioned earlier.
To make predictions at unlabeled points, one can compute a Gaussian posterior
distribution in closed form by conditioning on the observed data. For more details,
we refer the reader to [29].
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4 GP-based iterative learning

Fig. 2 gives an overview of the proposed method. The network is constructed
using an encoder fe(x, φe) and a decoder fd(z, φd), that are parameterized by φe
and φd, respectively. The proposed framework is agnostic to the encoder network,
and we show in the experiments section that it generalizes well to architectures
such as VGG16 [40], ResNet-50 and ResNet-101 [30]. The decoder consists of a
set of 2 conv-relu layers (see supplementary material for more details). Typically,
an input crowd image x is forwarded through the encoder network to obtain the
corresponding latent space vector z. This vector is then forwarded through the
decoder network to obtain the crowd density output y, i.e, y = fd(fe(x, φe), φd).

We are given a training dataset, D = DL ∪ DU , where DL = {xil, yil}
Nl
i=1 is a

labeled dataset containing Nl training samples and DU = {xiu}
Nu
i=1 is an unlabeled

dataset containing Nu training samples. The proposed framework effectively
leverages both the datasets by iterating the training process over labeled DL and
unlabeled datasets DU . More specifically, the training process consists of two
stages: (i) Labeled training stage: In this stage, we employ supervised loss function
Ls to learn the network parameters using labeled dataset, and (ii) Unlabeled
training stage: We generate pseudo GTs for the unlabeled data points using the
GP formulation, which is then used for supervising the network on the unlabeled
dataset. In what follows, we describe these stages in detail.

4.1 Labeled stage

Since the labeled dataset DL comes with annotations, we employ L2 error between
the predictions and the GTs as supervision loss for training the network. This
loss objective is defined as follows:

Ls = L2 = ‖ypredl − yl‖2, (5)

where ypredl = g(zl, φd) is the predicted output, yl is the ground-truth, z = h(x, φe)
is the intermediate latent space vector. Note that, the subscript l in the above
quantities indicate that these are defined for labeled data.

Along with performing supervision on the labeled data, we additionally save
feature vectors zil ’s from the intermediate latent space in a matrix Fzl . Specifically,

Fzl = {zil}
Nl
i=1. This matrix is used for computing the pseudo-GTs for unlabeled

data at a later stage. The dimension of Fzl matrix is Nl ×M . Here, M is the
dimension of the latent space vector zl. In our case, the latent space vector
dimension is 64× 32× 32 (see supplementary material for more details), which is
reshaped to 1× 65, 536. Hence, M = 65, 536.

4.2 Unlabeled stage

Since the unlabeled data DU does not come with any GT annotations, we esti-
mate pseudo-GTs which are then used as supervision for training the network on
unlabeled data. For this purpose, we model the relationship between the latent
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Fig. 2. Illustration of the proposed framework. Training is performed iteratively over
labeled and unlabeled data. For labeled data, we minimize the L2 error between
the predictions and GT. For unlabeled data, we minimize the L2 error between the
predictions and pseudo-GT.

space vectors of the labeled images Fzl along with the corresponding GT Tyl and
unlabeled latent space vectors zpredu jointly using GP.

Estimation of pseudo-GT: As discussed earlier, the training process iterates
over labeled DL and unlabeled data DU . After the labeled stage, the labeled
latent space vectors Fzl and their corresponding GT density maps Tyl are used
to model the function t which maps the relationship between the latent vectors
and the output density maps as, y = t(z). Using GP, we model this function t(.)
as an infinite collection of functions of which any finite subset is jointly Gaussian.
More specifically, we jointly model the distribution of the function values t(.) of
the latent space vectors of the labeled and the unlabeled samples using GP as
follows:

P (t(z)|DL, Fzl , Tyl) ∼ GP(µ,K(Fzl , Fzl) + σ2
ε I), (6)

where µ is the function value computed using GP, σ2
ε is set equal to 1, and K

is the kernel function. Based on this, the conditional joint distribution for the
latent space vector zku of the kth unlabeled sample xku can be expressed as the
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following Gaussian distribution:

