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Abstract—We propose a new automotive radar architecture
that achieves high resolution in range, range rate, azimuth and
elevation angles, while requiring smaller antenna aperture and
fewer reception channels as compared to conventional digital
beamforming planar arrays. This is achieved by leveraging
two orthogonally-placed digital beamforming arrays using the
frequency modulation continuous waveform. The high resolution
range-Doppler images generated by azimuth and elevation beams
of the two arrays isolate each physical scatterer, thus, the azimuth
and elevation angles can be precisely measured. To match the
measurements of an object from azimuth and elevation beams,
a deep learning based beam matching method is proposed,
which converts the beam matching problem into an image patch
matching problem in the range-Doppler domain. Furthermore,
a new radar resource management algorithm is proposed, which
schedules radar jobs by their time urgency as well as beam
locations. Jobs falls into the same beams are scheduled together
to optimally use the radar time resource and also reduces the
computation introduced by the beam matching procedure. The
advantage of the proposed radar is demonstrated by simulations.

Index Terms—Automotive radar, deep learning, radar resource
management

I. INTRODUCTION

Automotive radars play an increasingly important role in
self-driving vehicle applications. As compared with other
sensors, such as lidar and camera, radars are less affected
by adverse weather conditions. In addition, radars provide
4-dimensional (4-D) measurements, i.e., range, range rate,
azimuth and elevation angles, which contain rich information
of targets; this is very important in perception applications.
However, while the state-of-the-art automotive radars (see
description in the following), achieve high range and range
rate resolution, their angular resolution is lower as compared
to lidars. This is one of the main limitations of the current
automotive radars [1].

The basic architecture of modern beamforming automotive
radars [2] is composed of a transmit antenna, and a reception
uniform linear array (ULA) with digitized channels. The
transmit antenna forms a broad beam patten, which covers
a large FOV, while the reception array forms multiple beams
simultaneously, covering the same FOV of the transit beam
patten. The angular resolution is determined by the beamwidth
of the reception array, which is fundamentally limited by the
antenna aperture. The larger the aperture, the narrower the

beamwidth. Also, for non-ambiguous angular measurements
in a large FOV, the array elements must be closely spaced. The
largest FOV of non-ambiguous angle measurement that a ULA
can achieve is ± arcsin( λ2d ), λ

2d ∈ (0, 1], where λ and d are
the wavelength and element-wise spacing, respectively. Hence,
the half-wavelength spacing, i.e., d = 0.5λ results into the
largest FOV, i.e, ±90◦ [2]. The higher the angular resolution
and the larger the FOV, the greater the number of channels are
required. For instance, to achieve 3◦ resolution within an FOV
of ±60◦ requires approximately 40 channels for a 77GHz
radar. It is even harder to have both high angular resolution in
azimuth and elevation while covering a large FOV. In that case,
a planar array of NaNe channels is required, where Na, Ne are
the number of channels in azimuth and elevation, respectively;
this is not realistic for the automotive radar application, where
the hardware and cost are highly constrained.

One way to achieve simultaneous azimuth and elevation
angle measurements and also savings in the number of chan-
nels is to leverage two linear, orthogonally placed arrays [3]–
[5]. Compared to the planar array that uses NaNe reception
channels, the two orthogonal linear arrays only have Na+Ne
channels. However, to form thin fan beams either in azimuth
or in elevation for a large FOV, the number of channels
should still be large. To reduce the number of channels, in
[4], the ESPRIT super-resolution algorithm is adopted for an
orthogonal-array system which only has 4 channels in each
array. However, ESPRIT requires higher SNR and is less
robust to noise as compared to conventional beamforming.
Moreover, [4] does not address the association problem related
to the array architecture. Specifically, the measurements of
the two arrays should be associated to the same scatterers to
form a joint measurement. This is not a trivial task when the
number of scatterers to associate is large. For high resolution
radar, each target is represented as a extended target that is
composed of a large number of scatterers. Thus, there are
a large volume of scatterers existing in both azimuth and
elevation beams and it is challenging to match the azimuth and
elevation measurement for each scatterer. In [5], a geometric
matching based association algorithm is proposed to match
the measurements from azimuth and elevation beams; such
method constructs two sets of 3-dimensional locations of
a scatterer in the Cartesian coordinate from the range and
angular measurements of the two arrays, then, the matching is



