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Learning Deep Features for One-Class Classification
Pramuditha Perera, Student Member, IEEE, and Vishal M. Patel, Senior Member , IEEE

Abstract—We present a novel deep-learning based approach
for one-class transfer learning in which labeled data from an un-
related task is used for feature learning in one-class classification.
The proposed method operates on top of a Convolutional Neural
Network (CNN) of choice and produces descriptive features while
maintaining a low intra-class variance in the feature space for
the given class. For this purpose two loss functions, compactness
loss and descriptiveness loss are proposed along with a parallel
CNN architecture. A template matching-based framework is
introduced to facilitate the testing process. Extensive experiments
on publicly available anomaly detection, novelty detection and
mobile active authentication datasets show that the proposed
Deep One-Class (DOC) classification method achieves significant
improvements over the state-of-the-art.

Index Terms—One-class classification, anomaly detection, nov-
elty detection, deep learning.

I. INTRODUCTION

One-class classification is a classical machine learning
problem that has received considerable attention in the recent
literature [1], [40], [5], [32], [31], [29]. The objective of one-
class classification is to recognize instances of a concept by
only using examples of the same concept [16] as shown in
Figure 1. In such a training scenario, instances of only a single
object class are available during training. In the context of
this paper, all other classes except the class given for training
are called alien classes.1 During testing, the classifier may
encounter objects from alien classes. The goal of the classifier
is to distinguish the objects of the known class from the objects
of alien classes. It should be noted that one-class classification
is different from binary classification due to the absence of
training data from a second class.

One-class classification is encountered in many real-world
computer vision applications including novelty detection [25],
anomaly detection [6], [37], medical imaging and mobile
active authentication [30], [33], [28], [35]. In all of these
applications, unavailability of samples from alien classes is
either due to the openness of the problem or due to the high
cost associated with obtaining the samples of such classes.
For example, in a novelty detection application, it is counter
intuitive to come up with novel samples to train a classifier.
On the other hand, in mobile active authentication, samples of
alternative classes (users) are often difficult to obtain due to
the privacy concerns [24].

Despite its importance, contemporary one-class classifica-
tion schemes trained solely on the given concept have failed
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Fig. 1. In one class classification, given samples of a single class, a classifier
is required to learn so that it can identify out-of-class(alien) objects. Abnormal
image detection is an application of one class classification. Here, given a set
of normal chair objects, a classifier is learned to detect abnormal chair objects.

to produce promising results in real-world datasets ( [1], [40]
has achieved an Area Under the Curve in the range of 60%-
65% for CIFAR10 dataset [21] [31]). However, we note that
computer vision is a field rich with labeled datasets of different
domains. In this work, in the spirit of transfer learning, we step
aside from the conventional one-class classification protocol
and investigate how data from a different domain can be used
to solve the one-class classification problem. We name this
specific problem One-class transfer learning and address it
by engineering deep features targeting one-class classification
tasks.

In order to solve the One-class transfer learning prob-
lem, we seek motivation from generic object classification
frameworks. Many previous works in object classification have
focused on improving either the feature or the classifier (or in
some cases both) in an attempt to improve the classification
performance. In particular, various deep learning-based feature
extraction and classification methods have been proposed in
the literature and have gained a lot of traction in recent
years [22], [44]. In general, deep learning-based classification
schemes have two subnetworks, a feature extraction network
(g) followed by a classification sub network (hc), that are
learned jointly during training. For example, in the popular
AlexNet architecture [22], the collection of convolution layers
may be regarded as (g) where as fully connected layers may
collectively be regarded as (hc). Depending on the output
of the classification sub network (hc), one or more losses
are evaluated to facilitate training. Deep learning requires the
availability of multiple classes for training and extremely large
number of training samples (in the order of thousands or
millions). However, in learning tasks where either of these
conditions are not met, the following alternative strategies are
used:
(a) Multiple classes, many training samples: This is the case
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Fig. 2. Different deep learning strategies used for classification. In all cases, learning starts from a pre-trained model. Certain subnetworks (in blue) are frozen
while others (in red) are learned during training. Setups (a)-(c) cannot be used directly for the problem of one-class classification. Proposed method shown
in (e) accepts two inputs at a time - one from the given one-class dataset and the other from an external multi-class dataset and produces two losses.

where both requirements are satisfied. Both feature extraction
and classification networks, g and hc are trained end-to-end
(Figure 2(a)). The network parameters are initialized using
random weights. Resultant model is used as the pre-trained
model for fine tuning [22], [17], [34].
(b) Multiple classes, low to medium number of training
samples: The feature extraction network from a pre-trained
model is used. Only a new classification network is trained in
the case of low training samples (Figure 2(b)). When medium
number of training samples are available, feature extraction
network (g) is divided into two sub-networks - shared feature
network (gs) and learned feature network (gl), where g =
gs ◦ gl. Here, gs is taken from a pre-trained model. gl and the
classifier are learned from the data in an end-to-end fashion
(Figure 2(c)). This strategy is often referred to as fine-tuning
[13].
(c) Single class or no training data: A pre-trained model is
used to extract features. The pre-trained model used here could
be a model trained from scratch (as in (a)) or a model resulting
from fine-tuning (as in (b)) [10], [24] where training/fine-
tuning is performed based on an external dataset. When
training data from a class is available, a one-class classifier
is trained on the extracted features (Figure 2(d)).

In this work, we focus on the task presented in case (c)
where training data from a single class is available. Strategy
used in case (c) above uses deep-features extracted from a
pre-trained model, where training is carried out on a different
dataset, to perform one-class classification. However, there
is no guarantee that features extracted in this fashion will
be as effective in the new one-class classification task. In
this work, we present a feature fine tuning framework which
produces deep features that are specialized to the task at hand.
Once the features are extracted, they can be used to perform
classification using the strategy discussed in (c).

In our formulation (shown in Figure 2 (e)), starting from
a pre-trained deep model, we freeze initial features (gs) and
learn (gl) and (hc). Based on the output of the classification
sub-network (hc), two losses compactness loss and descrip-
tiveness loss are evaluated. These two losses, introduced in
the subsequent sections, are used to assess the quality of the
learned deep feature. We use the provided one-class dataset
to calculate the compactness loss. An external multi-class
reference dataset is used to evaluate the descriptiveness loss.
As shown in Figure 3, weights of gl and hc are learned
in the proposed method through back-propagation from the
composite loss. Once training is converged, system shown in
setup in Figure 2(d) is used to perform classification where
the resulting model is used as the pre-trained model.

In summary, this paper makes the following three contribu-
tions.

1) We propose a deep-learning based feature engineering
scheme called Deep One-class Classification (DOC), tar-
geting one-class problems. To the best of our knowledge
this is one of the first works to address this problem.

