
International Journal of Computer Vision manuscript No.
(will be inserted by the editor)

Synthesis of High-Quality Visible Faces from Polarimetric Thermal
Faces using Generative Adversarial Networks

He Zhang · Benjamin S. Riggan · Shuowen Hu · Nathaniel J. Short · Vishal M.
Patel

Received: date / Accepted: date

Abstract The large domain discrepancy between faces cap-
tured in polarimetric (or conventional) thermal and visible
domain makes cross-domain face verification a highly chal-
lenging problem for human examiners as well as computer
vision algorithms. Previous approaches utilize either a two-
step procedure (visible feature estimation and visible image
reconstruction) or an input-level fusion technique, where dif-
ferent Stokes images are concatenated and used as a multi-
channel input to synthesize the visible image given the cor-
responding polarimetric signatures. Although these methods
have yielded improvements, we argue that input-level fu-
sion alone may not be sufficient to realize the full poten-
tial of the available Stokes images. We propose a Generative
Adversarial Networks (GAN) based multi-stream feature-
level fusion technique to synthesize high-quality visible im-
ages from prolarimetric thermal images. The proposed net-
work consists of a generator sub-network, constructed us-
ing an encoder-decoder network based on dense residual
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blocks, and a multi-scale discriminator sub-network. The
generator network is trained by optimizing an adversarial
loss in addition to a perceptual loss and an identity preserv-
ing loss to enable photo realistic generation of visible im-
ages while preserving discriminative characteristics. An ex-
tended dataset consisting of polarimetric thermal facial sig-
natures of 111 subjects is also introduced. Multiple experi-
ments evaluated on different experimental protocols demon-
strate that the proposed method achieves state-of-the-art per-
formance. Code will be made available at
https://github.com/hezhangsprinter.

Keywords Face synthesis · heterogeneous face recogni-
tion · polarimetric data · thermal face recognition · deep
learning · generative adversarial networks.

1 Introduction

Face is one of the most widely used biometrics for person
recognition. Various face recognition systems have been de-
veloped over the last two decades. Recent advances in ma-
chine learning and computer vision methods have provided
robust frameworks that achieve significant gains in perfor-
mance of face recognition systems [54], [50], [2]. Deep learn-
ing methods, enabled by the vast improvements in process-
ing hardware coupled with the ubiquity of face data, have
led to significant improvements in face recognition accu-
racy, particularly in unconstrained face imagery [42], [3],
[43].

Even though these methods are able to address many
challenges and have even achieved human-expert level per-
formance on challenging databases such as the low-resolution,
pose variation and illumination variation to some extent [55],
[39], [2], [6], [42], they are specifically designed for recog-
nizing face images that are collected in the visible spectrum.
Hence, they often do not perform well on the face images
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captured from other domains such as thermal [46], [71],
[14], [15], infrared [24], [34] or millimeter wave [9], [10]
due to significant phenomenological differences as well as a
lack of sufficient training data.

Fig. 1: Examples of (a) visible-LWIR pair [44], (b) visible-polarimetric
pair [51], (c) visible-MWIR pair [44], and (d) visible-NIR pair [44].

Thermal imaging has been proposed for night-time and
low-light face recognition when external illumination is not
practical due to various collection considerations. The in-
frared spectrum can be divided into a reflection dominated
region consisting of the near infrared (NIR) and shortwave
infrared (SWIR) bands, and an emission dominated ther-
mal region consisting of the midwave infrared (MWIR) and
longwave infrared (LWIR) bands [45]. In particular, recent
works have been proposed to use the polarization-state in-
formation of thermal emissions to enhance the performance
of thermal face recognition [15], [46], [51], [71]. It has been
shown that polarimetric-thermal images capture geometric
and textural details of faces that are not present in the con-
ventional thermal facial imagery [51]. As a result, the use of
polarization-state information can improves cross-spectrum
recognition performance over using intensity-only informa-
tion from conventional thermal imagers.

Thermal face imagery, which can be acquired passively
at night, but are currently not maintained in biometric-enabled
watch lists, must be compared with visible-light face images
for interoperability with existing biometric face databases.
Distributional/domain differences between thermal and vis-
ible images makes thermal-to-visible face recognition very
challenging (see Figure 1). Various methods have been de-
veloped in the literature to bridge this gap for cross-domain
(i.e., heterogeneous) face recognition [48,14,49,45,18]. In
particular, methods that synthesize visible faces from ther-
mal facial signatures have gained traction in recent years
[46], [71]. One of the advantages of face synthesis is that
once the face images are synthesized in the visible domain,
any off-the-shelf face matching algorithm can be used to

match the synthesized image to the gallery of visible im-
ages.

A polarimetric signature/image is defined here as con-
sisting of three Stokes images as its three channels, analo-
gous to the RGB channels in visible color imagery. Previous
approaches utilize either a two-step procedure (visible fea-
ture estimation and visible image reconstruction) [46] or a
fusion technique where different Stokes images are concate-
nated and used as a multi-channel input [71] to synthesize
the visible image. Though these methods are able to effec-
tively synthesize photo-realistic visible face images, the re-
sults are still far from optimal. One possible reason lies in
that these methods concatenate the Stokes images into a sin-
gle input sample without any additional attempts to capture
multi-channel information inherently present in the different
Stokes (modalities) images from the thermal infrared band.
Hence, in order to efficiently leverage the multi-modal in-
formation provided by the polarimetric thermal images, we
propose a novel multi-stream feature-level fusion method
for synthesizing visible images from thermal domain using
recently proposed Generative Adversarial Networks [11].

The proposed GAN-based network consists of a gener-
ator, a discriminator sub-network and a deep guided sub-
network (see Figure 2). The generator is composed of a multi-
stream encoder-decoder network based on dense-residual blocks,
the discriminator is designed to capture features at multiple-
scales for discrimination and the deep guided sub-net aims
to guarantee that the encoded features contain geometric and
texture information to recover the visible face. To further en-
hance the network’s performance, it is guided by perceptual
loss and an identity preserving loss in addition to adversar-
ial loss. Once the face images are synthesized, any off-the-
shelf face recognition and verification networks trained on
the visible-only face data can be used for matching. Figure
3 illustrates the differences between visible and polarimet-
ric thermal images. In addition, this figure also presents the
photo-realistic and identity-preserving results obtained from
our proposed method.

In addition to developing a novel face synthesis network,
we also collected an extended dataset containing of visi-
ble and polarimetric facial signatures from 111 subjects. A
subset of this dataset consisting data from 60 subjects was
described in [15]. This extended polarimetric thermal fa-
cial dataset is available to computer vision and biometrics
researchers to facilitate the development of cross-spectrum
and multi-spectrum face recognition algorithms.

