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Abstract—Multiple user active authentication, in contrast with
single user active authentication, requires verification of identity
of multiple subjects. Both traditional verification and identifica-
tion based solutions fail to address the specific challenges pre-
sented in this problem. We introduce Extremal Openset Rejection
(EOR), a two fold mechanism with a sparse representation-based
identification step and a verification step for this purpose. In
the verification step, concentration of the sparsity vector and
the overlap between matched and non-matched distributions are
considered for decision making. We introduce a semi-parametric
model based on Extreme Value Theory (EVT) for modeling the
distributions, and an algorithm to estimate the parameters of
extreme value distributions. Effectiveness of the proposed method
is demonstrated using three publicly available face-based mobile
active authentication datasets.

Index Terms—Open-set recognition, mobile biometrics, mul-
tiuser authentication, active authentication, continuous authenti-
cation.

I. INTRODUCTION

The problem of person recognition has been traditionally
studied under two main domains - identification and verifica-
tion [2]. Given a probe, the role of identification is to find the
best match from a gallery set. On the other hand, verification is
typically performed between a probe and a single class, where
the objective is to verify whether the probe belongs to the
same class. Mobile Active Authentication (AA) 1 has recently
received considerable interest in the research community as an
alternative for traditional explicit authentication [4],[8],[16].
The purpose of AA is to continuously monitor biometric and
behavioral traits of legitimate users of a device, and thereby
perform authentication continuously. In exception of [23],
previous works on AA have only addressed the case where
only a single legitimate user is associated with the device. In
this simplistic case, AA boils down to the problem of user
verification.

In reality, mobile devices can be used by multiple users
interchangeably [23]. For instance, different family members
may want to share a mobile device. In this case, the number
of such users generally varies between two to four; at most
ranging to seven. This is also seen in workstations where a
common device is often shared by different staff members.
For instance, in hospitals or clinics, multiple medical profes-
sionals may want to share the same mobile device without
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Fig. 1: Verification and identification algorithms are specif-
ically designed to deal with single class and many classes,
respectively. Therefore, their extensions fails to perform well
consistently in multiple user AA where there are small number
of classes. The proposed EOR method yields higher perfor-
mance across the different protocols consistently.

switching between users. Therefore, for deployment of AA as
a technology, it is essential that it has the capability to perform
multiple user verification. However, in this specific use-case,
producing the identity of a given probe is not required. Key
characteristics of multiple user AA are as follows:

• Low number of multiple users: Number of enrolled
users are usually low, typically between one to seven (i.e.
normal family size). It is also possible to have just a single
enrolled user.

• Low focus on identity: The goal is to verify whether the
probe belongs to one of the enrolled users. Producing the
exact identity of the user is not important.

With this background, when there exists multiple legitimate
users for a mobile device, multiple AA problem can be
formulated as follows. When the device is configured initially,
each legitimate user is first enrolled into the device. Later
on, in the course of normal operation of the device, sensor
observations of the device user are continuously obtained. The
goal of multiple AA is to determine whether the device user
belongs to one of the enrolled subjects based on the obtained
sensor observations.

Given the nature of the problem, it is tempting to treat
multiple user AA as a single openset-identification task or
as a series of verification tasks. However, this problem is
unique in nature as it inherits different forms of challenges
faced both in verification and identification. In verification,
the class under consideration is compact due to relatively
low variations of intra-class samples. Taking this fact into
account, it is possible to generate a model that sufficiently
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encapsulates the features of the class under consideration. On
the other hand, in identification, large number of classes are
present. Therefore, for a given class, union of other classes
produces a reasonable estimate of the open set negative classes.
Hence, a discriminative model can be produced which yields
identification with high accuracy. In contrast in multiple user
AA, where generally 2 to 7 classes are present, there is a huge
variation among the enrolled classes; this variation however
is not representative enough to characterize the open world.
Therefore, algorithms specifically designed for either verifica-
tion or identification (or their extensions) do not comply well
with the requirements of multiple user AA as the number of
users vary (See Figure 1).
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Fig. 2: Challenge of multiple user verification. Verification
based algorithms are more suited when few classes are present.
Identification based algorithms works better when large num-
ber of classes are present. Otherwise, there is a significant
performance drop in both approaches. For the case with a
few classes none of these methods are consistent in terms of
accuracy.

Consider the scenario where n users are enrolled into a
AA system. First let us consider a solution based on series of
verifications. For each user it is possible to train a set of SVM
classifiers C1, C2, . . . Cn to detect the presence of a legitimate
user. When a probe y is present, using the maximum SVM
classifier score maxCi(y), the presence of a legitimate user
of the device can be queried via hard thresholding. However,
as shown in Figure 2, the recognition accuracy of such a
scheme drops rapidly as the number of users increase. Here,
recognition accuracy for a single user had dropped from 87%
to 82% with the introduction of an additional user. This would
further drop down to 62% in the extreme case where seven
users are using the device. Alternatively, it is possible to
seek a solution to this problem based on an identification
algorithm. If the identification algorithm associates scores
S1, S2, . . . , Sn for each class with the given probe, similar
to before, maxSi(y) can be used to determine whether the
probe belongs to an intruder. With such an approach, the
trend of detection accuracy seems to invert. Accuracy of the
identification-based solution is initially low at 85% when a
single user is present. This seems to increase as the number
of users are increased. When the number of users increase,
the number of known negative classes with respect to each

user also increases. Since this allows better modeling of the
negative population, intruder detection accuracy increases in
identification-based methods. This empirical observation sug-
gests that neither verification nor identification based methods
seems to be a robust solution for multiple user AA. This
outcome advocates the need for an alternative formulation to
tackle the multiple user AA problem.