2) We introduce a joint optimization framework based on
two loss functions - compactness loss and descriptive-
ness loss. We propose compactness loss to assess the
compactness of the class under consideration in the
learned feature space. We propose using an external
multi-class dataset to assess the descriptiveness of the
learned features using descriptiveness loss.

3) On three publicly available datasets, we achieve state-of-
the-art one-class classification performance across three
different tasks.

Rest of the paper is organized as follows. In Section II,
we review a few related works. Details of the proposed
deep one-class classification method are given in Section III.
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Fig. 3. Overview of the proposed method. In addition to the provided one-
class dataset, another arbitrary multi-class dataset is used to train the CNN.
The objective is to produce a CNN which generates descriptive features which
are also compactly localized for the one-class training set. Two losses are
evaluated independently with respect to the two datasets and back-propagation
is performed to facilitate training.

Experimental results are presented in Section IV. Section V
concludes the paper with a brief discussion and summary.

II. RELATED WORK

Generic one-class classification problem has been addressed
using several different approaches in the literature. Most of
these approaches predominately focus on proposing a better
classification scheme operating on a chosen feature and are not
specifically designed for the task of one-class image classifica-
tion. One of the initial approaches to one-class learning was to
estimate a parametric generative model based on the training
data. Work in [36], [3], propose to use Gaussian distributions
and Gaussian Mixture Models (GMMs) to represent the un-
derlying distribution of the data. In [19] comparatively better
performances have been obtained by estimating the conditional
density of the one-class distribution using Gaussian priors.

The concept of Support Vector Machines (SVMs) was
extended for the problem of one-class classification in [43].
Conceptually this algorithm treats the origin as the out-of-
class region and tries to construct a hyperplane separating the
origin with the class data. Using a similar motivation, [45]
proposed Support Vector Data Description (SVDD) algorithm
which isolates the training data by constructing a spherical
separation plane. In [23], a single layer neural network based
on Extreme Learning Machine is proposed for one-class clas-
sification. This formulation results in an efficient optimization
as layer parameters are updated using closed form equations.
Practical one-class learning applications on different domains
are predominantly developed based on these conceptual bases.

In [39], visual anomalies in wire ropes are detected based on
Gaussian process modeling. Anomaly detection is performed
by maximizing KL divergence in [38], where the underlying
distribution is assumed to be a known Gaussian. A detailed

description of various anomaly detection methods can be found
in [6].

Novelty detection based on one-class learning has also
received a significant attention in recent years. Some of the
earlier works in novelty detection focused on estimating a
parametric model for data and to model the tail of the
distribution to improve classification accuracy [8], [37]. In [4],
null space-based novelty detection framework for scenarios
when a single and multiple classes are present is proposed.
However, it is mentioned in [4] that their method does not
yield superior results compared with the classical one-class
classification methods when only a single class is present. An
alternative null space-based approach based on kernel Fisher
discriminant was proposed in [11] specifically targeting one-
class novelty detection. A detailed survey of different novelty
detection schemes can be found in [25], [26].

Mobile-based Active Authentication (AA) is another ap-
plication of one-class learning which has gained interest of
the research community in recent years [30]. In mobile AA,
the objective is to continuously monitor the identity of the
user based on his/her enrolled data. As a result, only the
enrolled data (i.e. one-class data) are available during training.
Some of the recent works in AA has taken advantage of
CNNs for classification. Work in [42], uses a CNN to extract
attributes from face images extracted from the mobile camera
to determine the identity of the user. Various deep feature-
based AA methods have also been proposed as benchmarks in
[24] for performance comparison.

Since one-class learning is constrained with training data
from only a single class, it is impossible to adopt a CNN
architectures used for classification [22], [44] and verification
[7] directly for this problem. In the absence of a discriminative
feature generation method, in most unsupervised tasks, the ac-
tivation of a deep layer is used as the feature for classification.
This approach is seen to generate satisfactory results in most
applications [10]. This can be used as a starting point for one-
class classification as well. As an alternative, autoencoders
[47], [15] and variants of autoencoders [48], [20] can also to
be used as feature extractors for one-class learning problems.
However, in this approach, knowledge about the outside world
is not taken into account during the representation learning.
Furthermore, none of these approaches were specifically de-
signed for the purpose of one-class learning. To the best of our
knowledge, one-class feature learning has not been addressed
using a deep-CNN architecture to date.

III. DEEP ONE-CLASS CLASSIFICATION (DOC)

A. Overview

In this section, we formulate the objective of one-class
feature learning as an optimization problem. In the classical
multiple-class classification, features are learned with the
objective of maximizing inter-class distances between classes
and minimizing intra-class variances within classes [2]. How-
ever, in the absence of multiple classes such a discriminative
approach is not possible.

In this light, we outline two important characteristics of
features intended for one-class classification.
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Compactness C. A desired quality of a feature is to have a
similar feature representation for different images of the same
class. Hence, a collection of features extracted from a set of
images of a given class will be compactly placed in the feature
space. This quality is desired even in features used for multi-
class classification. In such cases, compactness is quantified
using the intra-class distance [2]; a compact representation
would have a lower intra-class distance.
Descriptiveness D. The given feature should produce distinct
representations for images of different classes. Ideally, each
class will have a distinct feature representation from each
other. Descriptiveness in the feature is also a desired quality
in multi-class classification. There, a descriptive feature would
have large inter-class distance [2].

It should be noted that for a useful (discriminative) feature,
both of these characteristics should be satisfied collectively.
Unless mutually satisfied, neither of the above criteria would
result in a useful feature. With this requirement in hand, we
aim to find a feature representation g that maximizes both
compactness and descriptiveness. Formally, this can be stated
as an optimization problem as follows,

ĝ = max
g
D(g(t)) + λC(g(t)), (1)

where t is the training data corresponding to the given class
and λ is a positive constant. Given this formulation, we
identify three potential strategies that may be employed when
deep learning is used for one-class problems. However, none
of these strategies collectively satisfy both descriptiveness and
compactness.
(a) Extracting deep features. Deep features are first extracted
from a pre-trained deep model for given training images.
Classification is done using a one-class classification method
such as one-class SVM, SVDD or k-nearest neighbor using
extracted features. This approach does not directly address
the two characteristics of one-class features. However, if the
pre-trained model used to extract deep features was trained
on a dataset with large number of classes, then resulting
deep features are likely to be descriptive. Nevertheless, there
is no guarantee that the used deep feature will possess the
compactness property.
(b) Fine-tune a two class classifier using an external
dataset. Pre-trained deep networks are trained based on some
legacy dataset. For example, models used for the ImageNet
challenge are trained based on the ImageNet dataset [9]. It
is possible to fine tune the model by representing the alien
classes using the legacy dataset. This strategy will only work
when there is a high correlation between alien classes and the
legacy dataset. Otherwise, the learned feature will not have the
capacity to describe the difference between a given class and
the alien class thereby violating the descriptiveness property.
(c) Fine-tune using a single class data. Fine-tuning may
be attempted by using data only from the given single class.
For this purpose, minimization of the traditional cross-entropy
loss or any other appropriate distance could be used. However,
in such a scenario, the network may end up learning a trivial
solution due to the absence of a penalty for miss-classification.
In this case, the learned representation will be compact but will
not be descriptive.