P (t(zku)|DL, Fzl , Tzl) = N (µku, Σ
k
u), (7)

where
µku = K(zku, Fzl)[K(Fzl , Fzl) + σ2

ε I]−1Tyl , (8)

Σk
u = K(zku, z

k
u)−K(zku, Fzl)[K(Fzl , Fzl) + σ2

ε I]−1K(Fzl , z
k
u) + σ2

ε (9)

where σ2
ε is set equal to 1 and K is a kernel function with the following definition:

K(Z,Z)k,i = κ(zku, z
i
l ) =

〈zku, zil 〉
|zku| · |zil |

. (10)

Considering the large dimensionality of the latent space vector, K(Fzl , Fzl)
can grow quickly in size especially if the number of labeled data samples Nl
is high. In such cases, the computational and memory requirements become
prohibitively high. Additionally, all the latent vectors may not be necessarily
effective since these vectors correspond to different regions of images in terms
of content and size/density of the crowd. In order to overcome these issues, we
use only those labeled vectors that are similar to the unlabeled latent vector.
Specifically, we consider only Nn nearest labeled vectors corresponding to an
unlabeled vector. That is, we replace Fzl by Fzl,n in Eq. (7)-(9). Here Fzl,n =

{zjl : zjl ∈ nearest(zku, Fzl , Nn)}, and Tyl,n = {yjl : zjl ∈ nearest(zku, Fzl , Nn)}
with nearest(p,Q,Nn) being a function that finds top Nn nearest neighbors of p
in Q.

The pseudo-GT for unlabeled data sample is given by the mean predicted in
Eq. (8), i.e, yku,pseudo = µku. The L2 distance between the predictions yku,pred =

g(zku, φe) and the pseudo-GT yku,pseudo is used as supervision for updating the
parameters of the encoder fe(·, φe) and the decoder fd(., φd).

Furthermore, the pseudo-GT estimated using Eq. (8) may not be necessarily
perfect. Errors in pseudo-GT will limit the performance of the network. To
overcome this, we explicitly exploit the variance modeled by the GP. Specifically,
we minimize the predictive variance by considering Eq. (9) in the loss function.
As discussed earlier, using all the latent space vectors of labeled data may not be
necessarily effective. Hence, we minimize the variance Σk

u,n computed between

zku and the Nn nearest neighbors in the latent space vectors using GP. Thus, the
loss function during the unlabeled stage is defined as:

Lun =
1

|Σk
u,n|
‖yku,pred − yku,pseudo‖2 + logΣk

u,n, (11)

where yku,pred is the crowd density map prediction obtained by forwarding an

unlabeled input image xku through the network, yku,pseudo = µku is the pseudo-GT

(see Eq. (8)), and Σk
u,n is the predictive variance obtained by replacing Fzl in Eq.

(9) with Fzl,n. Note that the prediction error (the first term) is scaled by loss by
inverse of the variance. This ensures that the loss from uncertain pseudo-gts are
down-weighted and hence, only accurate pseudo-gts are used for training.
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4.3 Final objective function

We combine the supervised loss Eq. (5) and unsupervised loss Eq. (11) to obtain
the final objective function as follows:

Lf = Ls + λunLun, (12)

where λun is a hyper-parameter that weighs the unsupervised loss.

5 Experiments and results

In this section, we discuss the details of the various experiments conducted
to demonstrate the effectiveness of the proposed method. Since the proposed
method is able to leverage unlabeled data to improve the overall performance, we
performed evaluation in two settings: (i) Semi-supervised settings: In this setting,
we varied the percentage of labeled samples from 5% to 75%. We first show
that with the base network, there is performance drop due to the reduced data.
Later, we show that the proposed method is able to recover a major percentage
of the performance drop. (ii) Synthetic-to-real transfer settings: In this setting,
the goal is to train on synthetic dataset (labeled), while adapting to real-world
dataset. Unlabeled images from the real-world are available during training. In
both settings, the proposed method is able to achieve better results as compared
to recent methods. Details of the datasets are provided in the supplementary
material.

