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Abstract—We propose FPS-SFT, a sparse Fourier transform
for multidimensional, frequency-domain sparse signals, inspired
by the idea of the Fourier projection-slice theorem. FPS-SFT
identifies frequencies by operating on one-dimensional slices of
the discrete-time domain data, taken along specially designed
lines; those lines are parametrized by slopes that are randomly
generated from a set at runtime. The DFTs of the data slices
represent DFT projections onto the lines along which the slices
were taken. When the lines’ lengths and slopes are properly
designed so that they allow for orthogonal and uniform frequency
projections, the multidimensional frequencies can be recovered
from their projections with low sample and computational
complexity. We show theoretically that the large number of
degrees of freedom in frequency projections allows FPS-SFT to
be applicable in recovery of less sparse, uniformly distributed
frequencies; various numerical results suggest that FPS-SFT is
also efficient for clustered frequencies. We also extend FPS-SFT
into a robust version (RFPS-SFT), to address noisy signals that
contain off-grid frequencies. The advantages of RFPS-SFT are
demonstrated via simulations in the context of digital beamform-
ing automotive radar signal processing, where the RFPS-SFT can
be used to identify range, velocity and angular parameters of
targets with low sample and computational complexity.

Index Terms—Multidimensional signal processing, sparse
Fourier transform, Fourier projection-slice theorem, automotive
radar signal processing.

I. INTRODUCTION

Conventional signal processing methods in radar, sonar, and
medical imaging systems usually involve multidimensional
discrete Fourier transforms (DFT), which are typically im-
plemented by the fast Fourier transform (FFT). The sample
complexity of the FFT is O(N), where N is the number of
samples in the multidimensional sample space. For N equal
to a power of 2, the computational complexity of the FFT is
O(N logN). Recently, by leveraging the sparsity of signals
in the frequency domain, the sparse Fourier transform (SFT)
has been proposed [1]–[8]; this is a family of low-complexity
DFT algorithms. The state-of-the-art SFT algorithms [5], [7]
achieve sample complexity of O(K) and computational com-
plexity of O(K logK) for exactly K-sparse (in the frequency
domain) signals. When K << N , those SFT algorithms
achieve significant savings both in sample and computation
compared to the FFT. SFT algorithms have been investigated
for several applications including a fast Global Positioning
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System (GPS) receiver, wide-band spectrum sensing, multidi-
mensional radar signal processing [9]–[13].

In all SFT algorithms, the reduction of sample and com-
putational complexity is achieved by reducing the input data
samples. This is implemented via a well designed, randomized
subsampling procedure, which leverages the resulting fre-
quency domain aliasing. The significant frequencies contained
in the original signal are then localized and the corresponding
DFT coefficients are estimated with low-complexity opera-
tions. Such subsampling-localization-estimation procedure is
carried out in an iterative manner in several SFT algorithms
[1], [2], [5], [7], while in other SFT algorithms [3], [11]–[13],
localization and estimation are implemented in one-shot after
gathering sufficient copies of subsampled signals correspond-
ing to different subsampling parameters, e.g., subsample rate,
offset and number of samples. Generally, iterative based SFT
algorithms exhibit lower complexity as compared to one-shot
based SFT algorithms, since in the former, in each iteration,
the contribution of the recovered frequencies are removed from
the signal, which yields a sparser signal (an easier problem)
in the next iteration.

Multidimensional signal processing requires multidimen-
sional SFT algorithms. Most of the existing SFT algorithms,
however, are designed for one-dimensional (1-D) signals and
their extension to multidimensional signals is typically not
straightforward. This is because the SFT algorithms are not
separable in each dimension due to the fact that operations
such as detection of significant frequencies in the subsampled
signal within an SFT algorithm must be considered jointly for
all the dimensions [11]. Multidimensional SFT algorithms are
investigated in [5], [12], [13]. The sample-optimal SFT (SO-
SFT) of [5] follows the subsampling-localization-estimation
iteration, while the SFT algorithms of [12], [13] are one-shot
approaches. SO-SFT achieves the sample and computational
complexity lower bounds of all known SFT algorithms by
reducing a 2-dimensional (2-D) DFT into 1-D DFTs along
a few columns and rows of a data matrix; in the frequency
domain, this results into projections of 2-D frequencies onto
the corresponding columns and rows of the matrix. Under
the assumption that the frequencies are sparse and uniformly
distributed, the 2-D frequencies are not likely to be projected
to the same bin (we will refer this as collision), and thus
the 2-D frequencies can be effectively recovered from their
1-D projections (see Section III-A for details). The DFT
along columns and rows provides two degrees of freedom;
a frequency collision has low probability to occur both in the
column and row direction. However, when frequencies are less
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sparse, or when they are clustered, there is a high probability
that a set of frequencies will collide both in row and columns
directions; this is referred to as ‘deadlock’ situation [5] and
results in unrecoverable frequencies (see Fig. 1).

To reduce the probability of a deadlock, the SFT of [12],
[13] introduces more degrees of freedom in projections by
applying 1-D DFT to data samples extracted along some lines
of predefined and deterministic slopes as well as along the axes
of the data cube. However, the limited choice of line slopes in
[12], [13] is still an obstacle in addressing less sparse signals.
Moreover, the sample and computational complexity of [12],
[13] are higher than that of SO-SFT, as the former applies
the one-shot approach for frequency recovery, while the latter
recovers the frequencies iteratively. In addition to the itera-
tive approach, the low-cost frequency localization technique
adopted in SO-SFT further contributes to the low-complexity
of the algorithm. Specifically, SO-SFT applies the OFDM-
trick (phase encoding) [2], [4], which effectively encodes the
significant frequencies into the phase difference of a pair of
DFTs applied on two datasets, obtained by subsampling the
data with the same subsample rate but different offsets. In the
exactly sparse case, the encoded frequencies can be decoded
trivially with a low-complexity (O(1)) operation (see Section
III-A for details).

In this work we propose FPS-SFT, a multidimensional,
Fourier projection-slice based SFT, which enjoys low com-
plexity while avoiding the limitations of the aforementioned
algorithms, i.e., it can handle less sparse data in the frequency
domain and accommodate frequencies that are non-uniformly
distributed. FPS-SFT uses the low-complexity frequency local-
ization framework of SO-SFT and extends the multiple slopes
idea of [12], [13] by using lines parameterized by slopes that
are randomly generated from a set of sufficiently large support
at runtime. This is not trivial since the line length and slope
set should be carefully designed to enable an orthogonal and
uniform frequency projection.

FPS-SFT can be viewed as a low-complexity, Fourier
projection-slice approach for signals that are sparse in the
frequency domain. In FPS-SFT, the DFT of an 1-D slice of
the data is the projection of the D-D DFT of the data on
that same line along which the time-domain slice was taken.
The classical Fourier projection-slice based method either
reconstructs the frequency domain signal via interpolation
of frequency-domain slices or reconstructs the time-domain
samples by solving a system of linear equations relating the
DFT along projections and the time-domain samples. Different
from the Fourier projection-slice based methods, the proposed
FPS-SFT aims to reconstruct the signal directly based on
frequency domain projections with low-complexity operations;
this is achieved by leveraging the sparsity of the signal in the
frequency domain.

Another body of related works, referred to as SFT based
on rank-1 lattice sampling [6], [14], [15] also consider the
problem of fast reconstruction of the underlying multidimen-
sional signal based on samples along rank-1 lattices, i.e., lines.
In [14], [15], the coefficients of the multidimensional DFT
of the data can be efficiently calculated by applying DFT on
samples along suitable lines, provided that the frequencies are

known. In particular, in [14], the exact evaluation of the DFT
coefficients can be accomplished by calculating the DFT along
a single line; such a line is called the reconstructing rank-
1 lattices and can be found for any given sparse frequency
set [14]. However, finding a reconstructing rank-1 lattice is
non-trivial when the frequency set is unknown. That unknown
frequency case is addressed in [6], at the expense of high
complexity due to the complication of finding a reconstructing
rank-1 lattice. Compared with the algorithms of [14], [15],
the proposed FPS-SFT does not assume that the underlying
frequency set is known. The frequency set as well as the
corresponding DFT coefficients are estimated via DFT along
lines progressively. Compared with the SFT of [6], FPS-SFT
is based on multiple lines of randomized parameters and does
not pursue to reconstruct the signal using a single line, which
avoids the complication of locating a reconstructing rank-1
lattice and thus achieves a low complexity. In addition, the
rank-1 lattice-based SFT algorithms assume that samples of
the signal can be obtained at any arbitrary location, which
is rather difficult to achieve in hardware [16]. In contrast,
the FPS-SFT assumes that the samples are extracted from
a predefined uniform sampling grid. Hence, FPS-SFT is less
restrictive in sampling and more applicable to existing systems,
which employ uniform sampling in each dimension.