Let us investigate the appropriateness of these three strate-
gies by conducting a case study on the abnormal image
detection problem where the considered class is the normal
chair class. In abnormal image detection, initially a set of
normal chair images are provided for training as shown in
Figure 4(a). The goal is to learn a representation such that, it
is possible to distinguish a normal chair from an abnormal
chair.

The trivial approach to this problem is to extract deep
features from an existing CNN architecture (solution (a)). Let
us assume that the AlexNet architecture [22] is used for this
purpose and fc7 features are extracted from each sample. Since
deep features are sufficiently descriptive, it is reasonable to
expect samples of the same class to be clustered together in
the extracted feature space. Illustrated in Figure 4(b) is a 2D
visualization of the extracted 4096 dimensional features using
t-SNE [46]. As can be seen from Figure4(b), the AlexNet
features are not able to enforce sufficient separation between
normal and abnormal chair classes.

Another possibility is to train a two class classifier using
the AlexNet architecture by providing normal chair object
images and the images from the ImageNet dataset as the
two classes (solution (b)). However, features learned in this
fashion produce similar representations for both normal and
abnormal images, as shown in Figure4(c). Even though there
exist subtle differences between normal and abnormal chair
images, they have more similarities compared to the other
ImageNet objects/images. This is the main reason why both
normal and abnormal images end up learning similar feature
representations.

A naive, and ineffective, approach would be to fine-tune
the pre-trained AlexNet network using only the normal chair
class (solution (c)). Doing so, in theory, should result in a
representation where all normal chairs are compactly localized
in the feature space. However, since all class labels would be
identical in such a scenario, the fine-tuning process would end
up learning a futile representation as shown in Figure4(d). The
reason why this approach ends up yielding a trivial solution
is due to the absence of a regularizing term in the loss
function that takes into account the discriminative ability of
the network. For example, since all class labels are identical, a
zero loss can be obtained by making all weights equal to zero.
It is true that this is a valid solution in the closed world where
only normal chair objects exist. But such a network has zero
discriminative ability when abnormal chair objects appear.

None of the three strategies discussed above are able to
produce features that are both compact and descriptive. We
note that out of the three strategies, the first produces the
most reasonable representation for one-class classification.
However, this representation was learned without making
an attempt to increase compactness of the learned feature.
Therefore, we argue that if compactness is taken into account
along with descriptiveness, it is possible to learn a more
effective representation.

B. Proposed Loss Functions
In this work, we propose to quantify compactness and

descriptiveness in terms of measurable loss functions. Variance
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Fig. 4. Possible strategies for one-class classification in abnormal image detection. (a) Normal and abnormal image samples. (b) Feature space obtained
using the AlexNet features. (c) Feature space obtained training a two class CNN with the alien objects represented by the ImageNet data samples. Normal
and abnormal samples are not sufficiently separated in (b) and (c). (d) Feature space (2D Projection) obtained by fine-tuning using just normal objects. Both
normal and abnormal samples are projected to the same point. (e) Feature space (2D Projection) obtained using the proposed method. Normal and abnormal
samples are relatively more separated. In all cases, feature space is visualized using tSNE. SVDD decision boundary for the normal class is drawn in dotted
lines in the tSNE space.

of a distribution has been widely used in the literature as
a measure of the distribution spread [14]. Since spread of
the distribution is inversely proportional to the compactness
of the distribution, it is a natural choice to use variance
of the distribution to quantify compactness. In our work,
we approximate variance of the feature distribution by the
variance of each feature batch. We term this quantity as the
compactness loss (lC).

On the other hand, descriptiveness of the learned feature
cannot be assessed using a single class training data. However,
if there exists a reference dataset with multiple classes, even
with random object classes unrelated to the problem at hand,
it can be used to assess the descriptiveness of the engineered
feature. In other words, if the learned feature is able to
perform classification with high accuracy on a different task,
the descriptiveness of the learned feature is high. Based on this
rationale, we use the learned feature to perform classification
on an external multi-class dataset, and consider classification
loss there as an indicator of the descriptiveness of the learned
feature. We call the cross-entropy loss calculated in this
fashion as the descriptiveness loss (lD). Here, we note that
descriptiveness loss is low for a descriptive representation.

With this formulation, the original optimization objective in
equation (1) can be re-formulated as,

ĝ = min
g

lD(r) + λlC(t), (2)

where lC and lD are compactness loss and descriptiveness

loss, respectively and r is the training data corresponding to
the reference dataset. The tSNE visualization of the features
learned in this manner for normal and abnormal images are
shown in Figure 4(e). Qualitatively, features learned by the
proposed method facilitate better distinction between normal
and abnormal images as compared with the cases is shown in
Figure 2(b)-(d).

C. Terminology

Based on the intuition given in the previous section, the
architecture shown in Figure 5 (a) is proposed for one-class
classification training and the setup shown in Figure 5 (b) for
testing. They consist of following elements:
Reference Network (R): This is a pre-trained network archi-
tecture considered for the application. Typically it contains a
repetition of convolutional, normalization, and pooling layers
(possibly with skip connections) and is terminated by an
optional set of fully connected layers. For example, this could
be the AlexNet network [22] pre-trained using the ImageNet
[9] dataset. Reference network can be seen as the composition
of a feature extraction sub-network g and a classification sub-
network hc. For example, in AlexNet, conv1-fc7 layers can be
associated with g and fc8 layer with hc. Descriptive loss (lD)
is calculated based on the output of hc.
Reference Dataset (r): This is the dataset (or a subset of
it) used to train the network R. Based on the example given,
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reference dataset is the ImageNet dataset [9] (or just a subset
of the ImageNet dataset).
Secondary Network (S): This is a second CNN where the
network architecture is structurally identical to the reference
network. Note that g and hc are shared in both of these
networks. Compactness loss (lC) is evaluated based on the
output of hc. For the considered example, S would have the
same structure as R (AlexNet) up to fc8.
Target Dataset (t): This dataset contains samples of the class
for which one-class learning is used for. For example, for
an abnormal image detection application, this dataset will
contain normal images (i.e. data samples of the single class
considered).
Model (W): This corresponds to the collection of weights and
biases in the network, g and hc. Initially, it is initialized by
some pre-trained parameters W0. 2

Compactness loss (lC) : All the data used during the training
phase will belong to the same class. Therefore they all share
the same class label. Compactness loss evaluates the average
similarity between the constituent samples of a given batch.
For a large enough batch, this quantity can be expected
to represent average intra-class variance of a given class.
It is desirable to select a smooth differentiable function as
lC to facilitate back propagation. In our work, we define
compactness loss based on the Euclidean distance.
Descriptiveness loss (lD) : Descriptiveness loss evaluates the
capacity of the learned feature to describe different concepts.
We propose to quantify discriminative loss by the evaluation
of cross-entropy with respect to the reference dataset (R).