5.1 Semi-supervised settings

In this section, we conduct experiments in the semi-supervised settings by re-
ducing the amount of labeled data available during training. The rest of the
samples in the dataset are considered as unlabeled samples wherever applicable.
In the following sub-sections, we present comparison of the proposed method in
the 5% setting with other recent methods. For comparison, we used 4 datasets:
ShanghaiTech (SH-A/B)[61], UCF-QNRF [10], WorldExpo [59] and UCSD [4].
This is followed by a detailed ablation study involving different architectures and
various percentages of labeled data used during training. For ablation, we chose
ShanghaiTech-A and UCF-QNRF datasets since they contain a wide diversity of
scenes and large variation in count and scales.

Implementation details. We train the network using Adam optimizer with a
learning rate of 10e− 5 and a momentum of 0.9 on an NVIDIA Titan Xp GPU.
We use batch size of 24. During training, random crops of size 256× 256 are used.
During inference, the entire image is forwarded through the network. For evalua-
tion, we use mean absolute error (MAE) and mean squared error (MSE) metrics,

which are defined as: MAE = 1
N

∑N
i=1 |yi−y′i| and MSE =

√
1
N

∑N
i=1 |yi − y′i|2,

respectively. Here, N is the total number of test images, yi is the ground-
truth/target count of people in the image and y′i is the predicted count of people
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Table 1. Comparison of results in SSL settings. Reducing labeled data to 5% results
in performance drop by a big margin as compared to 100% data. ResNet-50 was used
as the encoder network for all the methods. RL: Ranking-Loss. GP: Gaussian-Process.
AG: Average Gain %3.

Method DL DU
SH-A SH-B UCF-QNRF WExpo UCSD

MAE MSE AG MAE MSE AG MAE MSE AG MAE AG MAE MSE AG

ResNet-50 (Oracle) 100% - 76 126 - 8.4 14.5 - 114 195 - 10.1 - 1.7 2.1 -

ResNet-50 (DL-only) 5% - 118 211 - 21.2 34.2 - 186 295 - 14.2 - 2.2 2.8 -
ResNet-50+RL 5% 95% 115 208 2.0 20.1 32.9 4.0 182 291 1.7 14.0 0.01 2.2 2.8 0
ResNet-50+GP(Ours) 5% 95% 102 172 16 15.7 27.9 22 160 275 10 12.8 10 2.0 2.4 12

in to the ith image. We set aside 10% of the training set for the purpose of valida-
tion. The hyper-parameter λun was chosen based on the validation performance.
More details are provided in the supplementary.

Comparison with recent approaches. Here, we compare the effectiveness
of the proposed method with a recent method by Liu et al.[22] on 4 different
datasets. In order to get a better understanding of the overall improvements, we
also provide the results of the base network with (i) 100% labeled data supervision
that is the oracle performance, and (ii) 5% labeled data supervision.

For all the methods (except oracle), we limited the labeled data used during
training to 5% of the training dataset. Rest of the samples were used as unla-
beled samples. We used ResNet-50 as the encoder network. The results of the
experiments are shown in Table 1. For all the experiments that we conducted, we
report the average of the results for 5 trials. The standard deviations are reported
in the supplementary. We make the following observations for all the datasets: (i)
Compared to using the entire dataset, reducing the labeled data during train-
ing (to 5%) leads to significant increase in error. (ii) The proposed GP-based
framework is able to reduce the performance drop by a large margin. Further, the
proposed method achieves an average gain (AG)3 of anywhere between 10%-22%
over the DL-only baseline across all datasets. (iii) The proposed method is able
to leverage the unlabeled data more effectively as compared to Liu et al.[22]. This
is because the authors in [22] using a ranking loss on the unlabeled data which
is based on the assumption that sub-image of a crowded scene is guaranteed
to contain the same or fewer number of people compared to the entire image.
We observed that this constraint is satisfied naturally for most of the unlabeled
images, and hence it provides less supervision (see supplementary material for a
detailed analysis).