determined by the Euclidean distance of the two locations.
Such matching method requires that only a few scatterers
existing at a same range ring, otherwise, the pairwise match-
ing is computationally infeasible. This is not applicable for
high resolution automotive radar in a dense environment.
Hence, reducing the number of channels and addressing the
measurement association in a dense environment with low
computational complexity in the orthogonal array architecture
remain an open problem.

In this work, to address the aforementioned problem, we
propose a new 2-dimensional (2-D) beamforming automotive
radar, which, based on a small number of reception channels
achieves high resolution measurement in range, rang rate,
azimuth and elevation angles in a dense environment. The
proposed radar employs two orthogonally-placed, collocated
ULAs with Na and Ne channels in azimuth and elevation,
respectively. Unlike the orthogonal arrays in [3] and [4] that
achieve high resolution in the angular domain directly either
via a large aperture or resorting to high-resolution algorithm
such as ESPRIT, here, we take a two-step approach to resolve
angles indirectly, which lends itself to a much smaller aperture
and more robust angular measurement. The two-step approach
is following. First, a coarse angular measurement is obtained
by forming Na and Ne fat beams in azimuth and elevation,
respectively. Next, within each beam, a finer angular resolution
is achieved by leveraging the high-resolution range-Doppler
images (RDIs) generated by the frequency modulation con-
tinuous waveform (FMCW). Owning to the large-bandwidth,
long-time coherent processing FMCW, each pixel of the RDIs
is highly likely to represent a single scatterer from an object.
Subsequently, the azimuth and elevation angle of scatterers
can be precisely measured using the monopulse technique [6],
which is more robust to noise as compared with the ESPRIT
algorithm applied in [4].

The high resolution RDI not only helps to resolve angles,
but also leads to a novel approach of measurement association,
which is described in the following. To match the azimuth
and elevation beams that cover the same objects, we propose
a deep learning based approach. The main idea here is that
the range-Doppler signature (patten) of the same object at
the same time, corresponding to the two beams generated by
the two arrays, should be similar. Hence, the beam matching
problem is converted into an image patch matching problem
in the range-Doppler domain. State-of-the-art image patch
matching leverages the convolutional neural networks (CNN)
[7]; specifically, the so-called “Siamese-net” [8] is employed to
identify the similar or dissimilar image pattens. The Siamese-
net is composed of a pair of identical, shared-weights CNN.
During the training, the network is fed into pairs of matched
and non-matched image patches, which contain similar and
dissimilar pattens, respectively. The two CNNs convert the
input image patches to feature vectors; the Euclidean distance
of the two feature vectors depends on the similarity of the
pattens contained in the image pairs. After training, such
neuron-network can generalize to unseen pattens, which is
excellent for the beam matching application. Compared to

the point-to-point association approach of [5] that works in a
sparse scenario or within a narrow beam, the proposed patten-
based matching approach works for matching two broad beams
that contain dense points.

The beam matching processing could be computationally
heavy in a dense environment. In the worst case, each search
frame would generate NaNeP matching pairs, where P is
the number of patches in each RDI. In order to reduce the
computation and optimally utilize the radar resource of the
proposed radar architecture, we introduce a radar resource
management method for the proposed radar architecture. Radar
resource management techniques are widely used in phased
array radars with narrow beamwidth, whose FOV is covered
by different beams in a time sharing manner. Such time-
sharing scheme is scheduled by a resource manager. A popular
scheduling algorithm implemented in real-life radar systems
is the time-balanced algorithm [9]; the algorithm considers
the urgency of each radar job and guarantees that the more
urgent a job is, the higher priority it obtains. Based on
the time-balanced algorithm, we propose a new scheduling
algorithm, which adapts to the proposed radar architecture.
Specifically, in addition to considering the urgency of jobs, the
proposed algorithm also considers the beam positions of the
tracking jobs; the tracking jobs which fall into the same beam
are grouped and executed together; this achieves significant
savings of radar time in dense environment. Moreover, since
the tracking jobs are already associated with the corresponding
azimuth and elevation beams, no beam matching computation
is required; this enables computational saving. The advantage
of the proposed radar is demonstrated by simulations.