For this discussion, we considered the AlexNet CNN ar-
chitecture as the reference network. However, the discussed
principles and procedures would also apply to any other CNN
of choice. In what follows, we present the implementation
details of the proposed method.

D. Architecture

The proposed training architecture is shown in Figure 5
(a) 3. The architecture consists of two CNNs, the reference
network (R) and the secondary network (S) as introduced
in the previous sub-section. Here, weights of the reference
network and secondary network are tied across each corre-
sponding counterparts. For example, weights between convi
(where, i = 1, 2.., 5) layer of the two networks are tied
together forcing them to be identical. All components, except
Compactness loss, are standard CNN components. We denote
the common feature extraction sub-architecture by g(.) and
the common classification by sub-architecture by hc(.). Please
refer to Appendix for more details on the architectures of the
proposed method based on the AlexNet and VGG16 networks.

E. Compactness loss

Compactness loss computes the mean squared intra-batch
distance within a given batch. In principle, it is possible to

2For the case of AlexNet, pre-trained model can be found at
www.berkleyvison.com.

3Source code of the proposed method is made available online at
https://github.com/PramuPerera/DeepOneClass

select any distance measure for this purpose. In our work,
we design compactness loss based on the Euclidean distance
measure. Define X = {x1,x2, . . . ,xn} ∈ Rn×k to be the
input to the loss function, where the batch size of the input is
n.
Forward Pass: For each ith sample xi ∈ Rk, where 1 ≤ i ≤
n, the distance between the given sample and the rest of the
samples zi can be defined as,

zi = xi −mi, (3)

where, mi =
1

n−1
∑

j 6=i xj is the mean of rest of the samples.
Then, compactness loss lC is defined as the average Euclidean
distance as in,

lC =
1

nk

n∑
i=1

zi
T zi. (4)

Backpropagation:. In order to perform back-propagation
using this loss, it is necessary to assess the contribution
each element of the input has on the final loss. Let xi =
{xi1, xi2, . . . , xik}. Similarly, let mi = {mi1,mi2, . . . ,mik}.
Then, the gradient of lb with respect to the input xij is given
as,

∂lC
∂xij

=
2

(n− 1)nk

[
n× (xij −mij)−

n∑
k=1

(xik−mik)

]
. (5)

Detailed derivation of the back-propagation formula can be
found in the Appendix. The loss lC calculated in this form is
equal to the sample feature variance of the batch multiplied by
a constant (see Appendix). Therefore, it is an inverse measure
of the compactness of the feature distribution.

F. Training

During the training phase, initially, both the reference net-
work (R) and the secondary network (S) are initialized with
the pre-trained model weights W0. Recall that except for the
types of loss functions associated with the output, both these
networks are identical in structure. Therefore, it is possible
to initialize both networks with identical weights. During
training, all layers of the network except for the last four
layers are frozen as commonly done in network fine-tuning.
In addition, the learning rate of the training process is set at
a relatively lower value ( 5 × 10−5 is used in experiments).
During training, two image batches, each from the reference
dataset and the target dataset are simultaneously fed into the
input layers of the reference network and secondary network,
respectively. At the end of the forward pass, the reference
network generates a descriptiveness loss (lD), which is same as
the cross-entropy loss by definition, and the secondary network
generates compactness loss (lC). The composite loss (l) of the
network is defined as,

l(r, t) = lD(r|W ) + λlC(t|W ), (6)

where λ is a constant. It should be noted that, minimizing this
loss function leads to the minimization of the optimization
objective in (2).
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Fig. 5. (a) Training, and (b) testing frameworks of the proposed DOC method. During training, data from target and reference datasets are fed into the network
simultaneously and training is done based on two losses, descriptive loss and compactness loss. During testing, only the feature extraction sub-network g is
considered. A set of templates is first constructed by extracting features of a subset of the training dataset. When a test image is present, features of the test
image is compared against templates using a classification rule to classify the test image.

In our experiments, λ is set equal to 0.1 Based on the com-
posite loss, the network is back-propagated and the network
parameters are learned using gradient descent or a suitable
variant. Training is carried out until composite loss l(r, t)
converges. A sample variation of training loss is shown in
Figure 6. In general, it was observed that composite loss
converged in around two epochs (here, epochs are defined
based on the size of the target dataset).

Intuitively, the two terms of the loss function lD and lC
measure two aspects of features that are useful for one-class
learning. Cross entropy loss values obtained in calculating
descriptiveness loss lD measures the ability of the learned
feature to describe different concepts with respect to the
reference dataset. Having reasonably good performance in
the reference dataset implies that the learned features are
discriminative in that domain. Therefore, they are likely to be
descriptive in general. On the other hand, compactness loss
(lC) measures how compact the class under consideration is
in the learned feature space. The weight λ governs the mutual
importance placed on each requirement.

If λ is made large, it implies that the descriptiveness of the
feature is not as important as the compactness. However, this
is not a recommended policy for one-class learning as doing
so would result in trivial features where the overlap between
the given class and an alien class is significantly high. As
an extreme case, if λ = 0 (this is equivalent to removing
the reference network and carrying out training solely on the
secondary network (Figure 2 (d)), the network will learn a
trivial solution. In our experiments, we found that in this case
the weights of the learned filters become zero thereby making
output of any input equal to zero.

Therefore, for practical one-class learning problems, both
reference and secondary networks should be present and more
prominence should be given to the loss of the reference
network.

Fig. 6. Variation of loss functions during training in the proposed method
obtained for the chair class in the abnormal image detection task. Training
epochs are shown in the log scale. Compactness loss reaches stability around
0.1 epochs. Total loss (composite loss) reaches stability around 2 epochs.
Highest test accuracy is obtained once composite loss converges.