Ablation of labeled data percentage. We conducted an ablation study where
we varied the percentage of labeled data used during the training process. More
specifically, we used 4 different settings: 5%, 25%, 50% and 75%. The remain-
ing data were used as unlabeled samples. We used ResNet-50 as the network
encoder for all the settings. This ablation study was conducted on 2 datasets:

3 AG = Gmae+Gmse
2

, Gmae =
mae(DU+DL)−mae(DL)

mae(DL)
, Gmse =

mse(DU+DL)−mse(DL)

mse(DL)
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Table 2. Results of ablation study with different %-ages of labeled data. The proposed
method achieves significant gains across different percentages of labeled data. We used
ResNet-50 as the encoder network for all the experiments. AG: Average Gain %3.

DL %
SH-A UCF-QNRF

No-GP (DL-only) GP (DL + DU ) AG
%

No-GP (DL-only) GP (DL + DU ) AG
%MAE MSE MAE MSE MAE MSE MAE MSE

5 118 211 102 172 16 186 295 160 275 10
25 110 160 91 149 12 178 252 147 226 14
50 102 149 89 148 6.1 158 250 136 218 13
75 93 146 88 139 4.7 139 240 129 210 9.8

100 76 126 - - - 114 195 - - -

(a) (b) (c) (d)

Fig. 3. Results of SSL experiments on the ShanghaiTech-A [61] dataset using the 5%
labeled data setting. (a): Input. (b) No-GP (c) Proposed Method (d) Ground-truth.

ShanghaiTech-A (SH-A) and UCF-QNRF. The results of this ablation study
are shown in Table 2. It can be observed for both datasets that as the percent-
age of labeled data is reduced, the performance of the baseline network drops
significantly. However, the proposed GP-based framework is able to leverage
unlabeled data in all the cases to reduce this performance drop by a considerable
margin. Fig. 3 show sample qualitative results on ShanghaiTech-A dataset for
the semi-supervised protocol with 5% labeled data setting. It can be observed
that the proposed method is able to predict the density maps more accurately as
compared to the baseline method that does not consider unlabeled data.

Architecture ablation. We conducted an ablation study where we evaluated
the proposed method using different architectures. More specifically, we used dif-
ferent networks like ResNet-50, ResNet-101 and VGG16 as encoder network. The
ablation was performed on 2 datasets: ShanghaiTech-A (SH-A) and UCF-QNRF.
For all the experiments, we used 5% of the training dataset as labeled dataset, and
the rest were used as unlabeled samples. The results of this experiment are shown
in Table 3. Based on these results, we make the following observations: (i) Since
networks like VGG16 and ResNet-101 have higher number of parameters, they
tend to overfit more in the reduced-data setting as compared to ResNet-50. (ii)
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Table 3. Results of ablation study with different networks. The proposed method is
able to exploit unlabeled data irrespective of different architectures. We used 5% of the
training data as labeled set, and the rest as unlabeled samples. AG: Average Gain %3.

Net DL%
SH-A UCF-QNRF

No-GP(DL-only) GP(DL + DU ) AG
%

No-GP (DL-only) GP (DL + DU ) AG
%MAE MSE MAE MSE MAE MSE MAE MSE

ResNet-50
100 76 126 - - - 114 195 - -
5 118 211 102 172 16 186 295 160 275 10

ResNet-101
100 76 117 - - - 116 197 - - -
5 131 200 110 162 18 196 324 174 288 11

VGG16
100 74 118 - - - 120 197 - -
5 121 205 112 163 14 188 316 175 291 7.4

The proposed GP-based method obtains consistent gains by leveraging unlabeled
dataset across different architectures.

Fig. 4. Histogram for pseudo-GT errors (errupseudo) and prediction errors (errupred) on
unlabeled data during training. Note that pseudo-GT errors are concentrated on the
lower end, implying that they are more closer to the ground truth as compared to the
predictions. Hence, pseudo-GTs provide meaningful supervision.

Pseudo-GT Analysis. In order to gain a deeper understanding about the
effectiveness of the proposed approach, we plot the histogram of normalized errors
with respect to the predictions yupred of the network and the pseudo-GT yupseudo for
the unlabeled data during the training process. Specifically, we plot histograms of

errupred and errupseudo, where errupred =
|yupred−y

u
gt|

yugt
and errupseudo =

|yupseudo−y
u
gt|

yugt
.