To summarize, this paper makes the following contribu-
tions.

1. A novel face synthesis framework based on GAN is pro-
posed which consists of a multi-stream generator and
multi-scale discriminator.

2. To embed the identity information into the objective func-
tion and make sure that the synthesized face images are
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Fig. 2: An overview of the proposed GAN-based multi-stream encoder-decoder network. The generator contains a multi-stream feature-level
fusion encoder-decoder network. In addition, a deep-guided subnet is stacked at the end of the encoding part. The discriminator is composed of a
multi-scale patch-discriminator structure.

photo-realistic, a refined loss function is proposed for
training the network.

3. An extended dataset consisting of visible and polarimet-
ric data from 111 subjects is collected.

4. Detailed experiments are conducted to demonstrate im-
provements in the synthesis results. Further, three abla-
tion studies are conducted to verify the effectiveness of
iterative synthesis and various loss function.

Compared to the previous approaches for polarimetric
thermal to visible face synthesis, this is a completely new
work and one of the first approaches that proposes to use
GANs for synthesizing high-quality visible faces from po-
larimetric thermal faces. Our previous work [71] also ad-
dresses the same problem but there are several notable dif-
ferences: 1) The newly proposed method includes a novel
multi-stream densely-connected network to transfer the po-
larimetric thermal facial signatures into the visible domain.
2) Feature-leavel fusion of different Stokes images is ex-
plored in this work to demonstrate the effectiveness of lever-
aging multiple polarimetric modalities for visible face syn-
thesis. 3) We introduce an extended dataset that includes 111
subjects. 4) A novel multi-scale discriminator is introduced

that leverages the information from different scales to decide
whether the given image is real or fake.

The paper is organized as follows. In Section 2, we re-
view related works and give a brief background on GANs
and polarimetric thermal imaging. Details of the proposed
multi-stream feature-level fusion method are discussed in
Section 3. In Section 4, we describe the extended polarimet-
ric thermal face dataset. Experiments and results are pre-
sented in Section 5 and Section 6 concludes the paper with
a brief summary and discussion.

2 Background and Related Work

In this section, we give a brief overview of polarimetric ther-
mal imaging and GANs. Then, we review some related works
on heterogeneous face recognition algorithms.

2.1 Polarimetric Thermal Imaging

Polarimetric thermal imaging uses advanced materials and
sensor technology to measure the polarization state of light.
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Polar S0 S1 S2 Proposed Target
Fig. 3: Sample results of the proposed method. (a) Input Polarimetric image. (b) Input S0 image. (c) Input S1 image. (d) Input S2 image (e)
Results from the proposed method, and (f) Target image.

While traditional imaging exploits the intensity of light, po-
larimetric imaging exploits the orientation of its oscillations.
Natural visible light exhibits no preferred polarization state.
If natural light is either transmitted across a boundary from
one medium to another, or is reflected by the boundary (i.e.,
the material is opaque), a preferential polarization state (usu-
ally linear) may occur.

This induced polarization change is a directional quan-
tity and is a function of the angle between the surface normal
and the transmitted/reflected ray. For example, unpolarized
sunlight reflecting off an air-water interface results in an in-
duced linear polarization state that is orthogonal to the plane
of reflection, as defined by the surface normal and the re-
flected ray. A similar phenomena exists when considering
light energy in the “thermal" infrared (IR) part of the spec-
trum, e.g., MidIR (3-5µm) and/or LWIR (8-12µm). For in-
duced polarization in the thermal IR, the radiation is treated
as either emitted and/or reflected from a surface boundary.
It is this interaction at the boundary that results in an in-
duced net linear polarization state, similar to situation seen
for visible light. By capturing this thermal radiance using an
IR polarimetric camera, one can exploit the additional polar-
ization based information and reconstruct a 3D surface from
a 2D polarimetric image.

Polarimetric imaging sensors capture polarization-state
information through optical filtering of light at different po-
larizations. This is traditionally done using a rotating ele-
ment [56] (i.e., division of time), but other approaches ex-
ist, such as micro-grid polarizers [56] (i.e., division of fo-
cal plane array). In essence, polarization-state information is

captured at four orientations, I0, I90, I45, and I135. The I0
and I90 measurements represent horizontal and vertical po-
larized light and I45 and I135 capture diagonally polarized
light. A stack of 2-D images captured using a polarimeter
is represented by Stokes images, as defined in [12], which
contain geometric and textural features, such as edges of
the nose and mouth as well as wrinkles. These Stokes im-
ages are illustrated in Figure 3 for three subjects with corre-
sponding visible-spectrum facial signatures. The S0 image
is a total intensity polarimetric image and is representative
of what a conventional thermal imager (i.e., without linear
polarizer) would capture. S1, and S2 illustrate the additional
details provided by polarimetric imaging. In this paper, we
refer to Polar as the three channel polarimetric image with
S0, S1 and S2 as the three channels.

2.2 Generative Adversarial Networks

Generative Adversarial Networks were first proposed by Good-
fellow et al. in [11] to synthesize realistic images by effec-
tively learning the distribution of the training images. The
authors adopted a game theoretic min-max optimization frame-
work to simultaneously train two models: a generative model,
G, and a discriminative model, D. Initially, the success of
GANs was limited as they were known to be unstable to
train, often resulting in artifacts in the synthesized images.
Radford et al. in [41] proposed Deep Convolutional GANs
(DCGANs) to address the issue of instability by including
a set of constraints on their network design. Another limit-
ing issue in GANs is that, there is no control on the modes
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of data being synthesized by the generator in case of these
unconditioned generative models. Mirza et al. [32] incorpo-
rated additional conditional information in the model, which
resulted in effective learning of the generator. The use of
conditioning variables for augmenting side information not
only increased the stability in learning but also improved
the descriptive power of the generator G [22]. Recently, re-
searchers have explored various aspects of GANs such as
training improvements [47] and use of task specific cost func-
tion [5]. Also, an alternative viewpoint for the discriminator
function is explored by Zhao et al. [75] where they deviate
from the traditional probabilistic interpretation of the dis-
criminator model. The objective function of a conditional
GAN is defined as follows

LcGAN (G,D) = Ex,y∼Pdata(x,y)[logD(x, y)]+

Ex∼Pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))],
(1)

where y, the output image, and x, the observed image, are
sampled from distribution Pdata(x, y) and they are distin-
guished by the discriminator, D. While for the generated
fakeG(x, z) sampled from distributions x ∼ Pdata(x), z ∼
pz(z) would like to fool D.