While the FPS-SFT considers the ideal scenario, i.e.,
frequency-domain sparse data containing frequencies on the
DFT grid, in realistic applications, the data is usually noisy
and contains off-grid frequencies. One example of such data
is the received signal of the digital beamforming (DBF)
automotive radar, which usually employs a frequency mod-
ulation continuous waveform (FMCW). After demodulation
of the returned signal, each radar target can be expressed
as a D-D complex sinusoid [17], whose frequency in each
dimension is related to target parameters, e.g., range, Doppler
and direction of arrival. When the number of targets is much
smaller than the number of samples, such signal is sparse in
the D-D frequency domain. Due to the continuous nature of
those parameters, the frequencies are also continuous and thus
are typically off-grid. Meanwhile, the radar signal contains
noise, which makes the signal approximately sparse. FPS-
SFT suffers from the frequency leakage caused by the off-grid
frequencies; also, the frequency localization procedure of FPS-
SFT is prone to errors since the OFDM-trick is sensitive to
noise [2]. We address these issues by extending FPS-SFT to a
robust version, which we call RFPS-SFT. RFPS-SFT employs
a windowing technique to reduce the frequency leakage caused
by the off-grid frequencies and a voting based frequency
decoding procedure to significantly reduce the localization
error stemming from noise.

The off-grid frequencies are also addressed in [11], where
a robust multidimensional SFT algorithm, termed RSFT, is
proposed. In RSFT, the computational savings are achieved
by folding the input D-D data cube into a much smaller data
cube, on which a reduced sized D-D FFT is applied. Although
the RSFT is more computationally efficient as compared to the
FFT-based methods, its sample complexity is the same as the
FFT-based algorithms. Essentially, the high sample complexity
of RSFT is due to its two stages of windowing procedures,
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which are applied to the entire data cube to suppress the
frequency leakage. In the proposed RFPS-SFT, instead of
applying the multidimensional window on the entire data, the
window, while still designed for the full-sized data, is applied
on samples along lines only, which does not cause overhead
in sample complexity.

This paper makes the following contributions.
• We propose FPS-SFT, a multidimensional, low-

complexity SFT algorithm that is based on the
Fourier projection-slice theorem. Compared to the SFT
algorithms of [5], [12], [13] that project multidimensional
DFT of data onto deterministic lines, the frequency-
domain projections in FPS-SFT are randomized. This
enables good frequency recovery performance in less
sparse data scenarios and even in scenarios in which
the frequencies are clustered. Also, while the SFT of
[5], [12], [13] requires the data to be equal-sized in
each dimension, FPS-SFT applies to arbitrary-sized data,
which is less restrictive.

• We extend FPS-SFT to a robust version, termed RFPS-
SFT. RFPS-SFT is a practical extension of FPS-SFT to
address noisy data containing off-grid frequencies arising
from applications such as DBF automotive radar signal
processing. The feasibility of applying RFPS-SFT in such
application is demonstrated via simulations.

Preliminary version of FPS-SFT and RFPS-SFT appeared
in [18] and [19], respectively. This paper extends [18], [19]
by providing detailed analysis and extensive numerical results.
The MATLAB code of the proposed algorithms can be found
at https://github.com/iamwsg/FPS-SFT.git.

Notation: We use lower-case (upper-case) bold letters to
denote vectors (matrices). [·]T denotes transpose. The N -
modulo operation is denoted by [·]N . [S] refers to the integer
set of {0, ..., S − 1}. The cardinality of set S is denoted
as |S|. The N -point DFT of signal x, normalized by N , is
denoted by x̂; all the DFT is referred to as the normalized
version. ‖W‖1, ‖W‖2 are the l1 and l2 norm of matrix W,
respectively. We denote the least common multiple of N0, N1

as LCM(N0, N1).
The paper is organized as follows. The signal model is

provided in Section II. The proposed FPS-SFT is described in
Section III and its robust extension is in Section IV. Validation
of theoretical results via simulations is provide in Section V
and the application of RFPS-SFT in automotive DBF radar
signal processing is presented in Section VI. Concluding
remarks are made in Section VII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

For simplicity, in this section, we will present the ideas for
2-D signals. The generalization to higher dimensions, i.e., D-
D cases with D > 2, is straightforward.

Let us consider the following 2-D signal model, which is a
superposition of K 2-D complex sinusoids, i.e.,

x(n) ,
∑

(a,ω)∈S

aejn
Tω, n , [n0, n1]T ∈ X , [N0]× [N1],

(1)

where N0, N1 denote the sample length of the two dimen-
sions, respectively. (a,ω) represents a 2-D frequency whose
amplitude is a with a ∈ C, a 6= 0 and frequency is ω ,
[ω0, ω1]T , [2πm0/N0, 2πm1/N1]T with [m0,m1]T ∈ X .
The set S with |S| = K includes all the 2-D frequencies. We
assume that the signal is sparse in the frequency domain, i.e.,
K << N , N0N1.

In the above model, the frequencies lie on a grid. A more re-
alistic signal model, addressing continuous-valued frequencies
in [0, 2π)2 and also noise, is the following

r(n) = y(n) + n(n) =
∑

(a,ω)∈S′
aejn

Tω + n(n), n ∈ X , (2)

where y(n) ,
∑

(a,ω)∈S′ ae
jnTω is the superposition of

K ′ = |S′| continuous-frequency sinusoids; (a,ω) denotes a
significant 2-D frequency in S′, whose complex amplitude and
frequency are a,ω , [ω0, ω1]T ∈ [0, 2π)2, respectively, and
it holds that 0 < amin ≤ |a| ≤ amax. The noise, n(n),
is assumed to be i.i.d., circularly symmetric Gaussian, i.e.,
CN (0, σn). The SNR of a sinusoid with amplitude a is defined
as SNR , (|a|/σn)2.

Conventionally, S′ can be estimated via a 2-D N0 × N1-
point DFT applied on signal (2), after windowing the signal
with a 2-D window w(n), used to suppress frequency leakage
generated by off-grid frequencies. Assuming that the peak to
side-lobe ratio (PSR) of the window is large enough, such that
the side-lobes of each frequency in S′ can be neglected in the
DFT domain, the signal contribution in the DFT domain can
be viewed as a set of on-grid frequencies, i.e., S , {(a,ω) :
ω , [2πm0/N0, 2πm1/N1]T , [m0,m1]T ∈ X} with K ′ <
K = |S| << N . Hence, the sample domain signal component
associated with the window w(n) and S can be approximated
by (1). Note that since the windowing degrades the frequency
resolution, each continuous-valued frequency in S′ is related
to a cluster of digital frequencies in S; S can be estimated
from the DFT of the signal, and then lead to the frequencies
in S′ via quadratic interpolation [20].

III. THE PROPOSED FPS-SFT ALGORITHM

The proposed FPS-SFT is a generalization of SO-SFT. In
this chapter, we first introduce the basics of SO-SFT, then, the
details of FPS-SFT is explained, followed by the analysis of
its properties.

A. SO-SFT
In SO-SFT [5], in order to recover S of (1), 1-D DFTs are

applied on a subset of columns and rows of the data matrix.
The N0-point DFT of the i-th, i ∈ [N1] column of the data
equals

ĉi(m) ,
1

N0

∑
l∈[N0]

x(l, i)e−j
2π
N0
ml

=
1

N0

∑
(a,ω)∈S

∑
l∈[N0]

aej
2π
N1
m1iej

2π
N0
l(m0−m)

=
∑

(a,ω)∈S

ae−j
2π
N0
m1iδ(m−m0), m ∈ [N0],

ω = [2πm0/N0, 2πm1/N1]T , [m0,m1]T ∈ X ,

(3)
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where δ(·) is the unit impulse function. Hence ĉi(m0) can
be viewed as the summation of modulated amplitudes of 2-
D frequencies whose row frequency indices equal to m0.
Hence ĉi(m),m ∈ [N1] is a projection of the 2-D spectrum,
x̂(m0,m1), [m0,m1]T ∈ X , onto the column. Similarly, the
N1-point DFT applied on a row of (1) is a projection of the
2-D spectrum onto the row.

Since the signal is sparse in the frequency domain, if
|ĉi(m)| 6= 0, with high probability, there will be only one
significant frequency projected to the frequency bin of m;
in other words, the frequency bin is ‘1-sparse’, and ĉi(m)

is reduced to ĉi(m) = ĉi(m0) = aej
2π
N1
m1i. The amplitude, a,

can be determined by the m0-th entry of the DFT of the 0-th
column, i.e., a = ĉ0(m0), and the other frequency component,
m1, is ‘coded’ in the phased difference between the m0-th
entries of the DFTs of the 0-th and the 1-st columns, which
can be decoded by m1 = φ (ĉ1(m0)/ĉ0(m0)) N1

2π , where φ(x)
is the phase of x. Note that the 1-sparsity of the m-th bin
can be effectively tested by comparing |ĉ0(m)| and |ĉ1(m)|;
ĉi(m) is 1-sparse almost for sure when |ĉ0(m)| = |ĉ1(m)|.
Such frequency decoding technique is referred to as OFDM-
trick [4]. The contribution of the recovered 2-D frequencies is
removed from the signal, so that the following processing can
be applied on a sparser signal, which is easier to solve in the
subsequent processing.

A frequency bin that is not 1-sparse based on column pro-
cessing might be 1-sparse based on row processing. Because
the removal of frequencies in the column (row) processing
may cause bins in the row (column) processing to be 1-
sparse, SO-SFT runs iteratively and alternatively between
columns and rows and the algorithm stops after a finite number
of iterations. SO-SFT succeeds with high probability only
when the frequencies are very sparse, and requires that either
a row or a column of the DFT contains a 1-sparse bin.
However, in many applications, the signal frequency exhibits a
block sparsity pattern [21], i.e., the significant frequencies are
clustered. In those cases, even when the signal is very sparse,
1-sparse bin may not exist; this is referred to as a ‘deadlock’
case [5].