II. SYSTEM MODEL

A. Target model
We model an extended target as a collection of inde-

pendent scatterers lying on a 3-D grid of a cuboid, i.e.,
Ω , {−L/2,−L/2 + ∆L, · · · , L/2} × {−W/2,−W/2 +
∆W, · · · ,W/2} × {−H/2,−H/2 + ∆H, · · · , H/2}, where
L,W,H are the length, width and height of the target, respec-
tively, and ∆L,∆W,∆H denotes the spacing of grid points
along the length, width and height dimensions, respectively.
The reflection coefficient of each scatterer is ρ , psρse

jφ,
where ps, ρs and φ are random variables, which are distributed
according to Bernoulli, Gaussian and Uniform distributions,
respectively. Such model reflects that each scatterer generates
the return with a probability of p for each look of the radar. A
target whose geometric center is located at xt = [xt, yt, zt]

T ∈
R3 can be expressed as

T (x− xt) =
∑

x0∈Ω

ρ(x0)δ(x− xt − x0), (1)

where x = [x, y, z]T ,x0 = [x0, y0, z0]T ,x,x0 ∈ R3; δ(·) is
the unit impulse function. We also assume that the velocity of
the target center is v = [vx, vy, vz]

T ∈ R3. Assuming that the
radar location is at the origin and its velocity is 0, the radial
velocity of each target scatterer with respect to the radar is

v(x0) = vT (xt + x0)/‖xt + x0‖, x0 ∈ Ω, (2)



where (·)T denotes for the transpose, and ‖ · ‖ is the l2 norm.
The range, azimuth and elevation angle of each scatterer are

calculated as follows
r(x0) = ‖xt + x0‖,

φa(x0) = arctan(
yt + y0

xt + x0
),

φe(x0) = arcsin ((zt + z0)/r(x0)) , x0 ∈ Ω.

(3)

B. Radar architecture

The proposed radar architecture is illustrated in Fig. 1
(a). The radar contains a transmission antenna and a pair of
reception antenna arrays, which are two orthogonally placed
ULAs. The two arrays are named as azimuth and elevation
array, and have Na, Ne elements, respectively. The transmit
antenna forms a wide beam patten, which covers the FOV of
the radar, while the azimuth and elevation arrays form Na, Ne
beams in azimuth and elevation, respectively. Each reception
channel is mixed with a coupled signal from the transmitter
to de-chirp the received FMCW signal. The digitized received
signal is processed by the processing and control unit (PCU).
The arrays of the radar are to cover a large FOV in azimuth,
e.g., ±60◦ and a smaller FOV in elevation, e.g., 30◦. The beam
patten corresponding to such design is illustrated in Fig. 1 (b).
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Fig. 1. The proposed radar architecture. (a) Radar architecture. (b) Beam
positions. The radar forms Na, Ne (Na = Ne = 4) beams in azimuth and
elevation, respective.

C. Signal model

Based on the target model and the radar architecture, for a
single extended target, after demodulation, the received signal
for the uth, u ∈ [Na] azimuth channel of the pth, p ∈ [P ]
pulse can be expressed as [2]

su(t) =
∑

x0∈Ω

ρ(x0)ej2π(fr(x0)t+pTfd(x0)+ida sin(φa)/λ), (4)

where t ∈ (0, T ), and T is the pulse repetition interval.
fr(x0) is the frequency related to r(x0); fd = 2v(x0)/λ is
the Doppler frequency, and da is the element-wise spacing of
the azimuth array. We use [X] to denote the integer set of
{0, . . . , X − 1}.