The success of GANs in synthesizing realistic images
has led researchers to explore the GAN framework for nu-
merous applications such as data augmentation [38], zero-
shot learning [76], image inpainting [66], image dehazing
[62,70,64], text-to-image translation [61], image-to-image
translation [19,73,40], texture synthesis [20], crowd-counting
[52] and generating outdoor scenes from attributes [22]. Isola
et al. [19] proposed a general method for image-to-image
translation using conditional adversar‘ial networks. Apart
from learning a mapping function, they argue that the net-
work also learns a loss function, eliminating the need for
specifying or designing a task specific loss function. Kara-
can et al. in [22] proposed a deep GAN conditioned on se-
mantic layout and scene attributes to synthesize realistic out-
door scene images under different conditions. Recently, Jetchev
et al. [20] proposed spatial GANs for texture synthesis. Dif-
ferent from traditional GANs, their input noise distribution
constitutes a whole spatial tensor instead of a vector, thus
enabling them to create architectures more suitable for tex-
ture synthesis.

2.3 Heterogeneous Face Recognition

Recently, there has been a growing number of approaches
that bridge existing modality gaps in order to perform het-
erogeneous face recognition. These approaches focused on
various scenarios of heterogeneous face recognition such
as infrared-to-visible [27,13,53], thermal-to-visible [48,45,
71,18,24], and sketch-to-visible [8,36] [57]. Fundamentally,
each approach seeks to either find a common latent subspace

in which corresponding faces from each domain are “close”
in terms of some distance and non-corresponding faces are
“far.” or synthesize photo-realistic visible face given its cor-
responding input modality.

Klare and Jain [25] proposed an approach using kernel
prototype similarities, where after geometric normalization
and image filtering (e.g., Difference of Gaussian, Center-
Surround Divisive Normalization [31], and Gaussian) and
local features extraction (e.g., multi-scale local binary pat-
terns, or MLBP, and scale invariant feature transform, or
SIFT), the intra-domain kernel similarities are computed be-
tween source (or target) domain images and all training im-
ages from the source (or target) domain. These intra-domain
kernel similarity, which are computed using the cosine ker-
nel, provide relational vectors for source and target domain
imagery to be compared, where the main idea is that the ker-
nel similarity between two source domain images should be
similar to the kernel similarity between two corresponding
target domain images.

Yi et al. [65] leverage the use of multi-modal Restricted
Boltzmann Machines (RBMs) [33] to learn a shared rep-
resentation, and for NIR-to-visible face recognition. Here,
they learn shared representation using the multi-modal RBMs
locally for each patch. However, since heterogeneity is only
addressed locally, they further reduce the modality gap by
performing Hetra-component analysis (HCA) [28] for the
holistic image representation. Hetero-component analysis is
based on the theory that most of the appearance differences
between imaging modalities are captured in the top eigen-
vectors. Therefore, a common representation is given by re-
moving the effects from the top eigenvectors. This was shown
to achieve excellent performance for NIR-to-visible face recog-
nition. However, it is unclear how well this would work for
an emissive infrared band, such LWIR, where facial signa-
tures are very different than in visible or NIR bands due to
phenomenology.

Riggan et al. [44] proposed coupled auto-associative net-
work for learning common representation between thermal
and visible face images. The authors optimize two sparse
auto-encoders jointly, such that (1) information within each
modality is preserved and (2) inter-domain representations
are similar for corresponding images. Although this approach
demonstrated some success and robustness, the constraint
to preserve information for the source domain is not a nec-
essary condition as long as discriminability is maintained
when learning common representation.

Hu et al. [14] applied a one-versus-all framework us-
ing partial least squares classifiers on Histogram of Oriented
Gradients (HOG) features. For each classifier, they intro-
duce the concept of adding cross-domain negative samples
(i.e., thermal samples from a different subject) for added ro-
bustness. Later, Riggan et al. [45] proposed the using of a
coupled neural network and a discriminative classifier for
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enhance conventional thermal-to-visible face recognition and
polarimetric thermal-to-visible framework.

While the described methods individually introduce cus-
tom approaches for reducing the modality gaps between two
imaging domains, there are two fundamental concerns: (1)
how to adjudicate matches when returned to an analyst, and
(2) how to leverage recent advances in visible spectrum face
recognition. Therefore, Riggan et al. [46] proposed a way to
synthesize a visible image from both conventional thermal
and polarimetric thermal. This approach used a convolution
neural network to extract features from a conventional or po-
larimetric thermal image and then mapped those features to
a corresponding visible representation using a deep percep-
tual mapping [30], where this representation in inverted back
to the imaging domain using the forward convolutional neu-
ral network model. One potential concern is the piece-wise
nature of this synthesis method. Later, built on the success of
generative adversarial networks [11], Zhang et al. [71] im-
proved the synthesis results by proposing an end-to-end con-
ditional generative adversarial network (CGAN) approach,
which is optimized via a newly introduced identity-preserving
loss, to synthesis a corresponding visible image given a ther-
mal image. This approach demonstrated results that were
photo-realistic and discriminative.

3 Proposed Method

As discussed earlier, a polarimetric sample consists of three
different Stokes images (S0, S1 and S2), where S0 repre-
sents the conventional thermal image and S1 and S2 repre-
sent the horizontal/vertical and diagonal polarization-state
information, respectively. Unlike traditional three-channel
RGB images where each channel contains different spectral
information, the S0, S1, S2 images contain different geomet-
ric and texture information. For example, as shown in the
first row of Figure 3, S0 is able to capture the mustache in-
formation, which is not captured in S1 and S2. On the other
hand, S0 does not capture some of the other texture and ge-
ometric details such as wrinkles and the shape of the mouth,
which are well-preserved in S1 and S2. In other words, the
Stokes images individually capture different facial features
and when combined together they provide complementary
information. Hence, it is important to fully utilize the infor-
mation from all three Stokes images to effectively synthesize
a visible face image.

Previous methods have attempted to utilize this infor-
mation by exploiting input level fusion, where three Stokes
images are concatenated together as a three-channel input
[46,71]. Even though the three-channel concatenation in the
input level is able to generate better visible face results by
bringing in the geometric and texture differences preserved
in these three modalities as compared with using just a sin-
gle Stokes image as input (eg. S0), the results are still far

from optimal [71]. A potential reason is that input level fu-
sion or mere concatenation of different Stokes images may
not be sufficient enough to exploit the different geometric
and texture information present in these modalities. 1. To
efficiently address this problems and generate better photo-
realistic visible face images, a multi-stream feature-level fu-
sion structure is proposed in this paper. Specifically, differ-
ent encoder structures are leveraged to encode each Stokes
image separately and then the embedded features from each
encoder are fused together via a fusion block for further vis-
ible face reconstruction (i.e. decoding).