G. Testing

The proposed testing procedure involves two phases - tem-
plate generation and matching. For both phases, secondary
network with weights learned during training is used as shown
in Figure 5 (b). During both phases, the excitation map of
the feature extraction sub-network is used as the feature. For
example, layer 7, fc7 can be considered from a AlexNet-based
network. First, during the template generation phase a small
set of samples v = {v1, v2, . . . , vn} are drawn from the target
(i.e. training) dataset where v ∈ t. Then, based on the drawn
samples a set of features g(v1), g(v2), . . . , g(vn) are extracted.
These extracted features are stored as templates and will be
used in the matching phase.

Based on stored template, a suitable one-class classifier,
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such as one-class SVM [43], SVDD [45] or k-nearest neighbor,
can be trained on the templates. In this work, we choose the
simple k-nearest neighbor classifier described below. When a
test image y is present, the corresponding deep feature g(y)
is extracted using the described method. Here, given a set of
templates, a matched score Sy is assigned to y as

Sy = f(g(y)|g(t1), g(t2), . . . , g(tn)), (7)

where f(.) is a matching function. This matching function can
be a simple rule such as the cosine distance or it could be a
more complicated function such as Mahalanobis distance. In
our experiments, we used Euclidean distance as the matching
function. After evaluating the matched score, y can be classi-
fied as follows,

class(y) =

{
1, if Sy ≤ δ
0, if Sy > δ,

(8)

where 1 is the class identity of the class under consideration
and 0 is the identity of other classes and δ is a threshold.

H. Memory Efficient Implementation

Due to shared weights between the reference network and
the secondary network, the amount of memory required to
store the network is nearly twice as the number of param-
eters. It is not possible to take advantage of this fact with
deep frameworks with static network architectures (such as
caffe [18]). However, when frameworks that support dynamic
network structures are used (e.g. PyTorch), implementation
can be altered to reduce memory consumption of the network.

In the alternative implementation, only a single core net-
work with functions g and hc is used. Two loss functions lC
and lD branch out from the core network. However in this
setup, descriptiveness loss (lD) is scaled by a factor of 1− λ.
In this formulation, first λ is made equal to 0 and a data batch
from the reference dataset is fed into the network. Correspond-
ing loss is calculated and resulting gradients are calculated
using back-propagation Then, λ is made equal to 1 and a data
batch from the target dataset is fed into the network. Gradients
are recorded same as before after back-propagation. Finally,
the average gradient is calculated using two recorded gradient
values, and network parameters are updated accordingly. In
principle, despite of having a lower memory requirement,
learning behavior in the alternative implementation would be
identical to the original formulation.

IV. EXPERIMENTAL RESULTS

In order to asses the effectiveness of the proposed method,
we consider three one-class classification tasks: abnormal
image detection, single class image novelty detection and
active authentication. We evaluate the performance of the
proposed method in all three cases against state of the art
methods using publicly available datasets. Further, we provide
two additional CNN-based baseline comparisons.

A. Experimental Setup

Unless otherwise specified, we used 50% of the data for
training and the remaining data samples for testing. In all
cases, 40 samples were taken at random from the training
set to generate templates. In datasets with multiple classes,
testing was done by treating one class at a time as the positive
class. Objects of all the other classes were considered to be
alien. During testing, alien object set was randomly sampled
to arrive at equal number of samples as the positive class. As
for the reference dataset, we used the validation set of the
ImageNet dataset for all tests. When there was an object class
overlap between the target dataset and the reference dataset,
the corresponding overlapping classes were removed from the
reference dataset. For example, when novelty detection was
performed based on the Caltech 256, classes appearing in both
Caltech 256 and ImageNet were removed from the ImageNet
dataset prior to training.

The Area Under the Curve (AUC) of the Receiver Oper-
ating Characteristic (ROC) Curve are used to measure the
performance of different methods. The reported performance
figures in this paper are the average AUC figures obtained by
considering multiple classes available in the dataset. In all of
our experiments, Euclidean distance was used to evaluate the
similarity between a test image and the stored templates. In
all experiments, the performance of the proposed method was
evaluated based on both the AlexNet [22] and the VGG16
[44] architectures. In all experimental tasks, the following
experiments were conducted.
AlexNet Features and VGG16 Features (Baseline). One-
class classification is performed using k-nearest neighbor,
One-class SVM [43], Isolation Forest [3] and Gaussian Mix-
ture Model [3] classifiers on fc7 AlexNet features and the fc7
VGG16 features, respectively.
AlexNet Binary and VGG16 Binary (Baseline). A bi-
nary CNN is trained by having ImageNet samples and one-
class image samples as the two classes using AlexNet and
VGG16 architectures, respectively. Testing is performed using
k-nearest neighbor, One-class SVM [43], Isolation Forest [3]
and Gaussian Mixture Model [3] classifiers.
One-class Neural Network (OCNN). Method proposed in
[5] applied on the extracted features from the AlexNet and
VGG16 networks.
Autoencoder [15]. Network architecture proposed in [15] is
used to learn a representation of the data. Reconstruction loss
is used to perform verification.
Ours (AlexNet) and ours (VGG16). Proposed method ap-
plied with AlexNet and VGG16 network backbone architec-
tures. The fc7 features are used during testing.

In addition to these baselines, in each experiment we report
the performance of other task specific methods.

B. Results

Abnormal Image Detection: The goal in abnormal image
detection is to detect abnormal images when the classifier is
trained using a set of normal images of the corresponding
class. Since the nature of abnormality is unknown a priori,
training is carried out using a single class (images belonging
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(a) (b) (c)

Fig. 7. Sample images from datasets used for evaluation. (a) Abnormal
image detection : Top three rows are normal images taken from PASCAL
dataset. Bottom three rows are abnormal images taken from Abnormal 1001
dataset. (b) Novelty detection: images from Caltech 256 dataset. (c) Active
Authentication: images taken from UMDAA02 dataset. In (b) and (c) columns
are formed by images from a single class.

to the normal class). The 1001 Abnormal Objects Dataset [41]
contains 1001 abnormal images belonging to six classes which
are originally found in the PASCAL [12] dataset. Six classes
considered in the dataset are Airplane, Boat, Car, Chair, Mo-
torbike and Sofa. Each class has at least one hundred abnormal
images in the dataset. A sample set of abnormal images and the
corresponding normal images in the PASCAL dataset are show
in Figure 7(a). Abnormality of images has been judged based
on human responses received on the Amazon Mechanical
Turk. We compare the performance of abnormal detection of
the proposed framework with conventional CNN schemes and
with the comparisons presented in [41]. It should be noted that
our testing procedure is consistent with the protocol used in
[41].

