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Abstract— Active authentication refers to the process in
which users are unobtrusively monitored and authenticated
continuously throughout their interactions with mobile devices.
Generally, an active authentication problem is modelled as a
one class classification problem due to the unavailability of
data from the impostor users. Normally, the enrolled user is
considered as the target class (genuine) and the unauthorized
users are considered as unknown classes (impostor). We propose
a convolutional neural network (CNN) based approach for one
class classification in which a zero centered Gaussian noise
and an autoencoder are used to model the pseudo-negative
class and to regularize the network to learn meaningful feature
representations for one class data, respectively. The overall
network is trained using a combination of the cross-entropy and
the reconstruction error losses. A key feature of the proposed
approach is that any pre-trained CNN can be used as the
base network for one class classification. Effectiveness of the
proposed framework is demonstrated using three publically
available face-based active authentication datasets and it is
shown that the proposed method achieves superior performance
compared to the traditional one class classification methods. The
source code is available at : github.com/otkupjnoz/oc-acnn.

I. INTRODUCTION
Biometric information based on physical characteristics

such as face, iris, fingerprints etc., have been an integral
part of security (e.g., airport security, law enforcement) and
authentication systems (e.g., banking transactions). Phys-
iological biometrics are never lost or forgotten and are
difficult to forge, which gives such systems an edge over the
traditional passcode-based approaches [1]. Moreover, these
methods are convenient, user-friendly and secure compared
to the traditional explicit authentication mechanisms. Due to
these reasons, biometric-based mobile authentication systems
are receiving increased attention in recent years.

Since the introduction of the first fingerprint
authentication-based mobile device in 2013, the smartphone
industry has introduced a variety of mobile devices that make
use of biometric authentication. According to a recently
published study, by the year 2020 almost 100% of the
smartphones will use biometric authentication as a standard
feature [2]. Furthermore, recent years have witnessed a
major shift, where smartphone makers have started moving
away from password-based or fingerprint-based systems to
face-based authentication systems. Considering the advances
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Fig. 1: An overview of a typical AA system. (a) Data
corresponding to the enrolled user are used to train an AA
system. (b) During testing, data corresponding to the enrolled
user as well as unknown user may be presented to the system.
The AA system then grants access to the enrolled user and
blocks access to unknown users.

in face recognition, it won’t be too long before face-based
authentication becomes a norm for mobile devices.

However, face-based verification systems are explicit in
nature and are fundamentally limited. For instance, as long as
the mobile phone remains active, typical devices incorporate
no mechanisms to verify that the user originally authenticated
is still the user in control of the mobile device. Thus,
unauthorized individuals may improperly obtain access to
personal information of the user if the system is spoofed
or if the user does not exercise adequate vigilance after
initial authentication. To deal with this issue, Active Authen-
tication (AA) systems were introduced in which users are
continuously monitored after the initial access to the mobile
device [3]. Various methods have been proposed for AA
including touch gesture-based [4], [5], [6], [7], gait pattern-
based [8] and face-based [9], [10], [11], [12], [13] systems.
In particular, face-based AA systems have gained a lot of
attraction in recent years.

A naive approach for face-based AA would be to use
face images correspoinding to all users and train a system
to classify each user in a multi-class fashion. However,
such an approach becomes counter-intuitive for AA since
it requires the storage of all face images at a centralized
location, raising data privacy issues [14]. Hence, one must



consider only the data collected from the enrolled user to
develop an AA system. In other words, we need to explore
possibilities of implementing AA systems using only the
user’s enrolled data. This motivates us to view AA as a
one class classification problem [15]. Fig. 1 shows a typical
face-based AA system, modelled as a one class classification
problem. For the rest of this paper, we term the enrolled user
and unauthorized user data as the target class and unknown
class data, respectively.