Synthesizing photo-realistic visible images from polari-
metric images (or even any single Stokes image) is an ex-
tremely challenging problem due to information differences
caused by phenomenology between polarimetric thermal im-
ages and visible images. As shown in Figure 3, polarimet-
ric thermal images fail to capture fine details such as edges
and gradients as compared to visible images. Due to the ab-
sence of these sharp details in the polarimetric images, syn-
thesizing visible images from them requires joint modeling
of the images from these two domains. To efficiently lever-
age the training samples and guarantee better convergence
with less gradient vanishing for such joint modeling, a novel
dense residual structure is proposed in this paper. Further-
more, a multi-scale patch-discriminator is utilized to clas-
sify between real and synthesized images at multiple scales.
By performing the discrimination at multiple scales, we are
able to effectively leverage contextual information in the in-
put image, resulting in better high-frequency details in the
reconstructed image.

To summarize, we propose a multi-stream feature-level
fusion GAN structure (see Figure 2) which consists of the
following components:
(1) Multi-stream densely-connected encoder.
(2) Deep guidance sub-network.
(3) Single-stream dense residual decoder.
(4) Multi-scale discriminator.
In what follows, we describe these components in detail.

3.1 Multi-stream Feature-level Fusion Generator

The proposed feature-level fusion method is inspired by the
face dis-entangled representation work proposed by Peng et
al. and Tran et al. in [39,55,37], where the encoded fea-
ture representations are explicitly disentangled into sepa-
rate parts representing different facial priors such as iden-
tity, pose and gender. Rather than leveraging the supervised
label information to enforce the disentangling factor in the
embedded features, each encoder structure in the proposed

1 Input level fusion can be regarded as an extreme case for low-level
feature fusion, where low-level features (from shallow layers) often
preserve edge information rather than semantic mid-level or high-level
class-specific information [67].
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method inherently learns to characterize different geomet-
ric and texture information that is captured in the Stokes
images. This information is then combined with a residual
block-based fusion network, followed by a decoder network,
consisting of a dense network and a residual network, to re-
construct visible domain faces from the fused feature maps.
Furthermore, a deep-guided sub-network is leveraged at the
end of the encoding part to ensure that the encoded features
preserve geometric and texture information.

Multi-stream Densely-connected Encoding. The encoder
consists of three streams of sub-networks, with each sub-
network having the same structure. 2. Each stream processes
a particular input Stokes image. Basically, each stream is
composed of a convolutional layer with kernel size 4, stride
2 and zero-padding 1, rectified linear unit (ReLU) and a 2x2
max-pooling operator at the front followed by three level
dense-blocks [16] 3. Each layer Dj in a dense block can be
represented as

Dj = T (cat[D1, D2, ..., Dj−1]), (2)

where T (·) indicates the combination of Batch Normaliza-
tion (BN) [17], rectified linear unit (ReLU) and Convolution
operator. Figure 4 gives an overview of a single stream in
the multi-stream densely-connected encoding.

Fig. 4: Overview of a single stream in the multi-stream densely-
connected encoding part.

There are three levels of densely connected blocks where
each separate level contains 12, 16, or 24 dense-blocks. In
addition, there exist one transition down layer which is com-
posed of a 1×1 convolution layer followed by 2 × 2 av-
erage pooling between two contiguous dense blocks. All
the parameters in each stream in the encoder can be ini-
tialized using the pre-trained Dense-net 121 structure [16].
Each dense-block contains a 3 × 3 convolution layer with
ReLU and Batch normalization. In addition, the output of
each dense block is concatenated with the input of the cor-
responding dense block. Once we calculated features from
all three streams, we concatenate together from all three
branches along the depth (channel) dimension. Feature maps
from each of the three streams are of size C × H × W .

2 Weights are not shared among each stream.
3 Feature map size (width and height) in each level is same.

These feature maps are concatenated and are forwarded to
the residual-fusion block, which consists of a res-block with
1 × 1 convolution layer. Then, the output of the residual-
fusion block is regarded as the input for two different branches.
To guarantee that the learned features contain geometric and
textural facial information, a deep guidance sub-network [60]
is introduced at the end of the encoding part as one branch.
The deep guided sub-network is part of the network that is
branching out from the end of the encoder. This sub-network
is composed of a 1×1 convolution layer followed by the
non-linear function, Tanh. Hence, the output of the guided
sub-network will be a three-channel RGB image with size
16 × 16 if the input size is 256 × 256. In addition, the de-
coder is regarded as another branch discussed below.

Dense-Residual Decoder. The fused feature representations
are then fed into a decoder network that is based on dense-
residual decoding blocks. Specifically, the decoder contains
five dense-residual blocks, where each dense-residual block
contains a dense block, a transition up block and two resid-
ual blocks. Each dense block has the same structure as the
dense block described in the encoder. Each transition up
layer is composed of a 1×1 convolution layer followed by
a bilinear up-sampling layer. Each residual blocks contains
two 3×3 convolution layer connected by the ReLU func-
tion and Batch normalization. Once the feature maps are
up-sampled to the original resolution (input resolution, e.g.
256 × 256), these learned features are concatenated with
the three input Stokes images. Finally, a multi-level pyramid
pooling block is adopted at the end of the decoding part to
make sure that features from different scales are embedded
in the final result. This is inspired by the use of global con-
text information in classification and segmentation tasks [74,
69]. Rather than taking very large pooling size to capture
more global context information between different objects
[74], more ‘local’ information is leveraged here. Hence, a
four-level pooling operation with sizes 1/32, 1/16, 1/8 and
1/4 are used. Then, features from all four levels are up-
sampled to the original feature size and are concatenated
back with the original feature maps before the final esti-
mation. Figure 5 gives an overview of the proposed dense-
residual decoder.

Specifically, the final multi-scale pyramid pooling struc-
ture contains a four scale down-sampling operator followed
by a 1x1 convolution layer with one-channel output func-
tioning as depth-wise dimension reduction. Then, all four
scale one-channel feature maps are concatenated with the
corresponding input of the multi-scale pooling structure by
up-sampling to the input-feature resolution. Finally, the con-
catenated features are fed into a 3×3 convolution layer fol-
lowed by a Tanh layer.
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Fig. 5: Overview of the dense-residual decoding part.