In this work, we motivate the need of a specialized
method for performing multiple user AA. We present Extremal
Openset Rejection (EOR), a sparse representation-based multi-
ple user AA scheme based on semi-parametric extreme value
analysis. In conjunction, we introduce a parameter selection
scheme for extreme value distributions to make it feasible for
an automated mechanism. Finally, we propose an extension to
sparse representation-based recognition algorithm to make it
feasible to be used even in single user applications.

II. RELATED WORK

In recent years, AA has been studied based on a number
of different biometric modalities including gait [32], [14] ,
keystroke, voice, swipe patterns [9], [27],[15], and face images
[19], [4], [8],[16]. Most of these works encompass a single
user scenario and therefore verification is performed using a
generic verification algorithm. In [23], single user AA has
been extended to the multiple user scenario. Here, authors have
proposed a SVM based solution where scores of each SVM
output is fused using a new fusion rule. In speaker recognition,
the need to have multiple user systems have been previously
discussed [18],[7]. In [22] multiple user authentication is
formulated as a conjunction between a classification task and
a verification task. This formulation is used as the basis for
the proposed EOR multiple user AA algorithm.

In [29], sparse representation-based classification (SRC)
was introduced for face recognition. This algorithm has been
successfully adopted for mobile applications in previous works
[17]. The motivation of SRC is to represent enrolled classes
in terms of a dictionary and to query the expressiveness of
each probe in terms of the constituents of the dictionary.
Work in [31] has utilized the SRC algorithm to perform AA
assuming the availability of some intruder classes at the time
of testing. However, this assumption is impractical due to the
privacy concerns. Even though not intended at AA, work in
[29] introduces a method based on Sparsity Coefficient Index
(SCI) to reject open set classes. A similar measure has been
introduced in [21] for open set rejection. However, in their
work they train n number of separate dictionaries when n
number of users are enrolled. This is not a feasible practice for
mobile AA due to the multiplied order of operations involved
with each additional user.

The closest theoretical work related to multiple user authen-
tication from an identification perspective is found in the open
set recognition literature [12],[26],[25]. Here, the motivation
is to perform identification in the presence of classes unseen
during the testing phase (open set samples). The initial work
in open-set recognition was the 1-vs-set machine introduced
in [26]. This algorithm was later enhanced by PI-SVM [12]
and WSM [25] algorithms. Both PI-SVM and WSM aim at
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Fig. 3: An overview of the proposed EOR method.

modeling the score distributions of each enrolled class. The
state of the art work in open set recognition presented in [30]
out performed WSM by considering the matched and the sum
of non matched score distributions. Proposed method in [30]
models the tail portions of the said distributions using the
statistical Extreme Value Theory (EVT). This approach yields
good results only when the overlap between the distributions
are restrained to the tail portions. When this is not the case,
as in most AA applications, this method does not guarantee
good detections.

III. EXTREMAL OPENSET REJECTION (EOR)

Using the work presented in [22] as a conceptual platform,
we propose a two fold process to solve the multiple verification
problem as shown in Figure 3. This two-fold process contains
an identification step and a verification step. In the proposed
system, a set of images of each legitimate user of the device
is obtained during an enrollment phase and a dictionary is
constructed. In addition, matched and non-matched residual
score distributions are constructed for each user. Given the
enrolled classes, the identification process determines the
most likely identity of a probe based on the SRC model
using the enrolled dictionary. The verification step determines
whether the estimated identity of the probe is true or not
based on corresponding matched and non-matched residual
distributions. If the estimated identity is found to be true at
this step, authenticity of the user is declared to be true.

The proposed method essentially utilizes matched and non-
matched distribution information on top of the identification
criterion to make a better decision. This additional processing
has a significant gain particularly when identification criterion
is poor (that is when a low number of users are enrolled). If a
large number of classes are present, the additional verification
step does not introduce a significant improvement. EOR is ex-
pected to perform on par with the identification method in such
scenarios. Therefore, the proposed framework is particularly
suited for multiple-user authentication problems.

In what follows, a detailed explanation of this process is
presented.

A. Enrollment Phase

Consider the case where n number of legitimate users are
identified for a device. Given a set of k enrolled images
Vi = [v1,i,v2,i, . . . ,vk,i], where vj,i ∈ Rm for each ith user,
a dictionary D can be constructed by stacking images of all
users as columns (atoms) as in, D = [V1,V2, . . . ,Vn] ∈

Rm×nk. If D is sufficiently expressive, a new image y
belonging to the ith enrolled user can be expressed as a linear
combination of columns of D as in, y = Dx. Here, vector x
will be predominantly zero except for the entries associated
with the ith column block of D. For a given validation image
yv , the corresponding sparse representation vector xv can be
found by solving the following optimization problem [29],

x̂v = argmin
x
‖x‖1 s.t. ‖yv −Dx‖2 < ε, (1)

where ε is the noise energy and ‖x‖1 denotes the `1-norm of x
defined as ‖x‖1 =

∑
i |xi|. If δi is the characteristic function

that selects the coefficients of xv that are only associated with
the ith class, then the residual error of representation of the
ith class can be obtained as

ri(yv) = ‖yv −Dδi(x̂v)‖2, i = 1, 2, , . . . , n. (2)

Due to the self-expressiveness property of SRC, an image
belonging to the ith class is likely to be represented well in
terms of the atoms of the dictionary. Therefore, the residual
ri(yv) of such a probe is likely to take a lower value. Based
on the obtained residual errors, the most likely class of the
probe yv can be determined using,

î = argmin
i
ri(yv). (3)

For a given probe yv , the classifier results in a single matched
residual rî(yv). In addition, the classifier results in n − 1
non-matched scores rj(yv), where j 6= î. Using a set of
sample images, matched and non-matched residual scores can
be obtained for each class accordingly. Let FM,i and FN,i
be cumulative distributions of the matched and non-matched
residuals obtained for the ith class.