In general, when multiple targets are present, the received
signal can be expressed as the superposition of the signal
generated by each target and noise. The signal received

from the elevation array takes a similar form. Classic signal
processing extracts target parameters, i.e., range, range rate
and angle by applying discrete Fourier transform (DFT) to the
digitized signal in each dimension [2], however, the closely
spaced scatterers are not resolvable in the angular domain.
Also, how to associate the measurements of the two arrays
is challenging for a large number of scatterers. In the next
section, we propose the unique signal processing method to
address those problems.

III. SIGNAL AND DATA PROCESSING

A. Overview

The overview of the signal and data processing of the
proposed radar is shown in Fig. 2. Upon reception of the
signal from the two arrays, digital beamforming is applied
to form azimuth and elevation beams as shown in Fig. 1
(b). Next, the RDI is computed for each beam using a 2-D
DFT. Subsequently, detection is applied on the RDIs generated
from each azimuth beam. A successful detection triggers the
beam matching procedure, which will be discussed in detail
in Section III-B. The matched azimuth and elevation angles
are subsequently measured using monopulse. Next, the 4-
D measurements of targets are forwarded to a multi-object,
extended target tracker [10], which proposes and maintains
tracking tasks. The resource manager is adopted to schedule
searching and tracking jobs; this is discussed in detail in
Section III-C.
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Fig. 2. Overview of signal and data processing.

B. Beam matching via deep learning

Matching the azimuth and elevation beams associated to the
same targets is not trivial especially in a dense environment.
In [5], the beam matching is applied on the scatterer-basis,
i.e., the association is between each range-angle pairs of
measurements from the azimuth and elevation arrays. This
approach is not computational feasible in scenarios where the
number of measurements is large.

The same target has a similar patten in the RDI of the corre-
sponding azimuth and elevation beams, hence, it is possible to
match the beams based on pattens rather than measurements
of each scatterer. While similar, the range-Doppler pattens of
a target in different beams are not exactly the same, due to
different FOV of the azimuth and elevation beam, and different
SNR of different channels. We take a deep learning based
approach to address those challenges. Specifically, we adopt



CNN to match targets from different azimuth and elevation
channels based on range-Doppler patches generated from
different azimuth and elevation beams. We call this as Beam
Matching Net (BMN). The overall structure of the BMN is
shown in Fig. 3 (a).
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Fig. 3. The beam matching net. (a) Beam matching net. (b) Siamese net.

The goal of BMN is to match targets detected in any
azimuth beam to those detected in the elevation beams. To
achieve this, the RDI of the uth, u ∈ [Na] azimuth beam is
divided into p×q patches; the size of each patch is R/p×D/q,
where R ×D is the size of the RDI. Detection is applied to
each patch. The detection can be implemented by comparing
the energy of a patch to a predefined threshold. If targets are
detected in the (i, k)th, i ∈ [p], k ∈ [q] patch of the uth
azimuth beam, such image patch is forwarded to a CNN to
extract a feature vector denoted as fui,k. Meanwhile, the (i, k)th
image patch of each elevation channel is forwarded to the same
CNN, which outputs Ne feature vectors, i.e., gvi,k, v ∈ [Ne].
Next, the Euclidean distance between fui,k and gvi,k, v ∈ [Ne]
is computed; the elevation channel corresponding to the min-
imum distance is the matched channel, i.e.,

vm = argminv∈[Ne] = ‖fui,k − gvi,k‖. (5)

The design of the CNN in BMN is based on the LeNet
architecture [11], which is composed of cascade of multiple
convolutional layers followed by pooling layers. Several fully
connected layers are appended, which outputs a feature vector.
To adapt LeNet in our application, we change the input layer
as R/p×D/q and the output layer as a 64-dimensional vector.

The proposed BMN needs to identify the same and different
range-Doppler pattens. In computer vision problems, such
patten matching problem is often addressed by the Siamese-
net (see Fig. 3 (b)) [12]. The Siamese net is composed of
a pair of identical weight-sharing feature extraction CNNs
(feature net). The input of the feature nets are pairs of image
patches, containing identical or different pattens. In training,
the contrastive loss [12] is used to enforce the feature net
to output similar features for identical pattens and different
features for different pattens. After training, the Siamese net
can generalize to unseen pattens.