3.2 Multi-scale Discriminator

To ensure the synthesized visible faces are indistinguish-
able from real images while preserving high-frequency de-
tails, a learned multi-scale patch-discriminator sub-network
is designed to decide if each input image (to the discrimina-
tor) is real or fake. Similar to the structure that was pro-
posed in [19], a convolution layer with batch normaliza-
tion and Leaky ReLU [29] activation are used as the ba-
sis throughout the patch-discriminator part. Basically, the
patch-discriminator consists of the following structure:

CBL(K2)-CBL(2K2)-CBL(4K2)-CBL(8K2)

where, CBL(K2) is a set of K2-channel convolution lay-
ers followed by batch normalization and Leaky ReLU [29].
Then, a multi-scale pooling module, which pools features at
different scales, is stacked at the end of the discriminator.
The pooled features are then upsampled and concatenated,
followed by a 1×1 convolution and a sigmoid function to
produce a probability score normalized between 0 and 1.
The proposed discriminator sub-network, D, is shown at the
bottom of Figure 2.

3.3 Loss Functions

It is well-known that the use of Euclidean loss, LE , alone
often results in blurry results. Hence, to overcome this and
to discriminate the generated visible face images from their
corresponding ground truth, an adversarial loss function is
employed. Even though the use of adversarial loss can gen-
erate more reasonable results compared to the LE loss, as
shown in [71], these results contain undesirable facial arti-
facts. To address this issue and generate visually pleasing
results, perceptual loss is incorporated in our work. The per-
ceptual loss is computed using a pre-trained VGG-16 mod-
els as discussed in [21,68,72,26].

Since the ultimate goal of the our proposed synthesis
method is to guarantee that human examiners or face ver-
ification systems can identify the person given his/her syn-
thesized face images, it is also important to involve the dis-
criminative information into consideration. Similar to the
perceptual loss, we propose an identity-preserving loss that
is evaluated on a certain layer of the fine-tuned VGG-Polar
model. The VGG-Polar model is fine-tuned using the visi-

ble images with their corresponding labels from the newly
introduced Polarimetric Visible database.

The proposed method contains the following loss func-
tions: the Euclidean L2 loss enforced on the reconstructed
visible image, the LE(G) loss enforced on the guidance part,
the adversarial loss to guarantee more sharp and indistin-
guishable results, the perceptual loss to preserve more photo
realistic details and the identity loss to preserve more dis-
criminative information for the outputs. The overall loss func-
tion is defined as follows

Lall = L2 + L2(G) + λALA + λPLP + λILI , (3)

where L2 denotes the Euclidean loss, L2(G) denotes the Eu-
clidean loss on the guidance sub-network, LA represents the
adversarial loss, LP indicates the perceptual loss and LI is
the identity loss. Here, λA, λP and λI are the corresponding
weights.

The L2 and the adversarial losses are defined as follows:

L2, L2(G) =
∑
w,h

‖φG(S0, S1, S2)
w,h − Y w,h

t ‖2, (4)

LA = − log(φD(φG(S0, S1, S2)), (5)

where S0, S1 and S2 are the three different input Stokes im-
ages, Yt is the ground truth visible image, W ×H is the di-
mension of the input image, φG is the multi-stream feature-
fusion generator sub-network G and φD is the multi-scale
discriminator sub-network D.

As the perceptual loss and the identity losses are evalu-
ated on a certain layer of the given CNN model, both can be
defined as follows:

LP,I =
∑

ci,wi,hi

‖V (φG(S0, S1, S2))
ci,wi,hi−V (Yt)

ci,wi,hi‖2,

(6)

where Yt is the ground truth visible image, φE is the pro-
posed generator, V represents a non-linear CNN transfor-
mation and Ci,Wi, Hi are the dimensions of a certain high
level layer V , which differs for perceptual and identity losses.

4 Polarimetric Thermal Face Dataset

A polarimetric thermal face database of 111 subjects is used
for this study, which expanded on the previously released
database of 60 subjects (described in detail in Hu et al.,
2016 [15]). The database used in this study therefore con-
sisted of the 60-subject database collected at the U.S. Army
Research Laboratory (ARL) in 2014-2015 (referred to as
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Volume 1 hereinafter), and a 51-subject database collected
at a Department of Homeland Security test facility (referred
to as Volume 2 hereinafter). While the participants of the
Volume 1 collect consisted exclusively of ARL employees,
the participants of the Volume 2 collect were recruited from
the local community in Maryland, resulting in more demo-
graphic diversity. Note that this extended databased is avail-
able upon request.

4.1 Sensors

The sensors employed to collect Volume 1 and Volume 2
were the same, consisting of a polarimetric LWIR imager
and visible cameras. The LWIR polarimetric was developed
by Polaris Sensor Technologies, and is based on a division-
of-time spinning achromatic retarder (SAR) design which
incorporated a spinning phase-retarder in conjunction with
a linear wire-grid polarizer. This system has a spectral re-
sponse range of 7.5-11 µm, and employed a Stirling cooler
with a mercury telluride focal plane array (640 × 480 pixel
array format). Data was recorded at 60 frames per second,
using a lens with a field of view (FOV) of 10.6◦ × 7.9◦.
Four Basler Scout GigE cameras with different lens (rang-
ing from 5◦ to 53◦) were used for Volume 1, consisting of
two grayscale cameras (model # scA640-70gm; 659 × 494

pixel FPA) and two color cameras (model # scA640-70gc;
658 × 492 pixel FPA) to generate visible facial imagery at
different resolutions. For Volume 2, a single Basler Scout
color camera with a zoom lens was used, adjusted to pro-
duce the same facial resolution as the polarimeter.
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Fig. 6: The ROC curves corresponding to Ablation 1.

4.2 Dataset

The dataset protocols for Volume 1 and Volume 2 were ap-
proved by the respective Institutional Review Boards (IRBs)
where each collection occurred. The Volume 1 collection in-
volved two experimental conditions: range and expressions.
Acquisitions were made at distances of 2.5 m, 5 m, and 7.5
m. At each range, a 10 second video sequence was first col-
lected of the subject with a neural expression, and then a 10
second “expressions” sequence was collected as the subject
counted out loud numerically from one upwards, which in-
duced a continuous range of motions of the mouth and, to a
lesser extent the eyes. In the experimental setup for Volume
1, a floor lamp was placed 1 m in front of the subject at each
range to provide additional illumination.

Table 1: The average PSNR (dB), SSIM, EER and AUC results corre-
sponding to different methods for Ablation 1.