B. Classification Phase

During testing, for a given probe yp, the most corresponding
sparse vector can be found according to (1). The obtained
sparse vector can be used to evaluate the residual error
associated to the each class using (2). Then, the most likely
class associated with the probe can be obtained using (3). A
probe that belongs to one of the enrolled classes is expected to
produce a relatively low residual for the corresponding class.
In such a scenario, (3) would provide the identity of the probe.

However, even when a probe is from a class outside the
enrolled classes (i.e. from an intruder), there will be a lowest
residual value and a corresponding most likely class. In [29],
Sparsity Coefficient Index (SCI) defined as,

SCI(xp) =
n×maxi ‖δi(xp)‖1/‖xp‖1 − 1

n− 1
(4)

is introduced to differentiate such intruder classes from the
enrolled classes. However, as will be shown later, this measure
performs poorly when the number of enrolled classes are
small. In what follows, we propose a more robust, alternative
method for this purpose.
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C. Verification Phase
Upon determination of the most likely class of a probe,

verification is carried out to confirm the identity obtained
in SRC. If the probe yp belongs to an intruder, verification
process is likely to fail and an intrusion will be declared. On
the other hand, if the probe belongs to the identity declared
by the SRC algorithm, verification is likely to be successful.

If the probe belongs to class d, resulting residual score(r)
should satisfy two conditions simultaneously - it should be
from the matched score regionMd and it should not fall on to
the non-matched score region Nd of class d. Mathematically,
probability of probe belonging to class d can be formulated
as,

P (d) = P (r ∈Md ∩ r /∈ Nd).
Using addition rule of sets, this expression can be expanded

as,

P (d) = P (r ∈Md) + P (r /∈Md)− P (r ∈ Nd ∪ r /∈ Nd).
Since residual scores take lower values for the matched

probes, Md can be expressed as FM,d(r) [13]. In contrary,
Nd can be obtained from 1 − FN,d(r), since non-matched
scores take larger values. Here, FM,d(.) and FN,d(.) are the
matched and non matched cumulative residual score distribu-
tions, respectively. In addition, P (r ∈ Md ∪ r /∈ Md) = 1.
Therefore,

P (d) = FM,d(r) + (1− FN,d(r))− 1, (5)

and,
P (d) = FM,d(r)− FN,d(r), (6)

where FM,d(.) and FN,d(.) are the cumulative distributions
of the matched and non-matched residual scores for the dth
class, respectively. Hence, P (d) can be used as an indicator
to determine the authenticity of the probe.

In addition, we use the coefficient concentration of the
sparsity vector as another indicator to aid decision making.
When the probe belongs to one of the legitimate users, sparsity
coefficients are likely to be concentrated on to a single class.
In contrary, for an intruder, the coefficients are likely to
spread across various classes. This reasoning was motivated by
the rationale behind the SCI method. Therefore, we propose
‖δi(x̂p)‖2/‖x̂p‖2 as an intrusion indicator P (I), where x̂p is
the corresponding sparse vector. However, the discriminative
power of the latter is only high when there are larger number
of enrolled classes present. Therefore, we use a linear fusion
scheme, which we call EOR, to fuse the two indicators to
obtain a matched score for class d based on the residual score
r with variable weights as in,

EOR = (1− w)P (I) + wP (d)

EOR = (1− w)‖δd(x̂p)‖2
‖x̂p‖2

+ w(FM,d(r)− FN,d(r)), (7)

where w = exp(−αn2) with α being a constant and n being
the number of enrolled users. The definition for w was selected
to ensure the weights are always below one. The α value needs
to be determined empirically. In our experiments, it was set
equal to 0.2. The score obtained for EOR, is thresholded to
arrive at a detection decision.

D. Modeling of Cumulative Distribution Functions

For the proposed method to yield results of higher accuracy,
it is essential that the models for matched and non-matched
residual distributions are of higher precession. The trivial
choice would be to use an empirical distribution obtained
through a kernel density estimation process.

However, due to low occurrences of extreme observations,
sufficient number of extremal samples are often not present to
accurately model the tail portion of distributions empirically
[6]. This issue is more pronounced in intruder detection
problems such as in AA, where the tail region contains vital
information that can be used to reject intruders. Therefore,
modeling the tail region using a better technique is necessary.
In this light, we propose the use of EVT to model the tail
portion of each distribution.

Picklands, Balkema and de Haan Theorem: Consider a set
of samples from Z that exceeds a sufficiently high threshold
u. If FU is the cumulative distribution of the excess of Z over
u such that

FU (z) = P (Z − u ≤ z|Z > u), (8)

where z > 0, the CDF of FU can be approximated using a
Generalized Pareto Distribution (GPD)

G(z; ξ, β) =

{
1− (1 + ξz

β )−1/ξ if ξ 6= 0

1− e−z/β if ξ = 0,
(9)

such that −∞ < ξ < ∞, 0 < β < ∞, x > 0 and ξx > −β
[3], [10], [1]. When ξ = 0, GPD reduces to an exponential
distribution with mean β. When ξ > 0 and ξ < 0, the GPD
takes the form of an ordinary Pareto distribution and a Pareto
II distribution, respectively. This result of EVT provides us
a way to model the tail portion of a distribution given a
sufficiently high threshold u.

Semi-Parametric Modeling of Distribution: Given a set of
observations, the empirical cumulative distribution function
of the data H(z) can be evaluated using Kernel density
estimation. For a given parameter u, the tail portion of the
distribution (values above u) can be modeled using GPD to
obtain G(z|ξ, β). Then, the following semi-parametric model
can be used to represent the cumulative density function,

F (z; ξ, β, φu) =

{
(1− φu) + φuG(z; ξ, β), if z > u
(1−φu)
H(u) H(z), if z ≤ u.