Learning a one class classifier based on only the target
class data has been one of the most challenging problems
in machine learning. Some of the earlier works have used
statistical methods to tackle this problem. Such statistical
methods usually seek separating hyperplane/hypersphere in
the feature space to enclose the target class data [16], [17],
[18], [19]. These methods rely on the quality of the represen-
tations used for the target class data. Earlier approaches were
based on the hand-crafted features. In recent years features
based on Deep Convolutional Neural Networks (CNNs) have
shown to produce better results than hand-crafted features.
Several one class approaches have also been proposed in
the literature that instead of learning a decision boundary,
try to leverage CNNs to learn representations for the target
class data. Most of these approaches are based on generative
methods such as Auto-Encoders and Generative Adversarial
Networks (GANs) [20]. These generative approaches either
use reconstruction errors or discriminator scores to identify
the target class data [21], [22], [23], [24], [25]. However,
features learned using these generative approaches are not
discriminative enough compared to the features learned in
traditional discriminative fashion. Attempts have been made
to combine deep features with the statistical classifiers for
learning better representations for one class classification
[26], [27]. Though, utilizing these powerful feature repre-
sentations help in learning good decision boundaries, feature
representations and classifiers are learned separately. In such
a disjoint approach, classification module doesn’t influence
CNNs to modify the feature representation for a given target
class data. Several recent works have explored joint learning
of both features and classifiers [28], [29] for one class
classification. These methods demonstrated that represen-
tation learning together with classifier training results in
improved performance. Based on this motivation, an end-
to-end learning approach is proposed in this paper which
jointly learns feature representations and a classifier for one
class classification. Furthermore, the learned representations
are constrained by a decoder network which regularizes the
learned representations by enforcing them to reconstruct the
original data. In summary, this paper makes the following
contributions:

• A new method is proposed for jointly learning rep-
resentations and the decision boundary for one class
classification.

• A key feature of the proposed approach is that any pre-
trained CNN architecture (i.e. AlexNet, VGG16 and
VGGFace) can be used as the base network.

• Extensive experiments are conducted on three face-
based AA datasets and it is shown that the proposed ap-
proach can outperform many other statistical and deep
learning-based one class classification approaches.

II. RELATED WORK

Many statistical approaches have been explored over the
years to address the one class classification problem. A
graphical illustration of popular statistical one-class clas-
sification methods is given in Fig. 2. One class support
vector machines (OC-SVM), introduced by Scholkopf et
al. [16], learns a classification boundary in the feature
space by maximizing the margin of separating hyperplane
against the origin. Fig. 2(b) shows a typical example of
a hyperplane learned by the OC-SVM. Another popular
class of approaches for one class classification are based
on Support Vector Data Description (SVDD), proposed by
Tax et al. [17]. As shown in the Fig. 2(c), SVDD learns
a separating hypersphere such that it encloses the majority
of target class data. Another popular one class classification
method is Single-MiniMax Probability Machines (SMPM)
[18] which is essentailly based on Minimax Probability
Machines (MPMs) [30]. SMPM, similar to OC-SVM learns a
hyperplane by maximizing margin against the origin. SMPM
also considers the second order statistics of the data into its
formulation which provides additional information on the
structure of the data. This helps SMPM to find the best
direction for separating the hyperplane as shown in Fig. 2(d).
Many variations of these methods have also been explored
in the literature. We refer readers to [19] for a survey of
different one-class classification methods.

As disucssed earlier, most of these classifiers typically
use feature representations extracted from the data for clas-
sification. Hence, the quality of these feature representa-
tions become a crucial aspect of classifier learning and
can affect the classification performance significantly. As a
result, representation learning-based methods for one class
classification have also been proposed in the literature. These
methods leverage CNNs to learn representations for a given
target class data. These methods often make use of the
generative networks such as auto-encoders or GANs in which
reconstruction errors or discriminator scores are utilized to
identify the target class data [21], [22], [23], [24], [25].
However, features learned using these generative approaches
are not as powerful as those learned in a discriminative fash-
ion. However, training methodology used for discriminative
feature learning requires data from multiple classes, limiting
its application to multi-class classification. Several works
have utilized features from pre-trained CNNs together with
one of the statistical approaches such as OC-SVM, SVDD,
or SMPM to learn the decision boundary for one class
classification [26], [27]. Though, utilizing these powerful
feature representations help in learning good decision bound-
aries, representations and decision boundaries are learned
seperately. In such approaches, classification module doesn’t
influence CNNs for improving the feature representations.
Classifier and representations, if jointly learned, have shown
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Fig. 2: A graphical illustration of popular statistical one-class classification methods. (a) Sample data corresponding to a
target class. (b) One-Class Support Vector Machines (OC-SVM), learn a hyperplane separating the data by maximizing
the margin against the origin. (c) Support Vector Data Description (SVDD), learns a hypersphere in the feature space that
encloses the given one-class data. (d) Single Minimax Probability Machines (SMPM), learn a hyperplane that minimizes
the misclassification probability.