Results corresponding to this experiment are shown in
Table I. Adjusted graphical model presented in [41] has
outperformed methods based on traditional deep features. The
introduction of the proposed framework has improved the
performance in AlexNet almost by a margin of 14%. Proposed
method based on VGG produces the best performance on this
dataset by introducing a 4.5% of an improvement as compared
with the Adjusted Graphical Method proposed in [41].
One-Class Novelty Detection: In one-class novelty detection,
the goal is to assess the novelty of a new sample based on
previously observed samples. Since novel examples do not
exist prior to test time, training is carried out using one-
class learning principles. In the previous works [4], [11], the
performance of novelty detection has been assessed based on
different classes of the ImageNet and the Caltech 256 datasets.
Since all CNNs used in our work have been trained using the
ImageNet dataset, we use the Caltech 256 dataset to evaluate
the performance of one-class novelty detection. The Caltech
256 dataset contains images belonging to 256 classes with total
of 30607 images. In our experiments, each single class was
considered separately and all other classes were considered
as alien. Sample images belonging to three classes in the

TABLE I
ABNORMAL IMAGE DETECTION RESULTS ON THE 1001 ABNORMAL

OBJECTS DATASET.

Method AUC (Std. Dev.)
Graphical Model [41] 0.870
Adjusted Graphical Model [41] 0.911
Autoencoder [15] 0.674 (0.120)
OCNN AlexNet [5] 0.845 (0.148)
OCNN VGG16 [5] 0.888 (0.0460)
AlexNet Features KNN 0.790 (0.074)
VGG16 Features KNN 0.847 (0.074)
AlexNet Binary KNN 0.621 (0.153)
VGG16 Binary KNN 0.848 (0.081)
AlexNet Features IF 0.613 (0.085)
VGG16 Features IF 0.731 (0.078)
AlexNet Binary IF 0.641 (0.089)
VGG16 Binary IF 0.715 (0.077)
AlexNet Features SVM 0.732 (0.094)
VGG16 Features SVM 0.847 (0.074)
AlexNet Binary SVM 0.736 (0.115)
VGG16 Binary SVM 0.834 (0.083)
AlexNet Features GMM 0.679 (0.103)
VGG16 Features GMM 0.818 (0.072)
AlexNet Binary GMM 0.696 (0.116)
VGG16 Binary GMM 0.803 (0.103)
DOC AlexNet (ours) 0.930 (0.032)
DOC VGG16 (ours) 0.956 (0.031)

dataset are shown in Figure 7 (b). First, consistent with the
protocol described in [11], AUC of 20 random repetitions
were evaluated by considering the American Flag class as the
known class and by considering boom-box, bulldozer and can-
non classes as alien classes. Results corresponding to different
methods are tabulated in Table II.

In order to evaluate the robustness of our method, we carried
out an additional test involving all classes of the Caltech
256 dataset. In this test, first a single class is chosen to
be the enrolled class. Then, the effectiveness of the learned
classifier was evaluated by considering samples from all other
255 classes. We did 40 iterations of the same experiment by
considering first 40 classes of the Caltech 256 dataset one at a
time as the enrolled class. Since there are 255 alien classes in
this test as opposed to the first test, where there were only three
alien classes, performance is expected to be lower than in the
former. Results of this experiment are tabulated in Table III.

It is evident from the results in Table II that a significant
improvement is obtained in the proposed method compared to
previously proposed methods. However, as shown in Table III
this performance is not limited just to a American Flag.
Approximately the same level of performance is seen across
all classes in the Caltech 256 dataset. Proposed method has
improved the performance of AlexNet by nearly 13% where as
the improvement the proposed method has had on VGG16 is
around 9%. It is interesting to note that binary CNN classifier
based on the VGG framework has recorded performance very
close to the proposed method in this task (difference in
performance is about 1%). This is due to the fact that both
ImageNet and Caltech 256 databases contain similar object
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TABLE II
NOVELTY DETECTION RESULTS ON THE CALTECH 256 WHERE American

Flag CLASS IS TAKEN AS THE KNOWN CLASS.

Method AUC (Std. Dev.)
One Class SVM [43] 0.606 (0.003)
KNFST [4] 0.575 (0.004)
Oc-KNFD [11] 0.619 (0.003)
Autoencoder [15] 0.532(0.003)
OCNN AlexNet [5] 0.907 (0.029)
OCNN VGG16 [5] 0.943 (0.035)
AlexNet Features KNN 0.811 (0.003)
VGG16 Features KNN 0.951 (0.023)
AlexNet Binary KNN 0.920 (0.026)
VGG16 Binary KNN 0.997 (0.001)
AlexNet Features IF 0.836 (0.005)
VGG16 Features IF 0.910 (0.035)
AlexNet Binary IF 0.795 (0.007)
VGG16 Binary IF 0.907 (0.033)
AlexNet Features SVM 0.878 (0.007)
VGG16 Features SVM 0.951 (0.029)
AlexNet Binary SVM 0.920 (0.008)
VGG16 Binary SVM 0.942 (0.031)
AlexNet Features GMM 0.842 (0.004)
VGG16 Features GMM 0.901 (0.023)
AlexNet Binary GMM 0.860 (0.009)
VGG16 Binary GMM 0.924 (0.025)
DOC AlexNet (ours) 0.930 (0.005)
DOC VGG16 (ours) 0.999 (0.001)

classes. Therefore, in this particular case, ImageNet samples
are a good representative of novel object classes present in
Caltech 256. As a result of this special situation, binary CNN
is able to produce results on par with the proposed method.
However, this result does not hold true in general as evident
from other two experiments.
Active Authentication (AA): In the final set of tests, we eval-
uate the performance of different methods on the UMDAA-
02 mobile AA dataset [24]. The UMDAA-02 dataset contains
multi-modal sensor observations captured over a span of two
months from 48 users for the problem of continuous authenti-
cation. In this experiment, we only use the face images of users
collected by the front-facing camera of the mobile device. The
UMDAA-02 dataset is a highly challenging dataset with large
amount of intra-class variation including pose, illumination
and appearance variations. Sample images from the UMDAA-
02 dataset are shown in Figure 7 (c). As a result of these high
degrees of variations, in some cases the inter-class distance
between different classes seem to be comparatively lower
making recognition challenging.

During testing, we considered first 13 users taking one user
at a time to represent the enrolled class where all the other
users were considered to be alien. The performance of different
methods on this dataset is tabulated in Table IV.

Recognition results are comparatively lower for this task
compared to the other tasks considered in this paper. This
is both due to the nature of the application and the dataset.
However, similar to the other cases, there is a significant
performance improvement in proposed method compared to

TABLE III
AVERAGE NOVELTY DETECTION RESULTS ON THE CALTECH 256

DATASET.