(10)
It was shown in [6], that the maximum likelihood estimate of
φu is the sample proportion of excess where φ̂ = tu/t. Here,
tu is the number of in excess of u and t is the total sample
size. With this formulation, the CDF of the matched and the
non-matched distributions of all considered classes can be
modeled.

Parameter Selection for GPD: Even though extreme
value analysis is not new to computer vision applications
[28],[10],[30], to date, selecting the parameter u has been
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done experimentally. Since this parameter is specific to
the distribution, selecting a universal parameter for all the
distributions is not reasonable. Therefore, we propose a
mean squared error-based approach to select the parameter u
based on Hall’s bootstrap method [11]. Here, for a series of
candidate values of u, the tail portion of the distribution is
extracted and modeled using a GPD. Then, a series of random
values are generated using the estimated semi-parametric
distribution. A second GPD is fitted to the tail portion of
the obtained random variables and its GPD parameters are
compared with the original GPD to arrive at a mean squared
error (MSE) figure. The value u that generated the lowest
MSE is selected as the appropriate threshold. This parameter
selection method is outlined in Algorithm 1.

input : Set of training data S of size t
output: GPD distribution threshold parameter u

Fit empirical distribution to data;
CDF empirical = fitDist(S);
for j in [0.6 : 0.05 : 0.95] do

Calculate Threshold for the percentile j ;
S = Sort(S);
T = S[tj];
Select entries over the threshold T;
E = {S : S > T} ;
[ξ,β] = GPDfit(E) ;
Perform bootstrapping;
for i← 1 to 10 do

Generate random numbers from the estimated
parameters;
R[1 : 1000j]= RandGPD(ξ,β);
R[1000j : 1000]= Rand(CDF empirical) ;
Estimate GPD parameters from random
numbers;
A = {R : R > T} ;
[ξ̂[i],β̂[i]] = GPDfit(A) ;

end
MSE = E[(ξ − ξ̂)2];

end
u = argminT (MSE);

Algorithm 1: Threshold Selection for GPD.

Extending to the Case of a Single User: In the outlined
two-fold procedure, initial classification step uses the SRC
algorithm to recover the most likely identity of the probe.
When only a single enrolled user is present, this step is not
necessary as the most likely identity is trivial. However, with
only a single user, the outlined verification step is infeasible
to be carried out due to unavailability of a non-match residual
distribution. For this particular case we propose the following
modifications.

1) For the legitimate user, create dictionary D ∈ Rm×k

as explained in Section III-A. Append a set of random
numbers of size m × k to the dictionary. This set
of random numbers is expected to represent openset
classes.

2) In the classification process, calculate the residuals for
the two dictionaries as before. However, most likely
identity now is always associated with the only enrolled
user.

3) Residual error corresponding to the random dictionary
is used to calculate the non-match residual score. Verifi-
cation process is carried out as outlined in Section III-C.

Using a set of random entries to represent the open-set class
subjects is motivated by the result obtained in Section IV-G.
There, we empriricaly show that non-matched distrubution
generated by an arbitary user has a high probability of been
similar to the true non-matched distribution with respect to a
given subject. This result however is only justified when the
SRC matching rule is used.

IV. EXPERIMENTAL RESULTS

In order to investigate the effectiveness of the proposed
method, experiments were conducted using three publicly
available mobile face datasets. Seven test cases were consid-
ered where the number of users were varied from one to seven.
For each test case, 50 trials of experiments were considered.
In a single testing trial, legitimate users and 10 intruder users
were randomly picked. Images of selected users were divided
in half to form a training and a test set. Training set was used to
construct the dictionary and to obtain matched residual scores.
Dictionary size was kept fixed at 50 atoms per subject. During
testing, equal number of positive and negative images were
used to prevent accuracy paradox. Detection accuracy defined
as

Detection Accuracy =
TP + TN

2
, (11)

where TP and TN are true positive rate and true negative
rate, respectively, is used to measure the performance of
different methods. When evaluating detection accuracy, we
considered all possible thresholds and selected the highest
resulting detection accuracy for comparison.

The following methods were used for comparison:
1) n class SVM : n binary SVMs used in parallel (Imple-

mented using LibSVM)
2) PISVM [12] : Used the published code for [12].
3) WSVM [25]: Used the published code for [25].
4) Calibrated SVM : Operating point of an n class SVM

been calibrated using matched and non matched distri-
butions.

5) MUSVM : State of the art multiple user AA method
based on binary SVM [23].

6) MUWSVM : State of the art multiple user AA method
based on binary WSVM [23].

7) SCI : Intruder rejection based on sparsity distribution of
the sparsity vector as described in (4) [29].

8) SROSR : Intruder rejection based on matched and sum
of non matched distributions [30].

In implementing these methods, whenever selection of a
parameter was necessary, it was done using a validation
set. We considered 10% of the legitimate user images when
constructing the validation set. In addition, we used images
from the remaining users (users excluding legitimate and
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Fig. 4: Sample images from datasets used for testing. (a) UMDAA-01 (b) MOBIO (c) UMDAA-02. Each column represents
sample images obtained for the same user.