to improve the performance of the system as a whole [28],
[29], [31].

Perera et al. [28] proposed a one class algorithm to learn
both features and classifier together. However, their approach
requires an external dataset and can work only when multiple
class data are available, making it not useful for AA systems.
Chalpahty et al. [29] introduced a neural network-based
one class approach called One Class classification with
Neural Networks (OC-NN) which jointly learns classifier
and feature representation without using any external data.
OC-NN introduced a novel loss function, designed for one
class classification. This loss function enables classifier to
influence the representation learning process. Similar to OC-
NN, the proposed approach aims to jointly learn classifier
and feature representation. However, the proposed approach
is completely different from that proposed in OC-NN. The
feature extractor and the classifier are trained by introduc-
ing a Gaussian vector in the feature space which acts as
a pseudo-negative class. Oza and Patel [31] showed that
providing pseudo negative information helps learning better
representations which often results in improved classification
performance. In this paper, we introduce a decoder network
in the pipeline which essentially constraints the feature ex-
tractor to generate feature representation that can reconstruct
the original data. These self-representation constraint acts as
a regularizer and helps improving the learned representation.
We train the entire networks in an end-to-end fashion using
only the enrolled user data. In what follows, we present
details of the proposed one class classification method based
on autoencoder regularized CNN (OC-ACNN).

III. PROPOSED APPROACH

An overview of the proposed OC-ACNN network archi-
tecture is shown in Fig. 3. It consists of three major modules
namely, feature extractor network, classification network and
decoder network. The feature extractor network generates
latent space representations for a given target class data.
These latent representations are then fed to a classifier and
a decoder network. Before feeding them to the classifier

network, they are concatenated with a vector sampled from
a zero centered Gaussian N (µ, σ · I), where σ and µ are
the parameters of the Gaussian and I is the identity matrix.
This Gaussian vector acts as a pseudo-negative class for
the classifier. The classifier network is tasked with dis-
criminating the target class representation from the pseudo-
negative Gaussian vector. The decoder network takes in
the same latent representation to reconstruct the original
input. This enforces the latent representation generated by
the feature extractor network to be self-representative i.e.,
representations are required to generate back the original
input images. The classification network and the decoder
network are trained end-to-end using a combination of binary
cross entropy loss and L1 loss, respectively.

A. Feature Extractor

The feature extractor network (E) can be any state of the
art network architecture. In this paper, pre-trained AlexNet
[32], VGG16 [33] and VGGFace [34] are considered. Before
using these architectures as feature extractor, the final layer
(i.e. softmax regression layer) is removed. While training, we
update weights of only the fully connected layers and freeze
the weights of convolutional layers. AlexNet and VGG16
utilized here are initialized with the ImageNet pre-trained
weights and VGGFace is initialized with the VGGFace
dataset pre-trained weights.