B. FPS-SFT

SO-SFT reduces a 2-D DFT into 1-D DFTs of the columns
and rows of the input data matrix. The columns and the rows
can be viewed as 1-D slices taken along discrete lines with
slopes ∞ and 0, respectively. In this section, by proposing
FPS-SFT, we reduce the 2-D DFT into 1-D DFTs of the data
slices taken along discrete lines with random slopes.

FPS-SFT is an iterative algorithm; each iteration returns a
subset of recovered 2-D frequencies. After T iterations, the
FPS-SFT returns a set, Ŝ, which is an estimate of S of (1).
The frequencies recovered in previous iterations are passed to
the next iteration, and their contributions are removed from
the signal in order to create a sparser signal.

Within each iteration of FPS-SFT, the signal of (1) is sam-
pled along a line, E(α, τ , l), l ∈ [L], with α , [α0, α1]T , τ ,
[τ0, τ1]T ,α, τ ∈ X , satisfying the following equations

[α0l + τ0]N0
= n0, [α1l + τ1]N1

= n1, l ∈ [L]. (4)
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Fig. 1. Demonstration of projection of 2-D frequencies onto 1-D. The colored
blocks mark significant frequencies. The projection onto the column or the
row causes collisions, while the projection onto the diagonal creates 1-sparse
bins.

where

n1 =

[
α1

α0
(n0 − τ0) + τ1

]
N1

. (5)

Hence, E(α, τ , l), l ∈ [L] is a discrete line segment whose
slope is α1/α0 and offset is τ .

The sampled signal, representing a slice of the data along
E(α, τ , l), l ∈ [L], can be expressed as

s(α, τ , l) , x([α0l + τ0]N0
, [α1l + τ1]N1

)

=
∑

(a,ω)∈S

ae
j2π

(
m0[α0l+τ0]N0

N0
+
m1[α1l+τ1]N1

N1

)
, l ∈ [L].

(6)

Note that a slice can ‘wrap around’ within x(n),n ∈ X due
to the modulo operation, and the sampling points along the
line are always on the grid of X , since α, τ are on grid.

Taking an L-point DFT of the data slice defined in (6), for
m ∈ [L], we get

ŝ(α, τ ,m) ,
1

L

∑
l∈[L]

s(α, τ , l)e−j2π
lm
L

=
1

L

∑
(a,ω)∈S

ae
j2π

(
m0τ0
N0

+
m1τ1
N1

) ∑
l∈[L]

e
j2πl

(
m0α0
N0

+
m1α1
N1
−mL

)
.

(7)

Let us assume that for all m ∈ [L] and α, [m0,m1]T ∈ X ,

f̂(m) ,
1

L

∑
l∈[L]

e
j2πl

(
m0α0
N0

+
m1α1
N1
−mL

)
∈ {0, 1}. (8)

This assumption holds when m0α0

N0
+ m1α1

N1
− m

L is multiple of
1/L, which can be expressed as[

L

N0
m0α0 +

L

N1
m1α1

]
L

= m. (9)

It is clear that L = LCM(N0, N1) satisfies (9), since
L/N0, L/N1 are integers. Moreover, LCM(N0, N1) is the
minimum length of a line that satisfies (9) for arbitrary
α, [m0,m1]T ∈ X ; this can be proved using contradiction
in the following.

Assume that L < LCM(N0, N1), then at least either
L/N0 or L/N1 is not an integer. Without loss of gener-
ality, we assume that L

N0
/∈ Z, then the right side of (9)

equals [L/N0]L /∈ [L] for m0 = 1, α0 = 1,m1 = 0,
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which is contradictory to the premise that (9) holds for any
[m0,m1]T , [α0, α1]T ∈ X .

When f̂(m) = 1, i.e.,[
m0α0

N0
+
m1α1

N1
− m

L

]
1

= 0, [m0,m1]T ∈ X , (10)

(7) can be simplified as

ŝ(α, τ ,m) =
∑

(a,ω)∈S

ae
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, m ∈ [L], (11)

which can be viewed as the 1-D projection of the 2-D
frequencies satisfying (10). The solutions of (10) with respect
to m are equally spaced points lie on line

E([α1L/N1,−α0L/N0]T , [m′0,m
′
1]T , l), l ∈ [L′], (12)

where [m′0,m
′
1]T ∈ X is one of the solutions of (10). The

line of (12) is orthogonal to the line of (4). The orthogo-
nality is necessary for the projected 2-D frequencies to be
exactly recoverable. Moreover, for certain choices of α, such
projection is uniform, and L′ = N/L. The uniformity of the
projection means that the DFT coefficients of N grid locations
of the N0 × N1-point DFT are uniformly projected to the L
entries of the L-point DFT along a line. Compared with a
non-uniform projection, the uniform projection creates more
1-sparse bins, which allows for fewer iterations of FPS-SFT
to exactly reconstruct the signal. The condition for orthogonal
and uniform projection is stated in the following lemma.

Lemma 1. (Condition for orthogonal and uniform projec-
tion): Consider the slice of the signal of (1), as defined in
(6), with L = LCM(N0, N1),α ∈ A ⊂ X , τ ∈ X where
A , {α : α ∈ X ; (α0, α1), (α0, L/N1), (α1, L/N0) are
co-prime pairs}. Then each entry of (11) is the projection
of samples of x̂(m),m ∈ Pm ⊂ X , where Pm,m ∈ [L]
contain sample locations satisfying (10). Moreover, |Pm| =
N/L,Pm ∩ Pm′ = ∅ for m 6= m′,m,m′ ∈ [L]. Thus,
x̂(m),m ∈ X is uniformly projected to (11).

Proof. Please see the proof in Appendix A-A. �

A slice satisfying Lemma 1 is the longest slice that
does not contain any duplicated samples. Thus, the L-point
DFT along such slice captures the maximum information
in the frequency domain with the least number of samples.
The set A defined in Lemma 1 contains a large num-
ber of elements, providing sufficient randomness for fre-
quency projection. For example, when N0 = N1 = 4,
A = {[1, 1]T , [1, 2]T , [1, 3]T , [2, 1]T , [2, 3]T , [3, 1]T , [3, 2]T }.
This means that |A||X | ≈ 44% of all the possible values of
α yields a uniform projection. When N0 = N1 = 256,
|A| = 39636 and |A||X | ≈ 60%.

Fig. 2 shows an example of a time domain line designed to
allow an orthogonal and uniform projection. The correspond-
ing frequency domain line satisfying (10) for m = 1 is also
shown; the two lines are orthogonal to each other and intercept
at [11, 1]T . The length of the time domain and the frequency
domain lines are 16, 8, respectively. Each line is composed of
several line segments due to the modulo operation.

0 5 10 15
0

1

2

3

4

5

6

7
Sample/DFT grid

Time domain line

Frequency domain line

Fig. 2. An orthogonal pair of time and frequency domain lines. N0 =
16, N1 = 8, L = 16,α = [1, 3]T , τ = [0, 0]T .

Remark 1. In the L-point DFT of samples along a time-
domain line with slope α1/α0, each entry represents a projec-
tion of the 2-D DFT along the line with slope −α0N1/(α1N0)
in the N0 × N1-point DFT domain, which is orthogonal to
the time-domain line. This is closely related to the Fourier
projection-slice theorem, which states that the Fourier trans-
form of a projection is a slice of the Fourier transform of
the projected object. While the classical projection is in the
time domain and the corresponding slice is in the frequency
domain, in the FPS-SFT case, the projection is in the DFT
domain and the corresponding slice is in the sample (discrete-
time) domain. The important difference between the Fourier
projection-slice theorem and FPS-SFT is that while the former
reconstructs the frequency domain of the signal via interpo-
lation of frequency-domain slices or reconstructs the time-
domain samples by solving a system of linear equations relat-
ing the DFT along projections and the time-domain samples,
the latter efficiently recovers the significant frequencies of the
signal directly based on the DFT of time-domain 1-D slices,
i.e., samples along lines; the latter involves lower complexity.

The efficiency of FPS-SFT is achieved by exploring the
sparsity nature of the signal in the frequency domain, which
is explained in the following.

We assume that signal is sparse in the frequency domain,
i.e., |S| = O(L). Then, with high probability, |ŝ(α, τ ,m)| =
|ŝ(α, τ0,m)| = |ŝ(α, τ1,m)| 6= 0, where τ0 , [[τ0 +
1]N0

, τ1]T , τ1 , [τ0, [τ1 + 1]N1
]T . Thus, the m-th bin is 1-

sparse, and it holds that

ŝ(α, τ ,m) = ae
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, (a,ω) ∈ S. (13)

In such case, the 2-D frequency, (a,ω), can be ‘decoded’ as

m0 =

[
N0

2π
φ

(
ŝ(α, τ0,m)

ŝ(α, τ ,m)

)]
N0

,

m1 =

[
N1

2π
φ

(
ŝ(α, τ1,m)

ŝ(α, τ ,m)

)]
N1

,

a = ŝ(α, τ ,m)e−j2π(m0τ0/N0+m1τ1/N1).