C. Resource management

The beam matching processing could be computational
heavy in a dense environment. In the worst case, each frame
covering the whole FOV would generate NaNeP matching
pairs, where P is number of patches in each RDI. In order to
reduce the computation of the proposed radar architecture and
optimally utilize the radar resource, we introduce the radar
resource management to optimally schedule radar jobs in the
processing.

The proposed scheduling algorithm shown in Fig. 4 is an
extension of the time-balanced scheduling algorithm, which
is adapted to the proposed radar architecture. Time-balanced
scheduling algorithm prioritizes the radar jobs based on their
urgency, i.e., the more urgent a job, the higher priority it
obtains. The urgency of a radar job is characterized by the
time-balance, i.e., tb, tb ∈ Z. When a job is proposed, such
job is not time-ready, and tb is set to be a negative value; as
the time elapses, tb increases. If tb ≥ 0, such job is time-ready
and requires to execute as soon as possible. Here, in addition
to considering the urgency of jobs, the track locations are also
taken into account. Specifically, the tracks that fall into the
same azimuth and elevation beams are grouped together; those
tracks can be updated by a single tracking job, which saves
radar time as compared to updating each track individually.
Moreover, since tracking jobs are already associated to specific
azimuth and elevation beams, no beam matching procedure is
required; this results into a significant computational saving.
To save radar time and computation, it is preferred to group
as many tracks as possible into the smallest number of beams.
Thus, the scheduler would prefer to delay the scheduling of
the time-ready tasks and gather as many time-ready tasks as
possible. However, the delay of scheduling of tracking tasks
would cause a lower updating rate. To save radar time and
computations while guaranteeing the update rate of tracking
jobs, we propose the following cost function

f = α
∑
i∈[J]

ti +B/J, (6)

where α ∈ (0, 1) is the weight of the cost introduced by the
time balance of J tracking jobs; the time balance of the ith
job is denoted as ti. The cost of the grouping is denoted
by B/J , where B is the number of groups (beams). In the
best case, all the tracking jobs can be grouped into a single
group; the cost of the grouping in such scenario is 1/J , while
in the worst case, all tracking jobs fall into individual non-
overlapping beams, and the cost of grouping is 1.

The scheduling algorithm shown in Fig. 4 is executed at a
fixed rate; such rate is the same as the radar frame update rate,
e.g. 20Hz. For each iteration, the procedure is summarized as
follows:

1) The tb of each tracking task is increased by 1.
2) If there exists tracking tasks whose tb is greater or

equal to 0, then the resource manager asks the tracker to
predict the jobs’ beam locations at the execution time.
Otherwise, the resource manager generates a search job.



3) Group all the tracking jobs that are requesting to execute
into B beams; each beam is an intersection of a azimuth
beam and a elevation beam.

4) Calculate the cost function based on (6). If the cost
is greater than the threshold C, then schedule those
tracking jobs. Otherwise, enter the next iteration.
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Fig. 4. The proposed resource management algorithm.

IV. SIMULATION

In this section, we verify the proposed radar architecture via
simulations. The parameters of the simulated radar are show in
Table I. The FOVs corresponding to the azimuth and elevation
arrays are ±60◦ and ±15◦, respectively.

TABLE I
RADAR PARAMETERS

Parameter Symbol Value
Center frequency fc 76GHz
Pulse bandwidth bw 1GHz

Pulse repetition time T 90us
Number of range bins Nr 512

Number of PRI P 256
Maximum range Rmax 100m

Number of azimuth antenna elements Na 4
Number of elevation antenna elements Ne 4
Element-wise spacing of azimuth array da 0.58λ
Element-wise spacing of elevation array de 1.93λ

A. RDI patch matching

We generate RDI patches corresponding to targets of various
shape, position and velocity at different SNR. The size of
each patch is 32 × 32. Those patches are grouped into pairs
of similar and dissimilar pattens. A pair of similar pattens
corresponds to the same target of different SNR. A training
sample contains a pair of patches and a label; the label is 0 and
1 for the pairs of similar and dissimilar pattens, respectively.
Examples of similar and dissimilar pairs are shown in Fig. 5.