UMDAA-01
Number of Users

1 2 3 4 5 6 7
PISVM 0.73 0.74 0.73 0.72 0.72 0.71 0.71

(0.0327) (0.0342) (0.0340) (0.0340) (0.0341) (0.0350) (0.0347)
WSVM 0.80 0.77 0.74 0.73 0.72 0.72 0.72

(0.0309) (0.0319) (0.0328) (0.0336) (0.0339) (0.0344) (0.0346)
n-Class SVM 0.87 0.82 0.78 0.75 0.73 0.71 0.69

(0.0204) (0.0204) (0.0223) (0.0238) (0.0252) (0.266) (0.272)
C-SVM 0.88 0.83 0.78 0.74 0.71 0.69 0.67

(0.0207) (0.0258) (0.0291) (0.0313) (0.0333) (0.0337) (0.0335)
MUSVM 0.88 0.84 0.82 0.80 0.78 0.76 0.75

(0.0212) (0.0273) (0.0371) (0.0404) (0.0340) (0.0447) (0.0477)
MUWSVM 0.88 0.84 0.81 0.80 0.78 0.77 0.76

(0.0215) (0.0274) (0.0369) (0.0402) (0.0335) (0.0448) (0.0480)
SCI 0.85 0.85 0.87 0.90 0.92 0.93 0.94

(0.0461) (0.0441) (0.0367) (0.0187) (0.0118) (0.0144) (0.0125)
SROSR 0.88 0.92 0.90 0.90 0.90 0.89 0.91

(0.0505) (0.0294) (0.0350) (0.0279) (0.0256) (0.0279) (0.0257)
EOR 0.90 0.93 0.92 0.93 0.93 0.94 0.94

(0.0303) (0.0249) (0.0202) (0.0121) (0.0102) (0.0104) (0.0093)

TABLE I: Variation of mean detection accuracy against differ-
ent number of users for UMDAA01 dataset (standard deviation
in brackets).

MOBIO
Number of Users

1 2 3 4 5 6 7
PISVM 0.75 0.78 0.76 0.76 0.76 0.73 0.73

(0.017) (0.0051) (0.0126) (0.0164) (0.0164) (0.0112) (0.0137)
WSVM 0.77 0.79 0.78 0.77 0.77 0.74 0.73

(0.017) (0.0051) (0.0126) (0.0163) (0.0161) (0.0111) (0.0137)
n-Class SVM 0.94 0.88 0.87 0.83 0.80 0.80 0.77

(0.0192) (0.0151) (0.0130) (0.0359) (0.0101) (0.0189) (0.0741)
C-SVM 0.87 0.79 0.77 0.71 0.68 0.68 0.63

(0.0262) (0.0806) (0.0162) (0.0270) (0.0196) (0.0212) (0.0418)
MUSVM 0.97 0.92 0.91 0.87 0.84 0.85 0.80

(0.0171) (0.0129) (0.0146) (0.0148) (0.0161) (0.0230) (0.0178)
MUWSVM 0.96 0.90 0.89 0.83 0.81 0.83 0.76

(0.0132) (0.0125) (0.0111) (0.0224) (0.0123) (0.0277) (0.0182)
SCI 0.80 0.87 0.91 0.92 0.93 0.93 0.95

(0.0697) (0.0405) (0.0294) (0.0319) (0.0214) (0.0161) (0.0134)
SROSR 0.90 0.93 0.94 0.94 0.93 0.93 0.94

(0.0529) (0.0372) (0.0279) (0.0216) (0.0250) (0.0267) (0.0153)
EOR 0.90 0.95 0.96 0.96 0.97 0.96 0.97

(0.0441) (0.0232) (0.0149) (0.0119) (0.0169) (0.0092) (0.0069)

TABLE II: Variation of mean detection accuracy against dif-
ferent number of users for MOBIO dataset (standard deviation
in brackets).

intruders) to simulate the negative classes in the validation
set.For SROSR, threshold of the distribution was selected us-
ing the procedure described in Algorithm 1. For the calibrated
SVM, the operating threshold T was selected according to
T = argmaxx |Fm(x) − Fn(x)|. For all datasets, PCA was
performed on raw images and 50 dimensions were recorded
to arrive at dictionaries.

Due to the high processing involved with deep-feature

UMDAA-02
Number of Users

1 2 3 4 5 6 7
PISVM 0.53 0.52 0.51 0.48 0.50 0.50 0.50

(0.0115) (0.0480) (0.0052) (0.0052) (0.0275) (0.0385) (0.0385)
WSVM 0.57 0.53 0.52 0.49 0.50 0.50 0.50

(0.0207) (0.0480) (0.0052) (0.0052) (0.0275) (0.0384) (0.0384)
n-Class SVM 0.70 0.65 0.64 0.63 0.60 0.58 0.55

(0.0204) (0.0356) (0.0088) (0.0088) (0.0094) (0.0100) (0.0101)
C-SVM 0.70 0.65 0.64 0.64 0.61 0.57 0.54

(0.0456) (0.0513) (0.0260) (0.0260) (0.0262) (0.0264) (0.0265)
MUSVM 0.70 0.67 0.66 0.64 0.63 0.61 0.58

(0.0210) (0.0340) (0.0072) (0.0076) (0.0080) (0.0092) (0.0097)
MUWSVM 0.70 0.68 0.66 0.66 0.65 0.63 0.60

(0.0212) (0.0345) (0.0076) (0.0080) (0.0082) (0.0095) (0.0102)
SCI 0.66 0.66 0.67 0.66 0.66 0.68 0.68

(0.0469) (0.0357) (0.0340) (0.0268) (0.0234) (0.0232) (0.0186)
SROSR 0.63 0.61 0.62 0.59 0.56 0.59 0.58

(0.0542) (0.0485) (0.0500) (0.0388) (0.0258) (0.0328) (0.0230)
EOR 0.71 0.72 0.73 0.70 0.69 0.70 0.70

(0.0420) (0.0347) (0.0340) (0.0308) (0.0252) (0.0205) (0.0188)

TABLE III: Variation of mean detection accuracy against
different number of users for UMDAA02 dataset (standard
deviation in brackets).

extraction, deep-feature based authentication methods are im-
practicable to be used in continuous processes such as Active
Authentication. Therefore, state-of-the art works in AA [24]
has used hand crafted features to perform authentication.
Following this practice, we used dimensionally reduced raw
pixel intensities as the feature in our method. However, deep-
features can be easily incorporate in to our framework by using
deep-features to construct dictionaries.