I-Polar GAN-VFS [71] DR-ED DR-ED-MP

PSNR (dB) 11.74 18.07 18.28 18.80

SSIM 0.4625 0.7047 0.7128 0.7194

EER 41.51% 22.45% 16.51% 15.67%

AUC 62.93% 86.10% 91.67% 92.55%

The data collection setup used for Volume 2 matched
that of Volume 1. However, no floor lamp was employed in
the Volume 2 collect, as the DHS test facility had sufficient
illumination. Furthermore, Volume 2 data was collected at a
single range of 2.5 m, due to time limitations since the po-
larimetric face acquisition was part of a broader collection.

4.3 Preprocessing

The raw polarimetric thermal imagery underwent several
preprocessing steps. First, a two-point non-uniformity cor-
rection (NUC) was applied on the raw data using software
provided by Polaris Sensor Technologies and calibration data
collected with a Mikron blackbody prior to each session. Im-
ages were sampled/extracted from the polarimetric thermal
sequences. Bad pixels in the extracted images were identi-
fied, and those pixel intensities corrected via a median filter.
To crop and align the facial imagery, three fiducial points
(centers of the eyes, base of the nose) were first manually
annotated, and an affine transform was used to normalize
each face to canonical coordinates. Facial imagery was fi-
nally cropped tom×n pixels, and saved as 16-bit PNG files.
The visible imagery required neither non-uniformity correc-
tion nor bad pixel correction. The same steps were used to
crop and align the visible images, which were then saved as
16-bit grayscale PNG files.
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Fig. 7: Sample results of for the Ablation 1. It can be observed that the dense-resisual encoder-decoder structure is able to generate better visible
results and the introduced multi-level pooling module is able to preserve better structure information. Detail discussions can be found in Sec 5.2.

4.4 Experimental Protocols

Even though there exist several conventional thermal-visible
pair databases [7,4], they lack the availability of the cor-
responding polarization state information such as S1 and
S2. Hence, an extended database, which contains polarimet-
ric (S0, S1, S2) and visible image pairs from 111 subjects
is used for evaluation in this paper. Following the protocol
defined in [46,71], sample pairs corresponding to range 1
(baseline and expression) are used for comparisons. In par-
ticular, two different protocols are defined in this paper for
further research. To be consistent with previous methods
[46,71], the first protocol is defined as follows:

Protocol 1: The protocol 1 is evaluated on Volume 1, which
contains 60 subjects, 30 subjects from Volume 1 with eight
samples for each subject (in total 240 sample pairs) are used
as training samples, denoted as Train1. Similarly, the re-
maining 30 subjects with eight samples for each subject (in
total 240 sample pairs) are used as testing samples, denoted
as Protocol1. All the training and testing samples are ran-
domly chosen from the overall 60 subjects. Results are eval-
uated on five random splits. In Protocol 1, each split contains
around 28800 pairs of templates on average (1080 positive
and 27720 negative).

Protocol 2: Different from Protocol 1, the newly introduced
and extended dataset with 111 subjects is used for training
and testing, where 85 subjects with eight samples for each
subject are randomly chosen as training samples (in total
680 sample pairs), denoted as Train2 and the other 26 sub-

jects are used as testing (in total 208 sample pairs), denoted
as Protocol2. As before, results are evaluated on five random
splits. In Protocol 2, each split on average contains around
21632 pairs of templates (936 positive and 20696 negative).

These protocols and splits will be made publicly avail-
able to the research community.

5 Experimental Results

In this section, we demonstrate the effectiveness of the pro-
posed approach by conducting various experiments on the
two defined protocols for the new polarimetric thermal dataset
as described above. Once the visible images are synthesized
using the proposed method, deep features can be extracted
from these images using any one of many pre-trained CNNs
such as VGG-face [35], Light-CNN [59], or GoogleNet [63].
In this paper, we extract the features from the second last
fully connected layer of the VGG-face network [35]. Fi-
nally, the cosine distance is used to calculate the scores. Re-
sults are compared with four state-of-the-art methods: Ben
et al. [46], GAN-VFS [71], Pix2pix [19] and Pix2pix with
BEGAN [19,1]. In addition, three ablation studies are con-
ducted to demonstrate the effectiveness of different modules
of the proposed method. Quality of the synthesized images
is evaluated using Peak Signal-to-Noise Ratio (PSNR) and
Structural SIMilarity (SSIM) index [58]. The face verifica-
tion performance is evaluated using the receiver operating
characteristic (ROC) curve, Area Under the Curve (AUC)
and Equal Error Rate (EER) measures.
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Fig. 8: Sample results for Ablation 2. It can be observed that the proposed multi-stream feature-level fusion GAN is able to generate better results
compared to input-level (S-Polar-IF), output-level fusion (M-Polar-OF) and also simply levering single Stokes modality. Detailed discussions can
be found in Sec 5.2.

Table 2: The average PSNR (dB), SSIM, EER and AUC results corre-
sponding to different methods for Ablation 2.

I-Polar S-S0 S-S1 S-S2 S-Polar-IF M-Polar-OF Proposed

PSNR (dB) 11.74 17.34 17.03 17.17 18.80 18.87 19.55

SSIM 0.4625 0.6905 0.6852 0.6794 0.7194 0.7225 0.7433

EER 41.51% 23.18% 21.61% 21.56% 15.67% 15.90% 11.78%

AUC 62.93% 85.74% 86.64% 87.30% 92.55% 92.69% 96.03%

5.1 Implementation

The entire network is trained on a Nvidia Titan-X GPU. We
choose λA = 0.005 for the adversarial loss, λP = 0.8 for
the perceptual loss and λI = 0.1 for the identity loss. During
training, we use ADAM [23] as the optimization algorithm
with learning rate of 8 × 10−4 and batch size of 1 image.
All the pre-processed training samples are resized to 256 ×
256. The perceptual loss is evaluated on relu 1-1 and relu
2-1 layers in the pre-trained VGG [35] model. The identity
loss is evaluated on the relu2-2 layer of the fine-tuned VGG-
Polar model.

5.2 Ablation Study

In order to better demonstrate the effectiveness of the pro-
posed feature-level fusion, the improvements obtained by
different modules and the importance of different loss func-
tions in the proposed network, three ablation studies are pre-
sented in this section. All the experiments in the first two
ablation studies are optimized with the same loss function
discussed in Eq (2).