B. Classification Network

Assuming that the extracted features are D-dimensional,
the features are appended with the pseudo-negative data
generated from a Gaussian, N (µ, σ · I), similar to [31]. Fol-
lowing We use a simple one layer fully connected classifier
network (C) with sigmoid activation at the end, as shown
in Fig. 3. The number of hidden units are the same as the
length of the feature vector representation. Because of the
Gaussian vector concatenation at the input, the network C
observes twice the batch size (N ) as of the feature extractor.
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Fig. 3: An overview of the proposed OC-ACNN method. Here, X is the input. The feature extractor module (E) can be any
pre-trained CNN architecture. In this paper AlexNet, VGG16 and VGGFace networks are explored. The decoder module
(D) is a simple four layer fully convolutional network. The decoder network essentially reconstructs the input image X ,
as X̃ . The classification network (C ) is a fully connected neural network trained to distinguish between feature vectors
coming from E and the Gaussian vectors sampled from N (µ, σ · I). The entire network is trained using a combination of
classification loss (Lc) and reconstruction loss (Lr).

C. Decoder Network

The decoder network (D) architecture is a simple four
layer fully convolutional neural network. This network takes
feature representation learned by the network E and tries
to reconstruct the original input. This in effect constraints
E to generate representation which have self-representation
property. It can be seen as a form of regularization on the
feature representation. This regularization can be controlled
with parameter λr given in Eq. 3 of total loss function.
Since feature extractor outputs a flattened feature vector, we
reshape it to an appropriate size before feeding it to the
decoder network. Note that E along with D can be viewed
as an auto-encoder network.

D. Loss Functions

The entire network is trained using a combination of two
loss functions - classification loss (Lc) and reconstruction
loss (Lr). The classification loss is defined as follows

Lc = − 1

2N

2N∑
j=1

[ y · log2(p)+ (1− y) · log2(1− p) ], (1)

where y ∈ {0, 1} indicates whether classifier input cor-
responds to feature extractor (i.e., y = 1), or sampled from
N (µ, σ ·I), (i.e., y = 0). Here, p is the probability of y = 1.
The classification network C observes twice the input batch
size because we append Gaussian vector in batch dimension
with extracted features, in Eq. 1, the summation is over 2N .

The L1 reconstruction loss is defined as follows

Lr =
1

N

N∑
j=1

‖X − X̃‖1, (2)

where X and X̃ are the original input image and the
reconstructed image, respectively.

Finally, the overall loss function is the sum of Lr and Lc

defined as follows

Lt = Lc + λrLr, (3)

where λr is a regularization parameter. Furthermore, note
that X̃ = D(E(X)) and p = C(E(X)).

The network is optimized using the Adam optimizer [35]
with the learning rate of 10−4 and batch size (i.e. N ) of 64.
For all the experiments, µ, σ and λr are set equal to 0.0, 0.01
and 1.0, respectively. The decoder architecture is as follows
ConvTran(1024, 256) - ConvTran(256, 64) - ConvTran(64,
16) - ConvTran(16, 3),
where, ConvTran(in, out) denotes the transposed convolu-
tions with in and out as number of input and output feature
channels, respectively. All transposed convolutions are used
with kernels of size 4×4. ReLU activation is used after every
transposed convolution layer except the fourth, where Tanh
activation is used. Instance normalization [36] is used before
the classifier network and at the end of every transposed
convolution layer.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed approach on
three publically available face-based AA datasets – MOBIO
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Fig. 4: Sample Images from (a) Mobio, (b) UMDAA-01 Face, (c) UMDAA-02 Face datasets. Each column represents
different user and each row shows multiple images from the same user.

[37], UMDAA-01 [9] and UMDAA-02 [38]. The proposed
approach is compared with the following one-class classifi-
cation methods:
• OC-SVM: One class SVM as formulated in [16] is

used. OCSVM is trained on features extracted from
AlexNet, VGG16 and VGGFace.

• SMPM: SMPM is used as formulated in [30]. In
SMPM formulation, to utilize the second order statis-
tics, covariance matrix computation is required. Hence,
before applying SMPM, we reduce the dimensionality
of the features extracted from AlexNet, VGG16 and
VGGFace using Principle Component Analysis (PCA).

• SVDD: Support Vector Data Description is used as
formulated in [17], trained on the AlexNet,VGG and
VGGFace features.