A. UMDAA-01 Face Dataset

The UMDAA-01 dataset [8] contains images captured using
the front-facing camera of a iPhone 5S mobile device of
50 different individuals captured across three sessions with
varying illumination conditions. Images of this dataset contain
pose variations, occlusions, partial clippings as well as natural
facial expressions as evident from the sample images shown
in Figure 4(a) . For the SVM-based methods, facial attributes
of the images were used [24] as features with the RBF kernel.

Shown in Figure 5(a), is the variation of accuracy of differ-
ent methods for varying number of enrolled users. Eventhough
SVM-based verification schemes perform reasonably well for
the case of a single user, the performance drops significantly
as the number of users are increased. On contrary, the accuracy
of SCI is relatively lower for a single user, but increases
as the number of users increase. This is expected since the
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sparsity coefficients are likely to spread across all classes
for openset images causing SCI to decrease as the number
of classes increase. EOR yields the best performance for all
considered cases. The results corresponding to this experiment
are tabulated in Table I.

B. MOBIO Face Dataset

The MOBIO dataset [19] contains videos of 152 subjects
taken across two phases where each phase consists of six
sessions. Videos in this dataset are acquired using a standard
2008 Macbook laptop computer and a NOKIA N93i mobile
phone. For the experiments on the MOBIO dataset, only
videos captured using the mobile device were used as shown in
Figure 4(b). For the SVM-based methods, facial attributes of
each video frame were extracted using the method proposed in
[24] and an SVM with the RBF kernel was used for pairwise
matching.

Variation of detection accuracy against the number of users
for different methods are shown in Figure 5(b) and are
tabulated in Table II. Due to the less challenging nature of the
dataset compared to the UMDAA-01 dataset, all the meth-
ods yielded comparatively higher accuracies on this dataset.
MUWSVM method produces the best accuracy among all
tested cases for the single user case. But the same as in
UMDAA-01, the performance dips as the number of users
increase. However, it is not as rapid as in the earlier case. In
the case of SCI, the performance increases from 0.8 to 0.95 as
the number of users increases from one to seven. However, the
proposed method, produces the highest accuracy consistently
over 0.95 across the range of different number of users.

C. UMDAA-02 Face Dataset

The UMDAA-02 Dataset [16] is an unconstrained multi-
modal dataset where 18 sensor observations were recorded
across two month period using a Nexus 5 mobile device.
Unlike the earlier datasets, there exists a huge intra-class
variations in this dataset in terms of poses, partial faces,
illumination as well as appearances of the users as evident
from the sample images shown in Figure 4(c). For the SVM-
based methods, the HOG feature [5] was used with an RBF
kernel.

Detection accuracy corresponding to this dataset is plotted
against the number of enrolled users in Figure 5(c). The results
corresponding to this experiment are tabulated in Table III.
Unlike the other two datasets, maximum accuracy for this
dataset does not go beyond 0.75 due to the high intra-class
variations present in the dataset. This result is reasonable as
the benchmark results based on the Alexnet features and the
RBF SVM has only recorded an EER of around 0.4 [16].
Even with comparatively lower accuracy figures, the trend
of earlier datasets can be observed in this dataset. The SCI
method yielded an accuracy of 0.66 for the single user case.
That figure increased to 0.68 as the number of users were
increased to seven. The proposed method produces an accuracy
of 0.71 for the single user case. This figure stays more or less
consistent over all considered cases.

1 2 3 4 5 6 7

PISVM
ACC 0.73 0.74 0.73 0.72 0.72 0.71 0.71
TP 0.72 0.68 0.63 0.61 0.60 0.61 0.62
TN 0.74 0.80 0.83 0.83 0.84 0.81 0.80

WSVM
ACC 0.80 0.77 0.74 0.73 0.72 0.72 0.72
TP 0.71 0.67 0.64 0.61 0.61 0.60 0.62
TN 0.89 0.87 0.84 0.85 0.83 0.84 0.82

n-Class SVM
ACC 0.87 0.82 0.78 0.75 0.73 0.71 0.69
TP 0.88 0.88 0.89 0.90 0.94 0.97 0.99
TN 0.86 0.76 0.67 0.60 0.52 0.45 0.39

C-SVM
ACC 0.88 0.83 0.78 0.74 0.71 0.69 0.67
TP 0.92 0.94 0.94 0.95 0.95 0.96 0.96
TN 0.84 0.72 0.62 0.53 0.47 0.42 0.38

MUSVM
ACC 0.88 0.84 0.82 0.80 0.78 0.76 0.75
TP 0.86 0.83 0.82 0.82 0.83 0.84 0.85
TN 0.91 0.85 0.82 0.78 0.73 0.68 0.65

MUWSVM
ACC 0.88 0.84 0.81 0.80 0.78 0.77 0.76
TP 0.86 0.83 0.85 0.81 0.82 0.84 0.86
TN 0.91 0.86 0.78 0.79 0.74 0.70 0.66

SCI
ACC 0.85 0.85 0.87 0.90 0.92 0.93 0.94
TP 0.88 0.87 0.89 0.93 0.93 0.91 0.91
TN 0.82 0.83 0.85 0.87 0.91 0.95 0.97

SROSR
ACC 0.88 0.92 0.90 0.90 0.90 0.89 0.91
TP 0.92 0.97 0.91 0.88 0.89 0.86 0.89
TN 0.84 0.87 0.89 0.92 0.91 0.92 0.93

EOR
ACC 0.90 0.93 0.92 0.93 0.93 0.94 0.94
TP 0.92 0.95 0.93 0.96 0.95 0.96 0.95
TN 0.88 0.91 0.91 0.90 0.91 0.92 0.93

TABLE IV: Breakdown of the mean detection accuracy in
the UMDAA01 dataset corresponding to different number of
enrolled users.