Ablation 1
In the first ablation study, we demonstrate the effectiveness
of different modules (eg. densely connected encoder-decoder
structure) in our method by conducting the following ex-
periments. All the experimental results are evaluated using
Protocol 1 based on the polrimetric images as input:
(a) GAN-VFS: The GAN network proposed in [71] with

polarimetric images as inputs.
(b) DR-ED: A single stream dense-resisual encoder-decoder

structure. 4

(c) DR-ED-MP: A single stream dense-resisual encoder-
decoder structure with multi-level pooling.

Table 3: The average PSNR (dB), SSIM, EER and AUC results corre-
sponding to different methods for Ablation 3.

I-Polar L2 L2-GAN L2-GAN-P Our

PSNR (dB) 11.74 17.57 17.33 18.99 19.55

SSIM 0.4625 0.7088 0.7115 0.7352 0.7433

EER 41.51% 18.07% 13.23% 11.79% 11.78%

AUC 62.93% 90.89% 93.64% 95.64% 96.03%

One synthesis example corresponding to Ablation 1 is
shown in Figure 7. It can be observed from this figure (com-
paring second column with third column) that the overall
performance improves after leveraging the newly introduced
dense-residual encoder-decoder (DR-ED) structure. This can
be clearly observed from the left part of the reconstructed

4 Basically, this network is composed of one stream of the encoder
part followed by the same decoder without multi-level pooling.
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Fig. 9: Sample results on different loss functions for Ablation 3.

0 0.2 0.4 0.6 0.8 1

False positive (false alarm) rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
  

ra
te

Ablation 2

Input

S-S0

S-S1

S-S2

S-Polar-IF

M-Polar-OF

Proposed

Fig. 10: The ROC curves corresponding to Ablation 2.
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Fig. 11: The ROC curves corresponding to Ablation 3.

mouth. This essentially demonstrates the effectiveness of the
proposed dense-residual encoder-decoder structure. Though
the DR-ED is able to reconstruct better visible face, from
the close-up of the left eye shown in the second row in Fig-
ure7 we observe that some structure information is missing.
The multi-level pooling module at the end of the encoder-
decoder structure overcomes this issue and preserves the the
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Fig. 12: The ROC curves corresponding to Protocol1.

overall eye structure. Quantitative results evaluated based on
PSNR and SSIM [58], as shown in Table 1, also show simi-
lar results.

In addition to comparing the performance of the synthe-
sized images in terms of SSIM and PSNR, we also compare
the contribution of each module in face verification by plot-
ting the ROC curves. The verification results are evaluated
based on the cosine similarity using the deep features ex-
tracted from the pre-defined VGG-face model [35]. The re-
sults are shown in Figure 6. From the ROC curves, it can be
clearly observed that the proposed dense-residual network
with multi-level pooling can also provide some discrimina-
tive information. Similar results can also be observed from
the EER and AUC comparisons, tabulated in Table 1.

Table 4: The PSNR, SSIM and EER and AUC results corresponding
to Protocol1.

I-Polar Btas-2016 [46] Pix2pix [19] Pix2pix-BEGAN [19,1] GAN-VFS [71] Proposed

PSNR (dB) 11.74 16.12 16.79 17.55 18.07 19.55

SSIM 0.4625 0.6785 0.6490 0.7033 0.7041 0.7433

EER 41.51% 26.72% 22.61% 22.56% 23.19% 11.78%

AUC 62.93% 81.90% 85.14% 85.30% 85.89% 96.03%
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Fig. 13: Sample results compared with state-of-the-art methods evaluated on Protocol1.
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Fig. 14: The ROC curves corresponding to Protocol1.

Ablation 2
The second ablation study is conducted to demonstrate the
effectiveness of the proposed feature level multi-model fu-
sion by conducting experiments with the following base-
lines:

(a) S-S0: Single stream dense-resisual encoder-decoder with
the proposed structure with S0 as the input.

(b) S-S1: Single stream dense-resisual encoder-decoder with
the proposed structure with S1 as the input

(c) S-S2: Single stream dense-resisual encoder-decoder with
the proposed structure with S2 as the input.

(d) S-Polar-IF: Single stream dense-resisual encoder-decoder
with the proposed structure with Polar as the input (i.e.
input level fusion). The S-Polar-IF model shares the ex-
act same structure as DR-ED-ML as discussed in Abla-
tion 1.

(e) M-Polar-OF: Multi stream dense-resisual encoder-decoder
structure with output level fusion. The M-Polar-OF is
basically composed of three stream dense-resisual encoder-
decoder structure, where each stream shares the same
structure with S-Polar-IF but with different input (S0, S1

and S2) for each stream. Then, the output features from
each stream are fused (concatenated) at the end of the
decoding part to generate visible face images.

(f) M-Polar-F-L2: Multi-stream dense-resisual encoder-decoder
with the proposed structure based on feature-level fusion
optimized with L2 loss only.

(g) M-Polar-F-L2-GAN: Multi-stream dense-resisual encoder-
decoder with the proposed structure based on feature-
level fusion optimized with L2 and GAN loss.

(h) M-Polar-F-L2-GAN-Perp: Multi-stream dense-resisual
encoder-decoder with the proposed structure based on
feature-level fusion optimized with L2, GAN loss and
perceptual loss.

(i) Our (M-Polar-FF): Multi-stream dense-resisual encoder-
decoder with the proposed structure based on feature-
level fusion with all the losses.

Sample results corresponding to Ablation 2 is shown in
Figure 8. It can be observed that just leveraging any one
of the Stokes images as input is unable to fully capture the
geometric and texture details of the whole face. For exam-
ple, as shown in the first column second row in Figure 8,
the nose is over-synthesized if just S0 (representing con-
ventional thermal imagery) is used. Leveraging input level
fusion (just concatenating three modalities as three-channel
input) S-Polar-IF enables better visible face with less unde-
sired artifacts as compared to S-S0, S-S1 and S-S2. Further-
more, the proposed multi-stream feature-level fusion struc-
ture is able to preserve more geometric facial details and
is able to generate photo-realistic visible face images. Vi-