(14)

This is the OFDM-trick adapted to FPS-SFT; such design
requires sampling along three lines of the same slope but
different offsets, allowing the frequency components to be
decoded independently in each dimension.
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In order to recover all the frequencies in S efficiently,
each iteration of FPS-SFT adopts a random choice of line
slope from the set of A defined in Lemma 1. Furthermore,
the contribution of the recovered frequencies in the previous
iterations is removed via a construction-subtraction approach
so that the signal becomes sparser in future iterations. Specif-
ically, assuming that for the current iteration the line slope
and offset parameters are α, τ , respectively, the recovered 2-
D frequencies are projected into L frequency bins to construct
the DFT of the slice taken along the line of E(α, τ , l), l ∈ [L],

i.e., ŝr(α, τ ,m) ,
∑

(a,ω)∈Im ae
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, m ∈ [L],

where Im,m ∈ [L] represent the subsets of the recovered
frequencies, i.e., Im , {(a,ω) : ω satisfies (10)},m ∈ [L].
Next, the L-point inverse DFT (IDFT), multiplied by L,
is applied on ŝr(α, τ ,m),m ∈ [L], from which the slice,
sr(α, τ , l), l ∈ [L], due to the previously recovered fre-
quencies is constructed. Subsequently, the constructed slice is
subtracted from the slice of the current iteration. The pseudo-
code of the FPS-SFT algorithm can be found in Appendix
B.

C. Convergence of FPS-SFT

In this section, we investigate the convergence of FPS-SFT.
First, let us look at a special case, where N0, N1 are co-prime.

Theorem 1. (One-projection theorem of FPS-SFT): Con-
sider the signal model of (1), where N0, N1 are co-prime and
0 ≤ K ≤ N . The exact reconstruction of S via FPS-SFT only
takes one iteration.

Proof. Please see the proof in Appendix A-B. �

In the Fourier projection-slice theorem, a band-limited sig-
nal of finite size of N0 ×N0 can be exactly reconstructed by
a single projection in the time domain, which is equivalent
to a single slice in the frequency domain, provided that the
slope parameters, α0, α1, of the line, from which the slice
is evaluated, are co-prime and the equality α0m0 + α1m1 =
α0m

′
0 + α1m

′
1 holds only for m0 = m′0,m1 = m′1 when

m0,m
′
0,m1,m

′
1 ∈ [N0]; this is referred to as the one-

projection theorem [22]. Theorem 1 is the one-projection
theorem of FPS-SFT and provides the conditions for exact
recovery of the signal with arbitrary sparsity level using only
one projection in the frequency domain. Hence, the exact
recovery of the signal requires only one iteration of FPS-SFT.

Remark 2. The two one-projection theorems establish an
unambiguous one-to-one mapping from a 2-D sequence to
a 1-D sequence, respectively. Specifically, the classic one-
projection theorem establishes the mapping from the 2-D time-
domain samples to 1-D time-domain samples of the length of
N2

0 ; each entry of the DFT of the projection can be represented
by a weighted summation of the N2

0 time-domain samples.
Hence, the exact recovery of the time domain samples requires
inverting a linear equation system containing at least N2

0

equations. On the other hand, the one-projection theorem
of FPS-SFT establishes the one-to-one mapping from the
coefficients of the N0 ×N1-point DFT of the 2-D data to the
coefficients of the N -point DFT along a slice of the 2-D data;

such slice can be viewed as a rearrangement of the 2-D data
into a 1-D sequence of the same number of samples. The exact
recovery of the N0×N1-point DFT of the data is achieved by
the low-complexity OFDM-trick under the framework of FPS-
SFT. For N0, N1 are co-prime, the 2-D N0×N1-point DFT can
also be implement via an N -point DFT based on the Good-
Thomas mapping [23], where the unambiguous mapping is
achieved via the Chinese Remainder Theorem-based indexing.

Theorem 2. (Convergence of FPS-SFT): Consider the ap-
plication of FPS-SFT on the signal model of (1), where the
frequencies in S are assumed to be distributed uniformly at
random. Then, T , the expected number of iterations needed
to recover S in average cases can be found by evaluating the
following inequality ∑

i∈[T ]

Mi ≥ K, (15)

where Mi = QiKi is the number of the recovered frequencies
in the i-th iteration; Ki = K

∏
k∈[i](1 − Qk) with K0 = K

is the number of remaining frequencies that have not been
recovered in the i-th iteration; Qi = (1−Ki/N)N/L−1 is the
probability of a remaining significant frequency be projected
into a 1-sparse bin, and thus be recovered in the i-th iteration.

Proof. Please see the proof in Appendix A-C. �

Fig. 3 shows the relationship between T and K/L. When
K/L is a small number such as K/L = 3, T is small;
this results in a low “big-Oh” overhead [5] of the algorithm.
However, T grows super-linearly against K/L; such growth
rate depends on K/N , i.e., the greater the K/N , the larger the
growth rate. In a non-sparse scenario, i.e., K/N approaches
to 1, T is too large to applicable. Also, FPS-SFT can be fail
in a non-spare scenario (except that N0, N1 are co-prime), in
which none of projection creates a 1-sparse bin.
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Fig. 3. Number of iterations of FPS-SFT versus K/L.

Note that although in order to prove Theorem 2 we assume
that the frequency distribution in the signal model of (1) is
uniform, the numerical results show no significant difference
in the convergence of FPS-SFT when the frequencies are
clustered (see Section V-D for details). This is because the
multidimensional clustered frequencies are uniformly pro-
jected to one dimension due to the randomly generated line
slopes of the FPS-SFT.
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D. Complexity analysis of FPS-SFT

FPS-SFT executes T iterations in average cases; in the 2-
D case, each iteration uses 3L samples, since 3 L-length
slices, with L = LCM(N0, N1) are extracted in order to
decode the two frequency components of a 2-D frequency
(see (14)). Hence, the sample complexity of FPS-SFT is
O(3TL) = O(TL). The core processing of FPS-SFT is the L-
point 1-D DFT, which can be implemented by the FFT with the
computational complexity of O(L logL). The L-point IDFT
in the construction-subtraction procedure can also be imple-
mented by the FFT. In addition to the FFT, each iteration needs
to evaluate up to L frequencies. Hence the computational
complexity of FPS-SFT is O(T (L logL+L)) = O(TL logL).
If we let T equal to Tmax ∈ N, which is a sufficiently large
constant to allow the convergence of FPS-SFT in average cases
for a given signal size and a range of K, then, the sample
and computational complexity of FPS-SFT become O(L) and
O(L logL), respectively. For K = O(L), FPS-SFT achieves
the lowest sample and computational complexity, i.e., O(K)
and O(K logK), respectively, of all known SFT algorithms
[5], [7].

In general, in the D-D case, according to the multidi-
mensional extension [18], it is easy to see that the sample
and computational complexity of FPS-SFT are O(DK) and
O(DK log(DK)), respectively when K = O(L).

IV. RFPS-SFT: A ROBUST EXTENSION OF FPS-SFT

FPS-SFT is developed for the signal model of (1), where
the data is exactly sparse in the frequency domain and the
frequencies are assumed to be on the DFT grid. However,
in real-world applications, the data usually contains noise
and thus is only approximately sparse, i.e., dominated by a
few significant frequencies. Also, the significant frequencies
are typically off-grid. In what follows, we propose RFPS-
SFT for signals that follow the signal model of (2). RFPS-
SFT works within the framework of FPS-SFT and employs a
windowing technique to reduce frequency leakage due to the
off-grid frequencies and a voting-based frequency localization
to reduce the frequency decoding error due to noise. The
pseudo-code of the RFPS-SFT algorithm can be found in
Appendix B.

A. Windowing

To address the issue of off-grid frequencies, we apply
a window w(n),n ∈ X on the signal of (2). The PSR
of the window, ρw, is designed such that the side-lobes of
the strongest frequency are below the noise level, hence the
leakage of the significant frequencies can be neglected and the
sparsity of the signal in the frequency domain can be preserved
to some extent. Lemma 2 reflects the relationship between ρw
and the maximum SNR of the signal.

Lemma 2. (Window design for RFPS-SFT): Consider r̂(m),
which is the N0 × N1-point DFT of the windowed signal of
(2). Let W ∈ RN0×N1 be the matrix generated by the window

function of w(n),n ∈ X . The PSR of the window, ρw, should
be designed such that

ρw >
2‖W‖1√
π‖W‖2

√
SNRmax, (16)

Where SNRmax , a2max/σ
2
n.

Proof. Please see the proof in Appendix A-D. �

Note that while the window is designed for the entire data
cube, the windowing is applied only to the sampled locations,
which does not increase the sample complexity of RFPS-SFT.

B. Voting-based frequency decoding

When the signal is approximately sparse, the frequencies
decoded by (14) are not integers. Since we aim to recover
the gridded frequencies, i.e., S of (1), the recovered frequency
indices are rounded to the nearest integers. When the SNR
is low, the frequency decoding could result in false frequen-
cies; those false frequencies enter the future iterations and
generate more false frequencies. To suppress the effect of
false frequencies, motivated by the classical m-out-of-n radar
signal detector [24], RFPS-SFT adopts an nd-out-of-ns voting
procedure in each iteration. Specifically, within each iteration
of RFPS-SFT, ns sub-iterations are applied; each sub-iteration
adopts randomly generated line slope and offset parameters
and recovers a subset of frequencies, Si, i ∈ [ns]. Within
those frequency sets, a given frequency could be recovered
by n out of ns sub-iterations. For a true significant frequency,
n is typically larger than that of a false frequency, thus only
those frequencies with n ≥ nd are retained as the recovered
frequencies of the current iteration. When (ns, nd) is properly
designed, the false frequencies can be reduced significantly.