D. Breakdown of the Mean Accuracy

It is the usual practice to measure the performance of an AA
system based on the mean detection accuracy. Nevertheless,
it is interesting to investigate the breakdown of the mean
detection accuracy (ACC) into true positive accuracy (TP) and
true negative (TN) accuracies. In Table IV, we present this
breakdown for the UMDAA01 dataset.

According to Table IV, both n-class SVM and c-SVM are
able to detect own class samples with high accuracy when
the number of users are increased. But in doing so, they
have produced higher number of false positives as well. Since
the SVM-based methods do not have any information about
outside class samples, it is possible that they have opted
for thresholds such that majority of the positive samples are
accepted. Doing so increases the volume of the positive space
as the number of users increase - thereby increasing the false
positive rate. Comparatively, in openset methods (PISVM and
WSVM), where the models are developed with the objective
of reducing the open-space risk, both true positive rate and
true negative rate decrease when the number of users are
increased. In the MUSVM and MUWSVM algorithms, that
are proposed specifically for the multiple AA problem, true
positive rate stays more or less constant when the number
of users are increased. In both SCI and SROSR, the true
negative accuracy has increased with the number of users. In
both of these methods, having more users improve the ability
of the model to reject an unknown sample. For example, in
SCI, when more users are enrolled, it is likely that sparsity
coefficients of an unknown person are very well spread out
across the enrolled users. However in SROSR, true positive
rate drops slightly in the process. Similar to SCI, in EOR,
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Fig. 5: Experimental results comparison based on mean detection accuracy. Variance of observed results are denoted using the
error-bar.

gradual increase in both true positive rate and false positive
rate can be observed.

E. Impact of EVT

A key contribution of our work is that we introduce an EVT-
based tail distribution modeling and an automated threshold
selection mechanism based on Hall’s bootstrap method. In
this section, we investigate the impact of these proposals on
decision making using the MOBIO face dataset. Detection
accuracy results of residuals over the 95%th percentile of the
matched residual distribution was considered for this study.
Since Pd captures the probabilistic information of the matched
scores, it was considered for evaluation of results. It should
be noted that the tail region, where the maximum amount
of confusion is occurred, yields considerably lower detection
accuracies as compared to that of Table II.

Shown in Figure 6 is the histogram of automatically de-
tected thresholds from the proposed algorithm. According
to Figure 6, 0.95% had been detected as the threshold in
majority of the time. Based on this information, we used a
fixed threshold of 0.95% to test the impact of accuracy in our
experiment. We also considered the case where 0.7% is used as
the threshold. Finally, we considered the case where the tail
of distributions are represented using empirical distributions
for comparison.

Matched Residual Threshold
0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

0

20

40

60

80

Non-matched Residual Threshold
0.6 0.7 0.8 0.9

F
re

qu
en

cy

0

50

100

Fig. 6: Histogram of automatically detected thresholds.

Tabulated in Table V are the experimental results obtained
after 50 iterations. Obtained results suggest that EVT-based
modeling of the tail has improved performance by 1.12%
compared to modeling the tail using an empirical distribution.
For the case of modeling the tail with a fixed threshold of
0.95%, this improvement is 0.84%. This result shows that
the few cases where the automated threshold selection has

picked a different threshold has had a significant impact on
the detection accuracy. This effect is more apparent when
a generic threshold such as 0.7% is selected without any
informed knowledge.

0.7% 0.95% Automated Empirical
Accuracy 0.7529 0.7589 0.7653 0.7568
Std. Dev. 0.0226 0.0221 0.0215 0.0218
Increment 1.65% 0.84% - 1.12%

TABLE V: Impact of modeling the tail and automated thresh-
old selection.

F. Ablation Study

The proposed EOR score function defined in equation 7 has
two contributory terms; namely p(d) and intrusion indicator
P (I). In this subsection we analyze the contribution of each
individual component in detection accuracy. In table VI we
present mean detection accuracy across different number of
users for the three datasets considered for each component in
the loss function. In general, it is observed that performance
of P (I) is increasing with number of enrolled users. In
contrast, performance of P (d) is high even for the case of a
single user and improves slightly when two users are enrolled.
Performance of P (d) doesn’t fluctuate much when number of
users are increased. In all cases, fusion of the two components
have resulted in a better performance.

G. Modeling of Non-matched Distributions

In the proposed method, when multiple users are enrolled,
non-matched residual distribution for a subject is obtained
based on the remainder of enrolled users. Previous work
[25] has also used the same technique to obtain non-matched
distributions. However, since our work is based on a generative
model, we argue that openset images are likely to follow a
common distribution.