• OC-NN: One-class neural network (OC-NN) is used as
formulated in [29]. The encoder network described in
[29] is replaced with a pretrained CNNs, i.e. AlexNet,
VGG16 and VGGFace to have a fair comparison
between the methods. Apart from this change, the
training procedure is exactly the same as given in [29].

The following ablation baselines are also considered to
show the contribution of each module in the proposed
approach:
• Auto-Encoder baseline (only Lr): This is one of

the ablation baselines, where we utilize the feature
extractor and the decoder networks, and train with only
Lr loss function given in Eq. 2. It can also be seen
as a generative approach baseline. The reconstruction
error is used for classification. In other words, a pre-
determined threshold is compared against the recon-
struction error and the input is rejected if the error
is greater than the threshold. Otherwise, the input is
declared as corresponding to the one-class data.

• Classifier baseline (only Lc): Another ablation base-
line includes using classifier and feature extractor
networks trained with only Lc loss function given in
Eq. 1. The classification network is not regularized
by the decoder network. This baseline is equivalent to
the method proposed in [31]. This ablation study will
clearly show the significance of using an auto-encoder
as a regularizer for one-class classification.

• Proposed approach OC-ACNN (both Lr and Lr):
OC-ACNN is the method proposed in this paper.

For OC-SVM, SMPM and SVDD distance scores from the
hyperplane/hypersphere are used for performance evaluation.
For OC-NN, classifier baseline and the proposed approach,
scores from the classifier are used for performance evalua-
tion. As mentioned before, the reconstruction error is used
for evaluating the performance of the auto-encoder baseline.

A. Datasets

MOBIO. The MOBIO dataset is a bi-modal AA dataset
containing face images and voice recordings of 150 users.
In this paper, we only consider face images for conducting
the experiemnts. Sample images from this dataset are shown
in Fig. 4a. For each user the recordings are taken in six
sessions at different locations. We combine images from
all six sessions. MOBIO contains less variations in pose,
illumination etc., as compared to the other datasets used in
this paper. For experiments, first 48 users are considered as
target users and the rest are used as unknown users. Target
users’ data is split into train and test set with 85/15 ratio.
For each target user, the training set is used to train the
networks. During evaluation, we utilize the test set of the
target user along with the data from all unknown users. This
process is repeated for all 48 users and average performance
is reported.

UMDAA-01 Face. The UMDAA-01 dataset contains
face and touch gestures recorded from a mobile device.
In total 750 video sequences of 50 users are collected in
three different sessions with varying illumination conditions.
Sample images from this dataset are shown in Fig. 4b. Data
from different sessions are combined for each user and split
into train and test sets with 80/20 ratio. Considering one
user as the target and the remaining 49 users as unknown,
networks are trained using target train set and tested with
test set consisting of all 50 users’ data (i.e. 1 target and 49
unknown). This experimental protocol is followed for all 50
users and average performance is reported.

UMDAA-02 Face. Unlike the above two datasets, the
UMDAA-02 dataset has multiple modalities for 44 users
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Fig. 5: t-SNE visualizations of feature representations from the feature Extractor (E) corresponding to a user from the
UMDAA-02 Face dataset.

e.g. face, gyroscope, swipe patterns, key strokes etc. all
recorded from 18 sensors of a Nexus mobile device. Since
the dataset was collected over a period of two months, it is an
extremely challenging dataset with large variations in pose,
illumination, occlusions and other environmental conditions.
Fig. 4c shows some sample images from this dataset. The
number of sessions for each user ranges from 25 to 750
providing large number of frontal face images, i.e. more than
10k images on average per user. For each user, train and test
splits are created with 80/20 ratio. We follow similar protocol
as that of UMDAA01-Face for all 44 users and report the
average performance.

Area Under the ROC curve (AUROC) is used to measure
the performance. This is one of the most commonly used
metric in the literature for evaluating the performance of the
one-class classification methods.