Method AUC (Std. Dev.)
One Class SVM [43] 0.531 (0.120)
Autoencoder [15] 0.623 (0.072)
OCNN AlexNet [5] 0.826 (0.153)
OCNN VGG16 [5] 0.885 (0.144)
AlexNet Features KNN 0.820 (0.062)
VGG16 Features KNN 0.897 (0.050)
AlexNet Binary KNN 0.860 (0.065)
VGG16 Binary KNN 0.902 (0.024)
AlexNet Features IF 0.794 (0.075)
VGG16 Features IF 0.890 (0.049)
AlexNet Binary IF 0.788 (0.087)
VGG16 Binary IF 0.891 (0.053)
AlexNet Features SVM 0.852 (0.057)
VGG16 Features SVM 0.902 (0.050)
AlexNet Binary SVM 0.856 (0.058)
VGG16 Binary SVM 0.909 (0.047)
AlexNet Features GMM 0.790 (0.083)
VGG16 Features GMM 0.852 (0.087)
AlexNet Binary GMM 0.801 (0.083)
VGG16 Binary GMM 0.870 (0.069)
DOC AlexNet (ours) 0.959 (0.021)
DOC VGG16 (ours) 0.981 (0.022)

TABLE IV
ACTIVE AUTHENTICATION RESULTS ON THE UMDAA-02 DATASET.

Method AUC (Std. Dev.)
One Class SVM [43] 0.594 (0.070)
Autoencoder [15] 0.643 (0.074)
OCNN AlexNet [5] 0.595 (0.045)
OCNN VGG16 [5] 0.574 (0.039)
AlexNet Features KNN 0.708 (0.060)
VGG16 Features KNN 0.748 (0.082)
AlexNet Binary KNN 0.627 (0.128)
VGG16 Binary KNN 0.687 (0.086)
AlexNet Features IF 0.694 (0.075)
VGG16 Features IF 0.733 (0.080)
AlexNet Binary IF 0.625 (0.099)
VGG16 Binary IF 0.677 (0.078)
AlexNet Features SVM 0.702 (0.087)
VGG16 Features SVM 0.751 (0.075)
AlexNet Binary SVM 0.656 (0.112)
VGG16 Binary SVM 0.685 (0.076)
AlexNet Features GMM 0.690 (0.077)
VGG16 Features GMM 0.751 (0.082)
AlexNet Binary GMM 0.629 (0.110)
VGG16 Binary GMM 0.650 (0.087)
DOC AlexNet (ours) 0.786 (0.061)
DOC VGG16 (ours) 0.810 (0.067)



11

the conventional CNN-based methods. In the case of AlexNet,
improvement induced by the proposed method is nearly 8%
whereas it is around 6% for VGG16. The best performance
is obtained by the proposed method based on the VGG16
network.

C. Discussion

Analysis on mis-classifications: The proposed method pro-
duces better separation between the class under consideration
and alien samples as presented in the results section. However,
it is interesting to investigate on what conditions the proposed
method fails. Shown in Figure 8 are a few cases where
the proposed method produced erroneous detections for the
problem of one-class novelty detection with respect to the
American Flag class (in this experiment, all other classes in
Caltech256 dataset were used as alien classes). Here, detection
threshold has been selected as δ = 0. Mean detection scores
for American Flag and alien images were 0.0398 and 8.8884,
respectively.

As can be see from Figure 8, in majority of false negative
cases, the American Flag either appears in the background
of the image or it is too closer to clearly identify its
characteristics. On the other hand, false positive images
either predominantly have American flag colors or the
texture of a waving flag. It should be noted that the nature
of mis-classifications obtained in this experiment are very
similar to that of multi-class CNN-based classification.

0.80881.057

0.4241 0.3080 0.000 0.000 0.000

0.000 0.000 0.000

False Negatives False Positives

Fig. 8. Sample false detections for the one-class problem of novelty detection
where the class of interest is American Flag (Detection threshold δ = 0).
Obtained Euclidean distance scores are also shown in the figure.

Using a subset of the reference dataset: In practice, the
reference dataset is often enormous in size. For example,
the ImageNet dataset has in excess of one million images.
Therefore, using the whole reference dataset for transfer
learning may be inconvenient. Due to the low number of
training iterations required, it is possible to use a subset of
the original reference dataset in place of the reference dataset
without causing over-fitting. In our experiments, training of
the reference network was done using the validation set of
the ImageNet dataset. Recall that initially, both networks
are loaded with pre-trained models. It should be noted that
these pre-trained models have to be trained using the whole
reference dataset. Otherwise, the resulting network will have

poor generalization properties.

Number of training iterations: In an event when only
a subset of the original reference dataset is used, the
training process should be closely monitored. It is best
if training can be terminated as soon as the composite
loss converges. Training the network long after composite
loss has converged could result in inferior features due to
over-fitting. This is the trade-off of using a subset of the
reference dataset. In our experiments, convergence occurred
around 2 epochs for all test cases (Figure 6). We used a fixed
number of iterations (700) for each dataset in our experiments.

Effect of number of templates: In all conducted experiments,
we fixed the number of templates used for recognition to
40. In order to analyze the effect of template size on the
performance of our method, we conducted an experiment by
varying the template size. We considered two cases: first, the
novelty detection problem related to the American Flag (all
other classes in Caltech256 dataset were used as alien classes),
where the recognition rates were very high at 98%; secondly,
the AA problem where the recognition results were modest.
We considered Ph01USER002 from the UMDAA-02 dataset
for the study on AA. We carried out twenty iterations of testing
for each case. The obtained results are tabulated in Table V.

According to the results in Table V, it appears that when
the proposed method is able to isolate a class sufficiently, as
in the case of novelty detection, the choice of the number of
templates is not important. Note that even a single template
can generate significantly accurate results. However, this is
not the case for AA. Reported relatively lower AUC values
in testing suggests that all faces of different users lie in a
smaller subspace. In such a scenario, using more templates
have generated better AUC values.

D. Impact of Different Features
In this subsection, we investigate the impact of different

choices of hc and g has on the recognition performance.
Feature was varied from fc6 to fc8 and the performance of the
abnormality detection task was evaluated. When fc6 was used
as the feature, the sub-network g consisted layers from conv1
to fc6, where layers fc7 and fc8 were associated with the
sub network hc. Similarly, when the layer fc7 was considered
as the feature, the sub-networks g and hc consisted of layers
conv1− fc7 and fc8, respectively.

In Table VI, the recognition performance on abnormality
image detection task is tabulated for different choices of hc
and g. From Table VI we see that in both AlexNet and
VGG16 architectures, extracting features at a later layer has
yielded in better performance in general. For example, for
VGG16 extracting features from fc6, fc7 and fc8 layers has
yielded AUC of 0.856, 0.956 and 0.969, respectively. This
observation is not surprising on two accounts. First, it is
well-known that later layers of deep networks result in better
generalization. Secondly, Compactness Loss is minimized with
respect to features of the target dataset extracted in the fc8
layer. Therefore, it is expected that fc8 layer provides better
compactness in the target dataset.
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TABLE V
MEAN AUC (WITH STANDARD DEVIATION VALUES IN BRACKETS) OBTAINED FOR DIFFERENT TEMPLATE SIZES.