14 He Zhang et al.

PSNR: 10.36
SSIM: 0.4331

PSNR: 14.67
SSIM: 0.6301

PSNR:15.74
SSIM: 0.6305

PSNR:20.04
SSIM: 0.7004

PSNR:19.86
SSIM: 0.7249

PSNR: 21.66
SSIM: 0.7728

PSNR:Inf
SSIM: 1.0000

PSNR: 10.25
SSIM: 0.4108

PSNR: 14.67
SSIM: 0.6301

PSNR:13.98
SSIM: 0.5915

PSNR:20.04
SSIM: 0.7544

PSNR:19.67
SSIM: 0.7306

PSNR: 23.55
SSIM: 0.8097

PSNR:Inf
SSIM: 1.0000

PSNR: 11.01
SSIM: 0.4236

PSNR: 18.99
SSIM: 0.7525

PSNR:22.96
SSIM: 0.8008

PSNR:23.92
SSIM: 0.8421

PSNR:25.36
SSIM: 0.8572

PSNR:26.32
SSIM: 0.8732

PSNR:Inf
SSIM: 1.0000

PSNR: 9.13
SSIM: 0.3743

I-Polar

PSNR: 14.36
SSIM: 0.6052

Btas-2016
[46]

PSNR:14.79
SSIM: 0.6087

Pix2pix
[19]

PSNR:17.48
SSIM: 0.7015

Pix2pix-BEGAN
[19,1]

PSNR:17.69
SSIM: 0.7019

GAN-VFS
[71]

PSNR:22.45
SSIM: 0.8107

Proposed

PSNR:Inf
SSIM: 1.0000

Target

Fig. 15: Sample results compared with state-of-the-art methods evaluated on Protocol2.
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Fig. 16: The ROC curves corresponding to the Protocol2.

sual results also demonstrate the effectiveness of leveraging
feature level fusion over input level or output level fusion.

Quantitative results evaluated in terms of PSNR and SSIM
are shown in Table 2. Results are also consistent with our
visual comparison.

Similar to Ablation study 1, the face verification results
are also used as a metric to evaluate the performnace of
different fusion techniques. We plot the ROC curves corre-
sponding to the different settings discussed above. The ROC
curves are shown in Figure 10. Again, the verification results
are evaluated based the cosine similarity using the deep fea-
tures extracted from the VGG-face model [35] without fine-
tuning. From the ROC curves, it can be clearly observed that
the proposed multi-stream feature-level fusion can bring in
more discriminative information as compared to input level
or output level fusion.

Ablation 3
In the third ablation study, we demonstrate the effective-
ness of different loss functions used in the proposed method
(e.g. adversarial loss, perceptual loss and identity preserving
loss) by conducting the following experiments. All the ex-
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Table 5: The PSNR, SSIM, EER and AUC results corresponding to
Protocol2.

I-Polar Btas-2016 [46] Pix2pix [19] Pix2pix-BEGAN [19,1] GAN-VFS [71] Proposed

PSNR (dB) 10.88 15.82 17.82 18.28 18.58 19.18

SSIM 0.4467 0.6854 0.6828 0.7214 0.7283 0.7340

EER 40.87% 14.60% 13.49% 15.81% 11.42% 7.99%

AUC 61.27% 93.99% 93.46% 92.50% 95.96% 98.00%

perimental results are evaluated using Protocol 1 based on
the polarimetric images as the input:
(a) L2: The proposed architecture (M-Polar-FF) optimized

with the L2 loss.
(b) L2-GAN: The proposed architecture optimized with the

L2 loss and the adversarial loss.
(c) L2-GAN-P: The proposed architecture optimized with

the L2 loss, the adversarial loss and the perceptual loss.
(d) Our: The proposed architecture optimized with the L2

loss, the adversarial loss, the perceptual loss and the identity-
preserving loss.

Visual results corresponding to this ablation study are shown
in Figure 12. It can be observed from the results that the L2
loss itself generates blurry faces and many details around
the eyes and the mouth regions are missing. By involving
the GAN structure in the proposed method, more details are
being added to the results. But it can be observed that GAN
itself produces images with artifacts. Introduction of the per-
ceptual loss in the proposed framework is able to remove
some of the artifacts and makes the results visually pleasing.
Finally, the combination of all the losses is able to generate
more reasonable results with better facial details.

To better demonstrate the effectiveness of different losses
in the proposed method, we plot the ROC curves correspond-
ing to the above four different network settings. The results
are shown in Figure 11. All the verification results are eval-
uated on the deep features extracted from the VGG-face
model [35] without fine-tuning. From the ROC curves, it
can be clearly observed that even though the identity loss
does not produce visually different results, it can bring in
more discriminative information. The corresponding PSNR,
SSIM values as well as the AUC and EER values are sum-
marized in Table 3.

5.3 Comparison with State-of-the-Art Methods

To demonstrate the improvements achieved by the proposed
method, it is compared against recent state-of-the-art meth-
ods [46,19,1,71] on the new dataset. We compare quantita-
tive and qualitative performance of different methods on the
test images from the two distinct protocols Protocol1 and
Protocol2 discussed earlier.

Sample results corresponding to Protocol 1 and Proto-
col 2 are shown in Figure 13 and Figure 15, respectively.

It can be observed from these figures, Pix2pix and Pix2pix-
BEGAN introduce undesirable artifacts in the final recon-
structed images.

The introduction of the perceptual loss in [71] is able to
remove some of these artifacts and produce visually pleasing
results. However, the synthesized images still lack some ge-
ometric and texture details as compared to the target image.
In contrast, the proposed method is able to generate photo-
realistic visible face images while better retaining the dis-
criminative information such as the structure of mouth and
eye. Quantitative results corresponding to different meth-
ods evaluated on both protocols are tabulated in Table 4
and Table5, showing that the proposed multi-stream feature-
level fusion GAN structure is able to achieve superior per-
formance.

Similar to the ablation study, we also propose to use
the performance of face verification as a metric to evalu-
ate the performance of different methods. Figure14 and Fig-
ure16 show the ROC curves corresponding to the two exper-
imental protocols. The AUC and EER results are reported in
Table 4 and Table 5. From these results, it can be clearly
observed that the proposed method is able to achieve su-
perior quantitative performance compared the previous ap-
proaches. These results highlight the significance of using a
GAN-based approach to image synthesis.

6 Conclusion

We present a new multi-level dense-residual fusion GAN
structure for synthesizing photo-realistic visible face images
from the corresponding polarimetric data. In contrast to the
previous methods that leverage input level fusion techniques
to combine geometric and texture information from different
Stokes image, we take a different approach where visual fea-
tures extracted from different Stokes images are combined
to synthesize the photo-realistic face images. Quantitative
and qualitative experiments evaluated on a real polarimet-
ric visible database demonstrate that the proposed method
is able to achieve significantly better results as compared to
the recent state-of-the-art methods. In addition, three abla-
tion studies are performed to demonstrate the improvements
obtained by the feature-level fusion methods, different mod-
ules and different loss functions in the proposed method.
Furthermore, an extended polarimetric-visible database con-
sisting of data from 111 subjects is also presented in this
paper.
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