B. Qualitative Evaluation

In this section, we present qualitative evaluation of the
proposed approach by comparing the visualizations of feature
representations learned by our method with those corre-
sponding to respective pre-trained networks. Fig. 5 shows
t-SNE [39] visualizations of the feature representations cor-
responding to AlexNet, VGG16 and VGGFace, respectively.
These t-SNE plots are obtained from a single user of the
UMDAA-02 Face dataset. Fig. 5a, 5c and 5e show the
visualizations corresponding to pre-trained AlexNet, VGG16
and VGGFace networks, respectively. Fig. 5b, 5d and 5f
show the visualizations corresponding to their counterpart
networks trained using the proposed approach. As can be

seen from these figures, the pre-trained networks generate
features that highly overlap between the target and unknown
users. This makes sense since these networks are trained
using a cross-entropy loss for multi-class classification. As
a results, the features from these networks overlap signifi-
cantly and it makes it difficult for a one-class classifier to
correctly identify the separating decision boundary. On the
other hand, the feature representations of the same networks
trained using the proposed approach are quite distinctive. The
learned feature representations corresponding to the target
and unknown users are very well separated. These features
become extremely useful while identifying the target user
against the unknown users, thereby resulting in improved
classification performance.

Table I shows the AUROC results corresponding to each
plot for the same user computed using OC-SVM. As can be
seen from this table, for all the networks the features learned
using the proposed OC-ACNN provides better performance
compared to the pre-trained features.

Feature Extractor (E) Pre-Trained OC-ACNN
AlexNet 0.5319 0.6780
VGG16 0.5698 0.8194

VGGFace 0.5428 0.8808

TABLE I: AUROC results corresponding to the study con-
ducted in Fig. 5.

C. Quantitative Evaluation

Tables II, III and IV show the performance on all three
datasets based on AlexNet, VGG16 and VGGFace as feature



Dataset OC-SVM SMPM SVDD OC-NN Auto-encoder (only Lr) Classifier (only Lc) OC-ACNN (Lc+Lr)
Mobio 0.6578 ± 0.1132 0.7721 ± 0.1185 0.7851 ± 0.1270 0.7504 ± 0.1512 0.7526 ± 0.1075 0.8191 ± 0.1286 0.8633 ± 0.1136

UMDAA-01 0.6584 ± 0.1255 0.7576 ± 0.1149 0.8909 ± 0.0755 0.8684 ± 0.0913 0.6560 ± 0.1066 0.9196 ± 0.0482 0.9276 ± 0.0465
UMDAA-02 0.5746 ± 0.0595 0.5418 ± 0.0382 0.6448 ± 0.0725 0.6542 ± 0.0593 0.5952 ± 0.0869 0.7017 ± 0.1007 0.7398 ± 0.0787

TABLE II: Comparison between the proposed approach and other one-class methods with AlexNet as the feature extractor
network. Results are the mean of performance on all classes. The performance is measured by AUROC. Best performance
is highlighted in bold fonts.

Dataset OC-SVM SMPM SVDD OC-NN Auto-encoder (only Lr) Classifier (only Lc) OC-ACNN (Lc+Lr)
Mobio 0.6607 ± 0.1066 0.7266 ± 0.1046 0.8212 ± 0.1130 0.7822 ± 0.1153 0.7457 ± 0.1072 0.8177 ± 0.1132 0.8705 ± 0.1278

UMDAA-01 0.6777 ± 0.0946 0.8664 ± 0.0765 0.9011 ± 0.0592 0.8802 ± 0.0976 0.8494 ± 0.0844 0.9348 ± 0.0384 0.9486 ± 0.0336
UMDAA-02 0.5828 ± 0.0757 0.5473 ± 0.0447 0.6424 ± 0.0677 0.6199 ± 0.0693 0.6042 ± 0.0939 0.7349 ± 0.0845 0.8457 ± 0.0581

TABLE III: Comparison between the proposed approach and other one-class methods with VGG16 as the feature extractor
network. Results are the mean of performance on all classes. The performance is measured by AUROC. Best performance
is highlighted in bold fonts.