C. Lower bound of the probability of correct localization and
convergence of RFPS-SFT

The probability of decoding error is related to the SNR,
signal sparsity and also the parameters (ns, nd) of the RFPS-
SFT. In the following, we provide a lower bound for the
probability of correct localization of the significant frequencies
for each iteration of RFPS-SFT, from which one can study
the convergence of RFPS-SFT, i.e., the number of iterations
needed in order to recover all the significant frequencies with
sufficient SNR.

From Section II, a 2-D continuous-valued frequency
(a,ω) ∈ S′ of (2) is associated with a cluster of 2-D on-
grid frequencies S0 ⊆ S of (1). Let us assume that the fre-
quency (ad, 2π[m0/N0,m1/N1]T ) ∈ S0 with [m0,m1]T ∈ X
has the largest absolute amplitude among the frequencies in
S0. In addition, let us assume that the SNR of (a,ω) is
sufficiently high. Then the probability of correctly localizing
(ad, 2π[m0/N0,m1/N1]T ) in each iteration is lower bounded
by

Pd ,
ns∑

n′
d=nd

(
ns
n′d

)
(P1Pw)n

′
d(1− P1Pw)ns−n

′
d , (17)

where P1 , (1 − |S′′|/N)N/L−1 with L = LCM(N0, N1)
is the probability of a frequency in S′′ being projected to a
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1-sparse bin, and S′′ with S′′ ⊆ S represents the remaining
frequencies to be recovered in future iterations of RFPS-SFT;
Pw , (1−Pu)(1−Pv) is the lower bound of the probability
of correct localization for a 2-D frequency that is projected
into an 1-sparse bin in one sub-iteration of RFPS-SFT; Pu, Pv
are the upper bounds of the probability of localization er-
ror for the two frequency components, m0,m1, respectively,
which are defined as Pu ,

(
σp(1− f|an|(δu))

)2
, Pv ,(

σp(1− f|an|(δv))
)2
, where δu , aπ‖W‖1/(2NN0), δv ,

aπ‖W‖1/(2NN1), with W ∈ RN0×N1 the window that is
applied on the data; σp with 1

2 ≤ σp ≤ 1
2π is the parameter

determined by the phases of the error vectors contained in the
1-sparse bin; f|an|(x) is the cumulative distribution function
of the Rayleigh distribution, which is defined as f|an|(x) ,

1− e−x
2/(2σ2

a′n
)
, x > 0, where σ2

a′n
, σ2

n‖W‖22/(2NL).
The proof of (17) can be found in Appendix A-E. Essen-

tially, (17) represents the complementary cumulative binomial
probability resulted from the nd-out-of-ns voting procedure,
where the success probability of each experiment, i.e., localiz-
ing (ad, 2π[m0/N0,m1/N1]T ) in each sub-iteration of RFPS-
SFT is P1Pw. When K = |S| is known, (17) can be applied
to estimate the largest number of iterations (the upper bound)
of RFPS-SFT in order to recover all the frequencies in S since
the least number of recovered frequencies in each iteration can
be estimated by |S′′|Pd.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to verify
the theoretical findings related to the proposed FPS-SFT and
RFPS-SFT algorithms. Unless stated otherwise, the size of the
test data is set equal to N0 = N1 = 256. We simulate cases
when frequencies are uniformly distributed and when they are
clustered; for clustered cases, we consider clusters of 9 and 25
frequencies. The experimental results are averaged over 100
iterations of Monte Carlo simulation.

A. Comparison between FPS-SFT and SO-SFT

We compare the performance of SO-SFT and the proposed
FPS-SFT for the 2-D case. When N0 = N1, the line length, L,
of FPS-SFT equals N0, and each iteration of FPS-SFT uses
3N0 samples. We limit the maximum iterations to Tmax =
N/(3L) ≈ 85; which corresponds to roughly 100% samples
of the input data. Fig. 4 (a) shows the probability of exact
recovery versus the level of sparsity for FPS-SFT and SO-
SFT. When the signal is very sparse, i.e., K < N0/2, SO-SFT
has a high probability of exact recovery, while it fails when
the sparsity is moderately large, i.e., K > 2N0. Moreover,
SO-SFT only works for the scenario in which frequencies are
distributed uniformly, while it fails when there exists even a
single frequency cluster. On the contrary, FPS-SFT applies
to signals with a wide range of sparsity levels. For instance,
the success rate of FPS-SFT is approximate 97% when K =
5N0. In all cases, the success rates drop to 0 when K =
6N0, since in such case, the exact recovery needs roughly 100
iterations, which exceeds Tmax. Fig. 4 (b) shows the ratio of
samples used by the FPS-SFT and SO-SFT for exact recovery

to the total number of data sample N versus different sparsity
level. The figure shows that the sparser the signal, the fewer
samples are required by the FPS-SFT. For example, when K =
N0, only 5.9% of the signal samples are required for FPS-
SFT. SO-SFT only needs 1.6% of the signal samples in very
sparse scenarios, while it fails in less sparse or non-uniformly
distributed frequency cases. The performance of FPS-SFT is
similar for both uniformly-distributed and clustered frequency
cases at the same sparsity level; this is due to the randomized
projections that can effectively isolate the 2-D frequencies into
1-sparse bins, even when the signal is less sparse (K is large)
and the frequencies are clustered. Note that the supper linearity
of the growth of the ratio of samples against K is due to that
the growth of the number of iterations of FPS-SFT against K
is super-linear.
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Fig. 4. Comparison between FPS-SFT and SO-SFT. (a) Probability of exact
recovery versus sparsity level, K. (b) Ratio of samples (the averaged number
of samples used by FPS-SFT over N ) needed for exact recovery versus K.

B. Comparison between (R)FPS-SFT and the SFT of [12],
[13]

We compare (R)FPS-SFT and the SFT of [12], [13] in 2-D
cases. The main difference between the SFT of [12] and the
SFT of [13] is that the former takes the slices only from the
borders and the diagonals from the input data matrix, while the
latter, in addition to taking slices from the borders, also takes
slices along many lines with predefined slopes; this increases
the degrees of freedom of projecting 2-D frequencies onto 1-D
lines.

Fig. 5 (a) shows the frequency localization performance of
SFT of [12], [13] with respect to K in noiseless cases. Com-
pared to FPS-SFT, SFT of [12], [13] only successes in very
sparse scenarios. For instance, when K = 50, the best success
rate that the SFT of [13] can achieve is approximately 67%,
and it fails completely when K > 150, while the successful
rate of FPS-SFT is approximately 97% when K = 1280 (see
Fig. 4 (a)). One way to increase the success rate of SFT of [13]
is to use a larger T at the expense of increasing complexity.
However, the increasing of the success rate saturates when T
is greater than a certain value. For instance, the success rates
when T = 20 and T = 30 are similar.

Despite that the SFT of [12], [13] suffers from less sparse
signals, it is more robust to noise as compared to RFPS-SFT.
For instance, in Fig. 5 (b), one can see that when K < 30
the success rate of localization of the SFT of [13] for signal
with SNR equal to −5dB is similar to that of RSFT applied
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Fig. 5. Comparison between (R)FPS-SFT and SFT of [12], [13]. (a)
Localization success rate versus K in noiseless cases. (b) Localization success
rate versus K in noisy cases. Frequencies are on the grid.

on signals whose SNR is 9dB. When the SNR is greater than
11dB, the success rate of RFPS-SFT approaches to 100%.

The computation of the SFT of [12], [13] is significantly
slower as compared to that of (R)FPS-SFT, as the computation
complexity of the former is O((N + K3) logN) [13] in the
2-D case, which is even greater than that of the FFT.

C. Line slope of FPS-SFT

From Lemma 1, when the line slope parameters α are
randomly selected from the set A for each iteration of FPS-
SFT, the expected number of iterations for exact recovery can
be reduced as compared to choosing α to be arbitrary from
the set of X ; this is because as compared to the latter case, in
the former case, more 1-sparse bins are likely to be created in
each iteration due to the uniformity of projections. In Fig. 6
(a), we compare the number of iterations of FPS-SFT when α
is chosen from A and X , respectively. The former uses fewer
iterations to achieve an exact recovery for all the sparsity range
than that of the latter.

The high probability of exact recovery of FPS-SFT in less
sparse cases is due to the abundance of degrees of freedom in
frequency projection, which requires a sufficiently large |A|.
When N0 = N1 = 256, it is easy to verify that |A| = 39639.
Fig. 6 (b) shows the probability of exact recovery versus
sparsity when we use subsets of A of different support sizes.
The slope parameter set, A′, in each experiment, is created
by randomly picking a subset of A with a specific size of
support. The figure shows that the less sparse the signal
(the larger K), the larger size of A′ is needed to achieve
a high probability of exact recovery. Essentially, |A′| should
be large enough so that for each iteration of FPS-SFT, a
distinct slope can be obtained from A′ with high probability.
Compared to the uniformly distributed frequency cases, the
clustered frequency cases require a larger |A′|, since the latter
requires larger degrees of freedom than the former in order to
isolate the clustered frequencies by randomly projecting those
frequencies to distinct 1-sparse bins of the DFT along lines.