We generated 5000 pairs of training samples and divided
them into a training set and an evaluation set, which contains
4000 and 1000 samples, respectively. The training set contains
7 different pattens, while the testing set contains 3 different
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Fig. 5. Examples of similar and dissimilar range-Doppler patches. (a) Similar
patch. (b) Dissimilar patch.

pattens which do not appear in the training set. We then use
the TensorFlow to train and test the model. After training,
we extract the 64-dimensional feature vectors from each RDI
patch in the training and the test set and project them into 2-D
vectors using principle component analysis. Fig. 6 shows the
visualization of the clustering of the 2-D feature vectors in the
training and testing set. One can see that the feature vectors
of the 7 different pattens are clustered, hence the Euclidean
distance within a same patten is small. Moreover, even though
the pattens in the testing set do not appear in the training set,
they are still clustered in the feature space, which shows the
generalization of the CNN. Such simulation is for the proof of
concept. To obtain a better performance in practical systems,
a much larger training set containing much more different
pattens is required.

(a) (b)

Fig. 6. Clustering of feature vectors from the train and test set. (a) Train. (b)
Test.

B. Target reconstruction

We simulate two targets whose locations in the spherical
coordinate, (r, φa, φe), are (5m, 20◦, 5◦), (20m, 25◦, 4◦), re-
spectively, while their velocities (vx, vy, vz) are (30, 5, 1)m/s,
(15, 5, 1)m/s, respectively. The size of each target is
(L,W,H) = (2, 2, 1)m and ∆L = ∆W = ∆H = 0.5m.
The azimuth-range and elevation-range measurements after
beam matching are shown in Figs. 7 (a), (c), and the positions
for each scatterers in the Cartesian coordinate are shown in
Figs. (b), (d). Compared with that of the elevation array, the
reconstructed positions in the Cartesian coordinate from the
azimuth array is closer to the ground truth. This is due to that
the Doppler spreading for each scatterer is more prominent
in azimuth than in elevation; as a result, the azimuth angel
measurement of each scatterer is more precise than that of the
elevation angle. The 3-D reconstruction is shown in Fig. 8.
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Fig. 7. Measurement and reconstruction from individual array. (a) Azimuth-
range measurement from the azimuth array. (b) Reconstruction in X-Y. (c)
Elevation-range measurement from the elevation array. (d) Reconstruction in
X-Z.
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C. Resource management

In this section, we show the performance of the proposed
resource management algorithm (see Fig. 4) and compare to
the conventional time-balanced algorithm by simulation. In
conventional time balance algorithm, the resource manager
schedules one job a time. In an automotive radar scene,
because the targets are much closer, and the beamwidths are
wider, each search job can create many track jobs in the
queue. This means that it may take a long time to clear the
queue even without any new tasks come in. On the other
hand, in the proposed scheduling algorithm, we propose to
combine the jobs that can fall in the same beam. This way,
the queue can be cleared much faster, i.e, compared to the time
balance algorithm, more tracking jobs can be scheduled by the
proposed algorithm in the same time frame. Fig. 9 shows that
with 37 tracking jobs in queue, the proposed algorithm can
finish scheduling these tracking jobs in 9 intervals compared

to the 37 intervals required by the conventional time balance
algorithm.
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V. CONCLUSION

We have proposed a new automotive radar for perception
applications in self-driving scenarios. Such radar achieves
high resolution measurements in range, range rate, azimuth
and elevation angles of extended targets by leveraging two
orthogonally-placed digital beamforming linear arrays of a few
channels. The deep learning based beam matching method and
a resource management algorithm have been developed for the
proposed radar architecture to address the beam association
and the related computational challenges.
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