Dataset OC-SVM SMPM SVDD OC-NN Auto-encoder (only Lr) Classifier (only Lc) OC-ACNN (Lc+Lr)
Mobio 0.6702 ± 0.1268 0.6619 ± 0.1068 0.7975 ± 0.1250 0.7673 ± 0.1380 0.7339 ± 0.1095 0.8347 ± 0.1324 0.8859 ± 0.1042

UMDAA-01 0.6763 ± 0.1237 0.7334 ± 0.1241 0.8745 ± 0.0794 0.8257 ± 0.1381 0.8237 ± 0.0923 0.9432 ± 0.0654 0.9772 ± 0.0213
UMDAA-02 0.5712 ± 0.0644 0.5671 ± 0.0597 0.5898 ± 0.0647 0.5987 ± 0.0652 0.6343 ± 0.0723 0.6393 ± 0.0946 0.8946 ± 0.0535

TABLE IV: Comparison between the proposed approach and other one-class methods with VGGFace as the feature extractor
network. Results are the mean of performance on all classes. The performance is measured by AUROC. Best performance
is highlighted in bold fonts.

extractors, respectively. The performance of other methods
is inconsistent across the experiments. SMPM was found
to perform better than OCSVM, while SVDD achieves
better performance in many cases beating OC-NN. This may
be due to the evaluation protocol difference between this
paper and the one proposed in OC-NN [29]. In OC-NN
evaluation protocol, the number of unknown classes used
during evaluation are much less than the number of unknown
classes used for evaluation in this paper (i.e., MOBIO(96),
UMDAA-01 Face(49) and UMDAA-02 Face(43)). This can
be a reason for the poor performance from OC-NN as
compared to SVDD. OC-NN however, manages to perform
better than SMPM and OCSVM, and in couple of cases
SVDD. Meanwhile the proposed approach achieves superior
performance across all the datasets and for different feature
extractor models.

Comparing the performance across models, VGGFace
outperforms both VGG16 and AlexNet models. This makes
sense since face images (i.e. VGGFace dataset) were used
to train the original VGGFace model and the corresponding
weights are better suited for face-based AA application
considered in this paper. In contrast, the VGG16 and AlexNet
networks were trained using general object dataset (i.e.
ImageNet dataset) for object recognition task. The highest
performance for all these networks is achieved for UMDAA-
01 Face, since this dataset only contains illumination vari-
ations. Though MOBIO contains least variations in image
samples, it has large number of unknown classes to compare
against. While UMDAA-02 is the most difficult dataset since
it contains very unconstrained face images. As a result,
the performance on this dataset is lower than the other
two datasets. In summary, the proposed approach observes
improvement of ∼6%, ∼9% and ∼16% on average across all
datasets corresponding to AlexNet, VGG16 and VGGFace,

respectively.
Comparing ablation baselines, the auto-encoder baseline

using only the reconstruction loss performs the poorest,
while only the classifier baseline performs reasonably well.
Auto-encoder and classifier baselines can be categorized as
generative and discriminative approach, respectively. Since
the discriminative approach can learn better representation,
it helps the classifier baseline to improve its performance.
However, when the decoder is added to the classification
pipeline to regularize the learned representations, it improves
the overall performance by ∼6%. This clearly shows the
significance of enforcing the self-representation constraints
to regularize the learned feature representations for one-class
classification.

V. CONCLUSIONS

We proposed a new approach for single user AA based
on auto-encoder regularized CNNs. Feature representations
are jointly learned with classifier influencing the generated
representations. A pseudo-negative Gaussian vector was uti-
lized to train the fully connected classification network.
Decoder was introduced to regularize the generated feature
representation by enforcing it to be self-representative. Ex-
periments were conducted using the AlexNet, VGG16 and
VGGFace networks, which showed the adaptability of the
proposed method to work with different types of network
architectures. Ablation study was conducted to show the
importance of both classification loss and feature regulariza-
tion. Moreover, visualizations of the learned representations
showed the ability of the proposed approach to learn dis-
tinctive features for one-class classification. Furthermore, the
consistent performance improvements over all the datasets
related to AA showed the significance of the proposed one-
class classification method.
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