D. Convergence of FPS-SFT

We verify the expected number of iterations of FPS-SFT
in order to exactly recover the signal (see Theorem 2). The
relationship between the number of iterations, T , and sparsity
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Fig. 6. Effect of the line slope to the FPS-SFT. (a) Number of iterations of
exact recovery versus sparsity. (b) Effect of the size of the slope parameter
set (|A′|) to the exact recovery probability.

level, K, for different data sizes of the same number of
samples (i.e., different N0, N1 but the same N ) are shown
in Fig. 7 (a). As expected, for all cases, T increases as K
increases; the increasing rate in the cases of N0 = N1 = 256
is greater than the cases when N0 = 512, N1 = 128 and
N0 = 1024, N1 = 64. Also, the former case requires a large
number of iterations than the latter two cases. This is because
the line length, L, equals to 256, 512 and 1024 for the three
cases, respectively. A larger L leads to a higher probability
of creating more 1-sparse bins in each iteration of FPS-SFT,
which results in a faster convergence of the algorithm. The
clustered frequencies do not require larger T as compared
to the uniformly distributed frequencies, which shows that
FPS-SFT is efficient in solving non-uniformly distributed
frequencies. The number of samples used by FPS-SFT depends
both on T and L. Fig. 7 (b) shows that when the signal is very
sparse, i.e., K < 640, the equal-length case (N0 = N1) uses
the least number of samples, while for less sparse cases, the
number of samples required by FPS-SFT is less in the cases
when N0 = 512, N1 = 256 and N0 = 1024, N1 = 64 than
the case when N0 = 256, N1 = 256.
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Fig. 7. The convergence of FPS-SFT. (a) Number of iterations versus sparsity.
The predicted values are calculated via Theorem 2. (b) Ratio of samples versus
sparsity. The data under test has the same number of samples but different
size.

According to Theorem 1, the set S of the signal model
(1) can be reconstructed exactly based on only one iteration
of FPS-SFT when N0, N1 are co-prime. Fig. 8 provides the
visualization of the exact recovery using only one iteration of
FPS-SFT when N0 = 32, N1 = 31,K = 640. Note that this
scenario is not sparse.
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Fig. 8. Exact recovery of the signal by one iteration of FPS-SFT. N0 =
32, N1 = 31,K = 20N0.

E. Effect of windowing on frequency localization of RFPS-
SFT

For the data that contains off-grid frequencies, the PSR of
the window, ρw, should be sufficiently large in order to reduce
the side-lobes of the significant frequencies (see Lemma 2).
However, the larger the ρw, the wider the main-lobe of the
window, which results in larger frequency clusters in the DFT
domain and thus larger |S| of the signal model of (1), i.e., a
less sparse signal. Moreover, the larger the ρw, the smaller the
SNR of the windowed signal, which leads to larger frequency
localization error. Fig. 9 (a) shows the numerical evaluation
of windows with various ρw for signals of various SNRmax
and sparsity level, K ′ = |S′| (see (2)). According to (16), for
signals with SNRmax equal to 20dB and 30dB, the ρw of the
window should be larger than 56dB and 60dB, respectively.
In those two cases, the frequency localization success rate, i.e.,
the ratio of number of correctly localized frequencies to the
number of remaining significant frequencies in each iteration
of RFPS-SFT appears to be the highest when ρw equal to
60dB and 70dB, respectively. Fig. 9 (a) shows the success rate
of the first iteration of RFPS-SFT, which is the lowest success
rate of all the iterations. Fig. 9 (b) shows the percentage of the
recovered energy, defined as the ratio of the recovered signal
energy over the energy of the windowed original signal for
each iteration for a typical execution of RFPS-SFT. For the
on-grid cases, we apply the rectangular window and all the
signal energy can be recovered; for the off-grid cases, since
the Dolph-Chebyshev window of large PSR smears the peaks
of significant frequencies, a significant portion of signal energy
spreads across the frequency spectrum. As a result, RFPS-SFT
only recovers signal energies that concentrates in the main
lobes of significant frequencies.

Fig. 10 demonstrates localization of off-grid 2-D frequen-
cies of RFPS-SFT using Dolph-Chebyshev window for var-
ious values of ρw. A window with insufficient ρw leads to
miss detections and false alarms (see Fig. 10 (a)), while a
window with sufficiently large ρw yields good performance
in frequency localization, with a trade-off of causing larger
frequency cluster sizes (see Fig. 10 (b)).
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Fig. 9. Effect of windowing. (a) Frequency localization success rate of the first
iteration of RFPS-SFT versus window PSR. The Dolph-Chebyshev windows
with various PSR is applied. (ns, nd) = (3, 2). (b) Percentage of energy
recovered versus iteration.

0 50 100 150 200 250
0

50

100

150

200

250
DFT grid

Ground truth

Estimated

70 75 80 85 90
175

180

185

190

195

(a)

0 50 100 150 200 250
0

50

100

150

200

250
DFT grid

Ground truth

Estimated

70 75 80 85 90
175

180

185

190

195

(b)

Fig. 10. 2-D frequency recovery with different window. K′ = 10, σn =
1, amin = amax, SNRmax = 30dB, (ns, nd) = (3, 2), T = 30.
Dolph-Chebyshev windows with various PSR are adopted. The ground truth
represents S of (1), which relates to the window. (a) The PSR of the window
ρw = 45dB. (b) ρw = 70dB.

F. Effect of voting on frequency localization of RFPS-SFT

The nd-out-of-ns voting in frequency decoding procedure
of RFPS-SFT can significantly reduce the false alarm rate.
For a fixed ns, larger nd/ns results in smaller false alarm
rate. However, the smaller the false alarm rate, the larger the
number of the iterations required to recover all the significant
frequencies. Figs. 11 and Fig. 10 (b) show the examples of 2-D
frequency recovery using different values of (ns, nd). In Fig.
11 (a), we set (ns, nd) = (1, 1), which reduces the frequency
localization of RFPS-SFT to that of FPS-SFT, i.e., without
voting. In this case, one can see that many false frequencies
are generated. Figs. 11 (b), (c) show the frequency localization
result with (ns, nd) equal to (3, 1), (3, 3), respectively; while
the former generates large amount of false frequencies, the
latter exhibits miss detection, which implies the insufficiency
of number of iterations of RFPS-SFT used in this case. Fig.
10 (b) shows the ideal performance when (ns, nd) is designed
as (3, 2).

G. Effect of the SNR and the sparsity level on the convergence
of RFPS-SFT

The expected number of iterations of RFPS-SFT to recover
all the significant frequencies is affected by the SNR and
the sparsity level of the signal. A low SNR and less sparse
signal require a large number of iterations. As discussed in
Section IV-C, we are able to estimate the expected largest
number of iterations that recover all the significant frequencies
of sufficient SNR. Fig. 12 shows the predicted and measured
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Fig. 11. Effect of voting on 2-D frequency recovery. K′ = 10, σn =
1, amin = amax, SNRmax = 30dB. T = 30. Dolph-Chebyshev windows
with ρw = 70dB is applied. (a) (nd, ns) = (1, 1). (b) (nd, ns) = (3, 1).
(c) (nd, ns) = (3, 3).

number of iterations of RFPS-SFT for signals with various
SNR and sparsity level. The figure shows that the number of
iterations upper bounds are consistent with the measurements.
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Fig. 12. Effect of SNR and sparsity level on the convergence of RFPS-SFT.

VI. APPLICATION OF RFPS-SFT IN DBF AUTOMOTIVE
RADAR SIGNAL PROCESSING

With the rapid developments in the advanced driver-
assistance systems and self-driving vehicles, the automotive
radar plays an increasingly important role in providing multidi-
mensional information on the dynamic environment to the con-
trol unit of the vehicle. Traditional automotive radars measure
range and range rate (Doppler) of the targets including cars,
pedestrians and obstacles using FMCW. A DBF automotive
radar [25] can provide angular information both in azimuth
and elevation [26] of the targets, which is desirable in self-
driving applications.

A typical DBF automotive radar uses uniform linear array
as the receive array (see Fig. 13). Let us assume that the array

Rx BeamTx Beam

Tx

AD AD AD

DSP
DDS

Fig. 13. DBF automotive radar system structure. A broad beam is formed by
a transmit antenna, while multiple narrow beams are formed by the receive
array. The demodulated and digitized received signal is processed by a digital
signal processor (DSP), while the transmit waveform is generated by a direct
digital synthesizer (DDS).

has N2 half-wavelength-spaced elements. The radar transmits
FMCW waveform with a repetition interval of Tp. We also
assume that there exist K ′ targets in the radar coverage.
After de-chirping, sampling (N0 samples within an repetition
interval) and analog-to-digital conversion for both I and Q
channels, the received signal within N1 repetition interval can
be expressed as (2) [17], where the vectors are 3-dimensional
(3-D). The 3-D frequency ω = [ω0, ω1, ω2]T relates to the
target parameters as

ω0 = 2π(2ρr/c+ fd)/fs,

ω1 = 2πfdTp,

ω2 =

{
π sin θ, θ ∈ [0, 90◦)

2π + π sin θ, θ ∈ [−90◦, 0).