To investigate the validity of this assumption, we conducted
an experiment using the UMDAA-01 dataset. With respect
to its first subject, we generated non-matched distribution for
each other subject. Shown in Figure 7(a) is the plot of obtained
distributions. By observation it appears that there exists a high
degree of similarity between these non-matched distributions.
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UMDAA-01 MOBIO-01 UMDAA-02
Number of Users Number of Users Number of Users

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
P(I) 0.85 0.85 0.87 0.90 0.92 0.93 0.94 0.80 0.87 0.91 9̇2 0.93 0.93 0.95 0.66 0.66 0.67 0.66 0.66 0.68 0.68
P(d) 0.90 0.93 0.91 0.92 0.92 0.91 0.92 0.90 0.94 0.95 0.94 0.94 0.94 0.94 0.71 0.72 0.71 0.70 0.68 0.69 0.68
EOR 0.90 0.93 0.92 0.93 0.93 0.94 0.94 0.90 0.95 0.96 0.96 0.97 0.96 0.97 0.71 0.72 0.73 0.70 0.69 0.70 0.70

TABLE VI: Ablation study of the proposed loss function. Mean accuracy of each component against different number of users.

Subjects 1 7 10 15 20 25 30
SCI 0.80 0.95 0.98 0.97 0.98 0.98 0.99
SROSR 0.90 0.94 0.95 0.94 0.91 0.87 0.91
EOR 0.90 0.97 0.99 0.98 0.98 0.98 0.99

TABLE VII: Mean detection accuracy against different number
of users on the MOBIO dataset.

In order to quantify this result, similarity between each pair of
distributions were calculated using Kolmogorov-Smirnov test
and the confusion matrix shown in Figure 7(b) was constructed
using the resulting p values. Here, we have included quantified
results of the first subject based on the matched distribution
as a baseline for comparison.

As evident from Figure 7(b), there is a high degree of
difference between the residual distribution of the first subject
and the rest. In addition, except for a couple of cases, there is
a high similarity between each non-match distribution. Since
there is a high probability for the non-matched distribution
to take a common form, it is possible to approximate this
distribution by using the mean non-matched distribution of
few users. In the extremal case, non-matched distribution is
possible to be approximated using the non-matched distribu-
tion of a single user. It should be noted that this result may not
hold true for a arbitary matching rule. However, empirically
this results holds for the SRC based matching rule that we
have used in this work.

H. Effect of Having Large Number of Enrolled Users

Due to the nature of the targeted use case, proposed algo-
rithm is intended to be used with fewer number of enrolled
users. This is the reason why experiment results reported
in section IV was reported upto seven users. However, it is
interesting to see the sensitivity of the proposed algorithm for
a relatively larger amount of enrolled users. In this sub section,
we investigate the effect of the algorithm as the number of
enrolled users increase.

For this purpose, we considered the MOBIO dataset and
increased the number of enrolled users in several steps. The
recorded detection accuracy values for SCI, SROSR and EOR
are tabulated in Table VII. Acording to Table VII, as the
number of users increase, the performance of EOR converges
to that of SCI. This phenomenon can be explained based
on the adaptive weight assignment scheme in equation (7).
As the number of enrolled users increase, the first term of
the equation becomes more dominating, thereby essentially
capturing information about the relative sparsity same as SCI
does. As a result, performance of EOR becomes comparable
with SCI.
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Fig. 7: Effectiveness of the non-matched distribution modeling.
(a) Non-matched distributions of the 1st subject of UMDAA-
01 dataset. (b) Confusion matrix denoting the similarity be-
tween the non-matched distributions.

I. Impact of Dictionary Size

In all dictionary-based authentication systems, the detection
performance is positively correlated with the number of atoms
(number of elements in the dictionary). It is the usual practice
to use over-complete dictionaries, where the number of atoms
is greater than the dimensionality of data, for this purpose. In
our experiments we considered the limiting case; where the
number of atoms per a user is equal to the feature dimension
in the extreme case (where only one user is enrolled). In this
sub-section, we investigate the impact on detection accuracy
when the dictionary size is further reduced. We varied the
number of atoms from 10 to 50 in steps of 10 and repeated the
experiments using the UMDAA01 dataset for the case of two
users. The corresponding results are reported in Table VIII.
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In addition to EOR, in Table VIII, we have tabulated the
performance of SCI as a reference.

Atoms 10 20 30 40 50
EOR 0.85 0.90 0.92 0.93 0.93

(0.0091) (0.0076) (0.0012) (0.0018) (0.0017)
SCI 0.74 0.83 0.84 0.84 0.85

(0.0071) 0.0029 0.0018 0.0017 0.0021

TABLE VIII: Impact of the dictionary size on the detection
accuracy.

As can be seen from Table VIII, for a very small dictionary
size, there is a drop of performance in the proposed method.
However, when the dictionary size is increased more than
30, the system performance does not change substantially. It
should be noted that, this trend is also observable in SCI.
Based on this observation, it is possible to obtain reasonable
amount of performance even by selecting 30 atoms for the
considered dataset. However, this number is dataset dependent
and is generally determined by the amount of variation present
in the dataset.

V. CONCLUSION

In this paper, we introduced multiple user AA problem and
motivated the need of having a specific algorithm targetting the
said problem. We presented a two fold recognition algorithm,
EOR, which consists of an identification step and a verification
step. We performed identification based on the residuals of the
SRC algorithm. For verification, we modeled the matched and
non-matched residual distributions using a semi-parametric
distribution based on EVT. We proposed an automated thresh-
old selection scheme to be used in extreme value distributions.
In addition, sparsity concentration of the sparse coefficients
was exploited to further increase the verification accuracy.
In the process, we studied the impact of various introduced
aspects of the EOR algorithm and validity of assumptions
made.

We demonstrated the applicability of the proposed algorithm
using three publicly available mobile face datasets. It was
observed that verification-based algorithms generally perform
well when low number of users are enrolled. On the other
hand, identification-based algorithms required larger number
of users to obtain good performance. However, good perfor-
mance of both of these cases were confined to extremes with
respect to number of users. On the other hand, introduced
EOR method yielded superior performance consistently as the
number of users were varied. Hence, it can be concluded that
EOR is suited for multiple AA in mobile devices where the
number of users may vary.
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