Number of templates 1 5 10 20 30 40
American Flag 0.987 0.988 0.987 0.988 0.988 0.988
(Caltech 256) (0.0034) (0.0032) (0.0030) (0.0038) (0.0029) (0.0045)
Ph01USER002 0.762 0.788 0.806 0.787 0.821 0.823
(UMDAA02) (0.0226) (0.0270) (0.0134) (0.0262) (0.0165) (0.0168)

TABLE VI
ABNORMAL IMAGE DETECTION RESULTS FOR DIFFERENT CHOICES OF THE REFERENCE DATASET.

fc6 fc7 fc8
DOC AlexNet (ours) 0.936 (0.041) 0.930 (0.032) 0.947 (0.035)
DOC VGG16 (ours) 0.856 (0.118) 0.956 (0.031) 0.969 (0.029)

E. Impact of the Reference Dataset

The proposed method utilizes a reference dataset to ensure
that the learned feature is informative by minimizing the
descriptiveness loss. For this scheme to result in effective
features, the reference dataset has to be a non-trivial multi-
class object dataset. In this subsection, we investigate the
impact of the reference dataset on the recognition performance.
In particular, abnormal image detection experiment on the
Abnormal 1001 dataset was repeated with a different choice
of the reference dataset. In this experiment ILSVRC12 [9],
Places365 [49] and Oxford Flowers 102 [27] datasets were
used as the reference dataset. We used publicly available pre-
trained networks from caffe model zoo [18] in our evaluations.

In Table VII the recognition performance for the proposed
method as well as the baseline methods are tabulated for
each considered dataset. From Table VII we observe that
the recognition performance has dropped when a different
reference dataset is used in the case of VGG16 architecture.
Places365 has resulted in a drop of 0.038 whereas the Oxford
flowers 102 dataset has resulted in a drop of 0.026. When the
AlexNet architecture is used, a similar trend can be observed.
Since Places365 has smaller number of classes than ILVRC12,
it is reasonable to assume that the latter is more diverse
in content. As a result, it has helped the network to learn
more informative features. On the other hand, although Oxford
flowers 102 has even fewer classes, it should be noted that it is
a fine-grain classification dataset. As a result, it too has helped
to learn more informative features compared to Places365.
However, due to the presence of large number of non-trivial
classes, the ILVRC12 dataset has yielded the best performance
among the considered cases.

V. CONCLUSION

We introduced a deep learning solution for the problem
of one-class classification, where only training samples of
a single class are available during training. We proposed a
feature learning scheme that engineers class-specific features
that are generically discriminative. To facilitate the learning
process, we proposed two loss functions descriptiveness loss
and compactness loss with a CNN network structure. Proposed
network structure could be based on any CNN backbone of

choice. The effectiveness of the proposed method is shown in
results for AlexNet and VGG16-based backbone architectures.
The performance of the proposed method is tested on publicly
available datasets for abnormal image detection, novelty detec-
tion and face-based mobile active authentication. The proposed
method obtained the state-of-the-art performance in each test
case.
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APPENDIX A: DERIVATIONS

Batch-variance Loss is a Scaled Version of Sample Vari-
ance: Consider the definition of batch-variance loss defined
as,

lb =
1
nk

∑n
i=1 zi

T zi where, zi =
[
xi− 1
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i . Therefore,
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Therefore, lb = βσ2, where β = n2

k(n−1)2 is a constant and
σ2 is the average sample variance.
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TABLE VII
ABNORMAL IMAGE DETECTION RESULTS FOR DIFFERENT CHOICES OF THE REFERENCE DATASET.

ILVRC12 Places365 Flowers102
AlexNet Features KNN 0.790 (0.074) 0.856 (0.056) 0.819 (0.075)
VGG16 Features KNN 0.847 (0.074) 0.809 (0.100) 0.828 (0.077)
AlexNet Binary KNN 0.621 (0.153) 0.851 (0.060) 0.823 (0.084)
VGG16 Binary KNN 0.848 (0.081) 0.837 (0.090) 0.839 (0.077)
AlexNet Features IF 0.613 (0.085) 0.771 (0.107) 0.739 (0.098)
VGG16 Features IF 0.731 (0.078) 0.595 (0.179) 0.685 (0.154)
AlexNet Binary IF 0.641 (0.089) 0.777 (0.092) 0.699 (0.129)
VGG16 Binary IF 0.715 (0.077) 0.637 (0.159) 0.777 (0.110)
AlexNet Features SVM 0.732 (0.094) 0.839 (0.062) 0.818 (0.076)
VGG16 Features SVM 0.847 (0.074) 0.776 (0.113) 0.826 (0.077)
AlexNet Binary SVM 0.736 (0.115) 0.847 (0.065) 0.823 (0.083)
VGG16 Binary SVM 0.834 (0.083) 0.789 (0.114) 0.788 (0.089)
AlexNet Features GMM 0.679 (0.103) 0.832 (0.069) 0.779 (0.076)
VGG16 Features GMM 0.818 (0.072) 0.782 (0.103) 0.771 (0.114)
AlexNet Binary GMM 0.696 (0.116) 0.835 (0.068) 0.815 (0.101)
VGG16 Binary GMM 0.803 (0.103) 0.770 (0.103) 0.777 (0.110)
DOC AlexNet (ours) 0.930 (0.032) 0.896 (0.019 ) 0.899 (0.052)
DOC VGG16 (ours) 0.956 (0.031) 0.918 (0.049) 0.930 (0.059)

Backpropagation of Batch-variance Loss:
Consider the definition of batch variance loss lb,
lb =

1
nk

∑n
i=1 zi

T zi where, zi = xi −mi.
From the definition of the inner product,
zi

Tzi =
∑k

j=1 zij
2. Therefore, lb can be written as,

lb =
1
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n∑
i=1

k∑
l=1

(xil −mil)
2.

Taking partial derivatives of lb with respect to xij . By chain
rule we obtain,
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.
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APPENDIX B : DETAILED NETWORK ARCHITECTURES

Shown in Figure 9 are the adaptations of the proposed
method to the existing CNN architectures- (a) AlexNet and (b)
VGG16, respectively. We have used these two architectures to
carry out all experiments in this paper. In both architectures,

two images from the target dataset t and the reference dataset
r are fed into the network to evaluate cross entropy loss
and batch-variance loss. Weights of convolution and fully-
connected layers are shared between the two branches of
the network. For all experiments, stochastic gradient descent
algorithm is used with a learning rate of 5×10−5 and a weight
decay of 0.0005.
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