(18)

where ρ, c, fs, fd are the chirp rate, the speed of wave
propagation, sampling frequency, and the Doppler frequency,
respectively; the chirp rate is defined as the ratio of the
signal bandwidth and the repetition interval. Thus, the target
parameters are embedded in ω, which can be estimated via
RFPS-SFT when K ′ << N . The conventional processing
requires multidimensional FFT, which is still challenging to
real-time processing as the increasing of the data size due
to the increasing of array size as well as the increasing
of dimensionality (e.g., the DBF along both azimuth and
elevation).

We simulate the target reconstruction for a DBF automotive
radar via RFPS-SFT and compare with the FFT and RSFT
based methods. The main radar parameters are listed in Table
I; such radar configuration represents a typical long-range
DBF radar [17] except that we set the number of antenna
elements to be moderately large to provide a better angular
resolution performance. Fig. 14 shows the target reconstruction
of 3 radar targets via 3-D FFT, RSFT and RFPS-SFT. All
the three algorithms are able to reconstruct all the targets.
Compared to the FFT and RSFT, RFPS-SFT only requires
approximately 3% of data samples, which exhibits low sample
complexity. Also, the computation via RFPS-SFT is more
efficient than the RSFT and FFT based algorithms. However,
we note that RFPS-SFT requires larger SNR than the FFT
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TABLE I
RADAR PARAMETERS

Parameter Symbol Value
Center frequency fc 76GHz
Pulse bandwidth bw 200MHz

Pulse repetition time Tp 89us
Number of range bins N0 512

Number of PRI N1 256
Number of antenna elements N2 16

Maximum range Rmax 300m

and the RSFT based methods. In near range radar applications,
such as automotive radar, high SNR is relatively easy to obtain.
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Fig. 14. Radar target reconstruction via FFT, FPS-SFT and RSFT. (a)
Reconstruction of three targets. (b) Details of the frequency locations that
are reconstructed for one of the three targets.

VII. CONCLUSION

We have proposed FPS-SFT, a multidimensional sparse
Fourier transform that is inspired by the Fourier projection-
slice theorem. We have shown that FPS-SFT can handle
less sparse data in the frequency domain of non-uniformly
distributed frequencies while enjoys low sample and compu-
tational complexity. The relationship between FPS-SFT and
the Fourier projection-slice theorem has been discussed. Es-
pecially, the connections between the one-projection theorems
under the context of FPS-SFT and the Fourier projection-slice
theorem has been exploited. We have also extended FPS-SFT
to a robust version, i.e., RFPS-SFT which addresses noisy data
containing off-grid frequencies; such data arises from real-life
applications such as DFB automotive radar signals. We have
shown via simulation that RFPS-SFT based algorithm could
significantly reduce the sample and computational complexity
of DBF automotive radar signal processing. For instance, as
compared to the FFT and RSFT based methods, the proposed
RFPS-SFT based approach only requires 3% of data samples
to reconstruct the targets when a scenario only contains 3
targets.

APPENDIX A
COLLECTIONS OF PROOFS

A. Proof of Lemma 1

Proof. This proof is organized as follows. First, by exploring
the Bézout’s lemma [27], we prove that with the speci-
fied line parameters, i.e., L = LCM(N0, N1), [α0, α1]T ∈
A, [τ0, τ1]T ∈ X , each entry of (11) contains at least the

projection of the DFT coefficient from one frequency location
(m′0,m

′
1) in X , i.e., |Pm| > 0,m ∈ [L]. Next, we prove

that |Pm| ≥ N/L, followed by the proof of Pm ∩ Pm′ = ∅
for m 6= m′,m,m′ ∈ [L], and finally, we conclude that
|Pm| = N/L.

Let α′0 = α0L/N0, α′1 = α1L/N1. Since
(α0, α1), (α0, L/N1), (α1, L/N0), and (L/N0, L/N1)
are co-prime pairs due to L = LCM(N0, N1), it is obvious
that α′0, α

′
1 are also co-prime. According to the Bézout’s

lemma, there exist m0,m1 ∈ Z, such that

α′0m0 + α′1m1 = 1. (19)

By multiplying by m ∈ [L] the two sides of (19), we get
α′0mm0 +α′1mm1 = m, which, using the Euclidean division,
can be written as

α′0(m′0 + k0N0) + α′1(m′1 + k1N1) = m, (20)

where m′0 = [mm0]N0
,m′1 = [mm1]N1

and k0, k1 ∈ Z.
Since that

[α′0k0N0 + α′1k1N1]L = [L(α0k0 + α1k1)]L = 0, (21)

on taking modulo-L of the two sides of Eq. (20), we have

[α′0m
′
0 + α′1m

′
1]L = m, (22)

which is equivalent to (9). This means that there exists a
frequency location [m′0,m

′
1]T ∈ X , whose DFT coefficient

projects to ŝ(α, τ ,m), i.e., |Pm| > 0,m ∈ [L].
Next, let us explore the solution structure of (22). It is easy

to see that the frequency locations, [m′0+kα′1,m
′
1−kα′0]T , k ∈

Z, satisfies (22), i.e., [α′0(m′0 +kα′1) +α′1(m′1−kα′0)]L = m,
which can be written as [α′0([m′0+kα′1]N0

+k0N0)+α′1([m′1−
kα′0]N1 + k1N1)]L = m, where k0, k1 ∈ Z. Again, by
substituting (21), we have [α′0[m′0 + kα′1]N0 + α′1[m′1 −
kα′0]N1

]L = m. Hence, the DFT coefficients at frequency
locations [[m′0 + kα′1]N0

, [m′1 − kα′0]N1
]
T ∈ Pm ⊆ X , also

projects to ŝ(α, τ ,m); those frequencies locate along the
line with slope −α0N1/(α1N0) and offset [m′0,m

′
1]T ; such

frequency-domain line is orthogonal to the time-domain line
defined in (4).

Next, we prove that |Pm| ≥ N/L. Assume that
for k 6= k′, there exits two duplicated frequency
locations, i.e., [[m′0 + kα′1]N0

, [m′1 − kα′0]N1
]
T

=
[[m′0 + k′α′1]N0

, [m′1 − k′α′0]N1
]
T . It follows that

[kα′1]N0
= [k′α′1]N0

, [kα′0]N1
= [k′α′0]N1

, which can
be rewritten as kα′1 = k′α′1 + k0N0, kα

′
0 = k′α′0 + k1N1,

where k0, k1 ∈ Z. It is easy to conclude that k1/k0 = α0/α1.
Hence we have kα′1 = k′α′1 + iα1N0, kα

′
0 = k′α′0 + iα0N1,

where i ∈ Z, i 6= 0. Hence k − k′ = iN/L, which means
that the frequency location, [[m′0 + kα′1]N0

, [m′1 − kα′0]N1
]
T ,

repeats every N/L points. Hence, there exist at least
N/L frequency locations whose DFT values projecting to
ŝ(α, τ ,m), i.e., |Pm| ≥ N/L.

Next, we prove that Pm ∩ Pm′ = ∅ for m 6= m′,m,m′ ∈
[L]. Assume that [m0,m1]T ∈ Pm ∩ Pm′ , it can be seen
that [α′0m0 + α′1m1]L = m = m′, which is contradict with
m 6= m′. Hence Pm ∩ Pm′ = ∅.
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Finally, by combing Pm ∩ Pm′ = ∅, m ∈ [L], |Pm| ≥
N/L and |X | = N , we can conclude that |Pm| = N/L. This
completes the proof. �

B. Proof of Theorem 1

Proof. Since N0, N1 are co-prime, L = LCM(N0, N1) =
N0N1 = N . According to Lemma 1, each entry of the L-point
DFT contains exactly one distinct sample of x̂(m),m ∈ X .
Hence, x̂(m) can be recovered by only one iteration of FPS-
SFT. �

C. Proof of Theorem 2

Proof. For the i-th, 0 ≤ i ≤ T iteration of FPS-SFT, the
probability of any entry of x̂r(m),m ∈ X containing a
significant frequency is Ki/N , where x̂r(m),m ∈ X is the
N0×N1-point DFT of (1) after removal of the contribution of
the recovered frequencies in the previous i iterations; Ki is the
expected number of frequencies in x̂r(m),m ∈ X . According
to Lemma 1, each entry of the L-point DFT along the line,
i.e., ŝ(α, τ ,m),m ∈ [L] contains projection of N/L distinct
entries from x̂r(m),m ∈ X , where L = LCM(N0, N1).
Since the significant frequencies are assumed to be randomly
distributed, if the m-th entry of ŝ(α, τ ,m),m ∈ [L] is
significant, i.e., |ŝ(α, τ ,m)| > 0, then the probability of
such entry being 1-sparse is Qi = (1 − Ki/N)M , with
M = N/L−1. Hence, the expected number of the significant
frequencies being projected into 1-sparse bins and hence been
recovered in the i-th iteration is Mi = KiQi with K0 = K.
Ki is the expected number of the significant frequencies

that ‘survived’ in the previous i iterations. The probability of
non-recovery (surviving rate) for the i-th iteration is (1−Qi).
Hence Ki = K

∏
k∈[i](1−Qk).

The algorithm stops at the T -th iteration when all the K
significant frequencies are recovered, i.e.,

∑
i∈[T ]Mi ≥ K.