Here, yugt is the actual GT corresponding to the unlabeled data sample. The plot
is shown in Fig. 4. It can be observed that the pseudo-GT errors are concentrated
in the lower end of the error region as compared to the prediction errors. This
implies that the pseudo-GTs are more closer to the GTs than the predictions.
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Table 4. Comparison of results in synthetic-to-real transfer settings. We train the
network on synthetic crowd counting dataset (GCC), and leverage the training set of
real-world datasets without any labels. We used the same network as described in [55].

Method
SH-A SH-B UCF-QNRF UCF-CC-50 WExpo

MAE MSE MAE MSE MAE MSE MAE MSE MAE

No Adapt 160 217 22.8 30.6 276 459 487 689 42.8
Cycle GAN [63] 143 204 24.4 39.7 257 401 405 548 32.4
SE Cycle GAN [55] 123 193 19.9 28.3 230 384 373 529 26.3
Proposed Method 121 181 12.8 19.2 210 351 355 505 20.4

Hence, the pseudo-GTs obtained using the proposed method are able to provide
good quality supervision on the unlabeled data.

5.2 Synthetic-to-Real transfer setting

Recently, Wang et al.[55] proposed a synthetic crowd counting dataset (GCC)
that consists of 15,212 images with a total of 7,625,843 annotations. The primary
purpose of this dataset is to reduce the annotation efforts by training the networks
on the synthetic dataset, thereby eliminating the need for labeling. However, due
to a gap between the synthetic and real-world data distributions, the networks
trained on synthetic dataset perform poorly on real-world images. In order to
overcome this issue, the authors in [55] proposed a Cycle-GAN based domain
adaptive approach that additionally enforces SSIM consistency. More specifically,
they first learn to translate from synthetic crowd images to real-world images
using SSIM-based Cycle-GAN. This transfers the style in the synthetic image to
more real-world style. The translated synthetic images are then used to train a
counting network (SFCN) that is based on ResNet-101 architecture.

While this approach improves the error over the baseline methods, its per-
formance is essentially limited in the case of large distribution gap between real
and synthetic images. Moreover, the authors in [55] perform a manual selection
of synthetic samples for training the network. This selections ensures that only
samples that are closer to the real-world images in terms of the count are used
for training. Such a selection is not feasible in the case of unsupervised domain
adaptation where we have no access to labels in the target dataset.

The proposed GP-based framework overcomes these drawbacks easily and
can be extended to the synthetic-to-real transfer setting as well. We consider the
synthetic data as labeled training set and real-world training set as unlabeled
dataset, and train the network to leverage the unlabeled dataset. The results of
this experiment are reported in Table 4. We used the same network (SFCN) and
training process as described in [55]. As it can be observed, the proposed method
achieves considerable improvements compared to the recent approach. Since we
estimate the pseudo-GT for unlabeled real-world images and use it as supervision
directly, the distribution gap that the network needs to handle is much lesser.
This results in better performance compared to the domain adaptive approach
[55]. Unlike [55], we train the network on the unlabeled data and hence, we do not
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(a) (b) (c) (d)

Fig. 5. Results of Synthetic-to-Real transfer experiments on ShanghaiTech-A dataset.
(a): Input. (b) No Adapt (c) Proposed Method (d) Ground-truth.

need to perform any synthetic sample selection. Fig. 5 show sample qualitative
results on the ShanghaiTech-A dataset for the synthetic-to-real transfer protocol.
The proposed method is able to predict the density maps more accurately as
compared to the baseline.

6 Conclusions

In this work, we focused on learning to count in the crowd from limited labeled
data. Specifically, we proposed a GP-based iterative learning framework that
involves estimation of pseudo-GT for unlabeled data using Gaussian Processes,
which is then used as supervision for training the network. Through various
experiments, we show that the proposed method can be effectively used in a
variety of scenarios that involve unlabeled data like learning with less data or
synthetic to real-world transfer. In addition, we conducted detailed ablation
studies to demonstrate that the proposed method generalizes well to different
network architectures and is able to achieve consistent gains for different amounts
of labeled data.
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