This completes the proof. �

D. Proof of Lemma 2

Proof. After windowing, the maximum absolute amplitude of
the strongest frequency in the N0×N1-DFT domain becomes

|âw| =
amax
N

∑
n∈X

w(n) =
‖W‖1
N

amax. (23)

The noise in the DFT domain becomes

n̂w(m) =
1

N

∑
n∈X

w(n)n(n), m , [m0,m1]T ∈ X . (24)

Note that since n̂w(m) is a weighted summation of i.i.d.
Gaussian noises, n̂w(m) is also i.i.d. Gaussian, i.e.,

n̂w(m) ∼ CN (0, σ‖W‖2/N). (25)

The noise absolute amplitude, i.e., |n̂w(m)| is i.i.d. Rayleigh
distributed with mean equal to σn̂′

w

√
π/2, where σn̂′

w
is the

standard deviation of the real or the imaginary component of
n̂w(m), and σn̂′

w
= σ‖W‖2/(

√
2N).

Since we need that the side-lobe level of the strongest
frequency being below the noise level, i.e.,

‖W‖1
Nρw

amax <

√
πσ‖W‖2

2N
, (26)

we can conclude that

ρw >
2‖W‖1√
π‖W‖2

√
SNRmax. (27)

�

E. Proof of (17)

Proof. We consider to decode the frequency location compo-
nent m0 from a 1-sparse bin. The decoding of m1 is similar.

With noise, a 1-sparse bin contains the projection of one
frequency (ad,ω) ∈ S and noise component an, hence (13)
becomes

ŝ(τ0, τ1) = ade
j2π(m0τ0/N0+m1τ1/N1) + an(τ0, τ1), (28)

where we have ignored the line slope parameters [α0, α1]T

and the bin number m for conciseness as they are irrelevant
to the decoding process.

The noise component an is due to the noise frequencies that
are projected to ŝ(τ0, τ1). According to Lemma 1, an(τ0, τ1)
is the summation of N/L samples of the N0×N1-point DFT
of the i.i.d noise samples, which can be expressed as

an(τ0, τ1) =
∑

m∈Pm

n̂w(m)e
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, (29)

where m , [m0,m1]T ; Pm , {[m0,m1]T : m0,m1 satisfy
(10)} represents the frequency set that projects to the m-th bin
of the DFT of the slice defined in (6) (see Lemma 1).

The same entry (the m-th bin) of the DFT along the other
line with delay [[τ0 + 1]N0 , τ1]T can be decomposed as

ŝ(τ0+1, τ1) = ade
j2π(m0(τ0+1)/N0+m1τ1/N1)+an(τ0+1, τ1).

(30)
The frequency location m0 is decoded as in (14). A graph-

ical representation of the components of (28) and (30) is
shown in Fig. 15, from where one can see that the angular
error φe changes with the rotation of the noise components
an(τ0, τ1), an(τ0 + 1, τ1). The angular error due to decoding,
i.e., ∆φ = |φ

(
ŝ(τ0+1,τ1)
ŝ(τ0,τ1)

)
−φ(ej2πm0/N0)| reaches maximum

when ŝ(τ0, τ1), ŝ(τ0+1, τ1) are out of phase and perpendicular
to an(τ0, τ1), an(τ0 +1, τ1), respectively, as shown in Fig. 15.
In such case, assuming that |ad| >> |an|, we can have the
following approximation

∆φ = 2|φe| = 2asin(|an|/|ad|) ≈ 2|an|/|ad|. (31)

Since the localization error ∆u due to ∆φ has to be less
than 1/2, i.e., ∆u = N0

2π ∆φ < 1
2 , we need that

|ad|
|an|

>
2N0

π
. (32)

In the following, we derive the distribution of |an| in order
to derive the decoding error probability.

From (25) and (29), an also follows a circularly symmetric
Gaussian distribution, i.e., an ∼ CN (0, σan), where σan =
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Fig. 15. OFDM-trick for the 1-sparse bin with noise.

σ‖W‖2/
√
NL. Hence |an| follows a Rayleigh distribution

whose cumulative distribution function can be expressed as
f|an|(x) = 1− e−x

2/(2σ2
a′n

)
, x > 0, where σ2

a′n
= σ2

an/2.
After windowing, in the DFT domain the highest peak of a

frequency with the amplitude of a becomes |ad| = ‖W‖1a/N .
By substituting into (32), the correct decoding needs that
|an| < δu , aπ‖W‖1/(2NN0). Hence, the decoding error
for m0 is upper bounded by

Pu =
(
σp(1− f|an|(δu))

)2
, (33)

where σp with 1/2 ≤ σp ≤ 1/(2π) represents the probability
of an(τ0, τ1), an(τ0 + 1, τ1) being out-of-phase; the lower
bound of σp represents to the probability of an(τ0, τ1), an(τ0+
1, τ1) pointing to the opposite direction and the upper bound
of σp represents an(τ0, τ1), an(τ0 + 1, τ1) pointing to the
opposite direction and perpendicular to ŝ(τ0, τ1), ŝ(τ0+1, τ1),
respectively, as shown in Fig. 15.

Similarly, the decoding error for m1 is upper bounded as
Pv =

(
σp(1− f|an|(δv))

)2
, where δv , aπ‖W‖1/(2NN1).

Hence the lower bound of the probability of correct decoding
of [m0,m1]T that projects to a 1-sparse bin is

Pw = (1− Pu)(1− Pv). (34)

Next, the probability of a frequency being project to a 1-
sparse bin is determined by

P1 , (1− |S′′|/N)N/L−1, (35)

where L = LCM(N0, N1); S′′ is the set of remaining
frequencies in the signal in each iteration of RFPS-SFT.

The success probability of the nd-out-of-ns voting decoding
procedure can be expressed as the complementary cumulative
binomial probability of (17), whose success probability of
each experiment, i.e., localizing (ad,ω) in each sub-iteration
is P1Pw. This completes the proof. �

APPENDIX B
PSEUDO-CODE OF (R)FPS-SFT

The pseudo-code of RFPS-SFT is shown in Algorithm 1.
The input and output of the algorithm are following.
Input: Input signal function r(n),n ∈ X ; window function
w(n); data length for the the two dimensions N0, N1; number
of iterations T; the threshold of detecting significant frequen-
cies in a slice ε; the threshold for 1-sparsity detection γ;

parameters of nd-out-of-ns detection.
Output: the set S containing all the significant frequencies.

Note that the line length L and the set of slope parameters,
A, can be precomputed for efficiency. FPS-SFT can be viewed
as a special case of RFPS-SFT, where the input signal is (1);
the window is the rectangular window; and ε = 0, γ = 0, nd =
ns = 1.
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Algorithm 1 (R)FPS-SFT algorithm
1: procedure RFPS-SFT(r, w,N0, N1, T, ε, γ, nd, ns)
2: L← LCM(N0,N1)
3: Compute the set of A defined in Lemma 1
4: S← ∅
5: for t ← 1 to T do
6: S′ ← SFT-INNER (r, w,N0, N1,S, L, ε, γ, nd, ns)
7: S← S ∪ S′
8: end for
9: return S

10: end procedure
1: procedure SFT-INNER(r, w,N0, N1, Im, L, ε, γ, nd, ns)
2: S,S′ ← ∅
3: O(ω)← 0,ω ∈ X . Number of detection for a same

location
4: for i ← 1 to ns do
5: Choose α uniformly random from A
6: Choose τ uniformly random from X
7: S0 ← SLICING (y, w,N0, N1, Im, L, ε,α, τ )
8: S1 ← SLICING (y, w,N0, N1, Im, L, ε,α, τ0)
9: S2 ← SLICING (y, w,N0, N1, Im, L, ε,α, τ1)

10: for (m, ŝ0) ∈ S0, (m, ŝ1) ∈ S1, (m, ŝ2) ∈ S2 do
11: if Var(|̂s0|, |̂s1|, |̂s2|) < γ then . 1-sparse
12: Decoding (a,ω) according to (14)
13: S′ ← S′ ∪ (a,ω), O(ω)← O(ω) + 1
14: end if
15: end for
16: end for
17: for (a,ω) ∈ S′ do
18: if O(ω) ≥ nd then
19: S← S ∪ (a,ω)
20: end if
21: end for
22: return S
23: end procedure
1: procedure SLICING(y, w,N0, N1, Im, L, ε,α, τ )
2: S← ∅
3: s(l)← y([α0l + τ0]N0

, [α1l + τ1]N1
), l ∈ [L]

4: w(l)← w([α0l + τ0]N0
, [α1l + τ1]N1

), l ∈ [L]
5: sw(l)← s(l) ∗ w(l), l ∈ [L]
6: sr(l)← CONSTRUCTION(Im,N0,N1,α, τ ,L)
7: d(l)← sw(l)− sr(l)
8: d̂(l)← 1

LDFT(d(l))

9: S← {(l, d̂(l)) : |d̂(l)| > ε}
10: return S
11: end procedure

1: procedure CONSTRUCTION(Im, N0, N1,α, τ , L)
2: ŝr(m)← 0,m ∈ [L]
3: for (a,ω) ∈ Im do
4: a′ ← aej2π(uτ0/N0+vτ1/N1)

5: m = [α0uL/N0 + α1vL/N1]L
6: ŝr(m) = ŝr(m) + a′

7: end for
8: sr(l)← L IDFT(ŝr(m)) . Inverse DFT
9: return sr(l), l ∈ [L]

10: end procedure
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