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Abstract

Active Authentication(AA) systems operating on mobile
devices are expected to continuously authenticate the en-
rolled user based on enrolled sensor observations. Due to
unavailability of training samples from negative classes, AA
can be viewed as a one-class classification problem. In
this work we introduce a Single-class Minimax Probabil-
ity Machine(1-MPM) based solution called Dual Minimax
Probability Machines(DMPM) for AA applications. In con-
trast to 1-MPM, proposed method has two notable differ-
ences. 1) We learn an additional hyper-plane to separate
training data from the origin by taking into account max-
imum data covariance. 2) We consider the possibility of
modeling the underline distribution of training data as a
collection of sub-distributions. Intersection of negative half
spaces defined by the two learned hyper-planes is consid-
ered to be the negative space during inference. We demon-
strate the effectiveness of the proposed mechanism by per-
forming evaluations on three publicly available face based
AA datasets.

1. Introduction

Both security and technology community witnessed a
rapid paradigm shift in mobile device authentication in re-
cent years. During this time, traditional passive device
authentication mechanisms such as passwords and swipe-
patterns have been largely replaced by biometric based au-
thentication methods (such as fingerprint and face based
systems). Although biometrics based passive authentica-
tion provide more security compared to traditional means, it
is still vulnerable to intrusions occurring between two con-
secutive authentications. To this end, Active Authentica-
tion(AA) has been proposed as an alternative solution.

The goal of active authentication is to continuously mon-
itor sensor data of the device and to perform continuous
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Figure 1. Active Authentication(AA) as a one-class problem. De-
vice owner provides a sample set of observations (face images in
this case) during enrollment. Based on enrolled data, goal of AA
is to continuously obtain samples of the device user and perform
authentication. Since the device performs authentication solely
based on enrolled observations it is a one-class problem.

user authentication [25]. In recent works, various biomet-
ric modalities including frontal face image [9], swipe pat-
terns [22], key-pad typing patterns and gait [40], has been
proposed for AA. In particular, frontal-face based AA has
emerged as a strong candidate largely owing to advances
in face recognition technology [23]. Although users find
face-based authentication convenient, sharing captured face
images (or its representations) with a centralized system
(or potentially with other devices) could arise complica-
tions in terms of data privacy. Therefore, in general, AA
is treated as a one-class classification problem where a clas-
sifier is trained solely on device owner’s biometric samples
as shown in Figure 1.

Due to constraints in the problem formulation, one-class
classification based AA becomes a very challenging prob-
lem. In multi-class classification, discriminative classifiers
are learned by taking into account relative spread of differ-
ent classes. Such a discriminative approach is not possible
in one-class classification due to the absence of negative
classes during training. As a result, one-class classifica-
tion is traditionally treated as a quantile estimation problem
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- where a compact boundary for the class is sough in the
feature space. One-class support vector machine(OCSVM)
[32] and Support Vector Data Descriptor(SVDD) [38] are
two of widely used quantile estimation methods for this pur-
pose in the literature. As shown in Figure 2, these two for-
mulations try to find the tightest half-space and the tightest
hyper-ball that contain training data respectively.

In our work, We view AA problem as an equivalent prob-
lem to novelty detection, where we treat data of enrolled
user as nominal data and data of intruders as novel data.
We build our solution on the foundations of a classical nov-
elty detection method - Single class Mini-max Probabil-
ity Machines(1-MPM)[21]. Similar to one-class SVM, 1-
MPM tries to find the tightest half space that contains train-
ing data. But, different from one-class SVM, MPM strives
to arrive at better separating hyper-plane by taking second
order statistics of data into consideration as shown in Fig-
ure 2. Building on foundations of 1-MPM, we make follow-
ing three contributions in this work:

• We learn an additional hyper-plane considering projec-
tion that maximizes covariance of data. By combining
the learned hyper-plane with the decision boundary ob-
tained through 1-MPM, we narrow down the negative
space in to a polyhedron as illustrated in Figure 2.

• We extend one-class classification based on 1-MPM
for the case where underline data distribution is not
homogeneous - i.e. when there exists a collection of
sub-distributions which is often the case with face data.

• We obtain state of the art one-class classification re-
sults on three publicly available face datasets.

2. Related Work
In this section we briefly discuss work related to one-

class Active Authentication. In addition, we briefly discuss
developments in face representation, one class learning and
open-set learning.
Active Authentication. As described in the preceding sec-
tion, AA aims at producing a classifier solely based on
sample observations obtained from device users. Although
some works have investigated the problem of multiple-user
AA [27], AA is conventionally studied for the case of a sin-
gle device user. Effectiveness of AA has been studied un-
der various biometric modalities including gait [40], [17] ,
keystroke, voice, swipe patterns [22], [34], [12], [19], and
face images [9], [14], [23], [26]. However, majority of pre-
vious works focus on either devising new system architec-
tures [9] or better features [22], [34] for recognition. In con-
trast, in our work, we focus on developing a better one-class
classifier for the purpose of AA.
Face representation. Face representation has evolved dra-
matically in recent years with the advent of deep-learning.

Hand crafted features such as Gabour, LBP [37] and HOG
[10] have been replaced with more efficient deep-learning
based descriptors [36], [7]. It was later shown that perfor-
mance in face recognition, particularly in verification, can
be improved when both verification and classification tasks
are learned jointly [35]. Both VGG-Face [24] network and
FaceNet [33] architectures take advantage of this fact by in-
tegrating triplet loss in the learning procedure. Although it
is possible to learn one-class features through autoencoder
networks [5] or Generative Adversarial Networks [30], such
introverted approaches produce less discriminative features
compared to representations obtained using aforementioned
methods. Therefore, it is the norm in one-class face based
AA applications to use classical one-class learning tools on
top of deep-features for recognition [23].
One-class learning. One-class learning is a tool used in
many biometric applications [13], [1], [28]. It is tradition-
ally treated either as a density estimation problem or a quan-
tile estimation problem. In the former case, distribution
of the given class is approximated using a predetermined
distribution - where distribution is commonly chosen to be
Gaussian or a mixture of Gaussians [18], [29]. In compari-
son to density estimation, quantile estimation methods have
been applied more commonly for various one-class learning
applications. One-class SVM[32] is one of the earliest, and
most commonly used one-class learning schemes proposed.
Here, the best hyper-plane that separates a high portion of
data from the origin is sought. In contrast, Support Vec-
tor Data Descriptor(SVDD) [38] tries to construct a hyper-
ball that contains a high proportion of data in the interior of
the hyper-ball. Single class MiniMax probability machines
(1-MPM) [21], seeks to find a hyper-plane similar to that
of one-class SVM by taking second order statistics of data
into consideration. As a result, 1-MPM ends up learning a
decision boundary that generalize well to the underline con-
cept. Further, one-class classification can be viewed as an
extreme case of open-set classification. In order to reduce
false positives due to open-set samples, one-vs-set machine
introduced in [31] constructs a slab parallel to the SVM de-
cision boundary. A similar strategy is employed in one-
class slab SVM introduced in [15].

3. Proposed Method
We build the proposed method using single class

MPM(1-MPM) as a foundation with two noticeable im-
provements. In this section, we first review 1-MPM in
detail. Initially we consider the non-robust version of 1-
MPM proposed in [21], where we set both robust parame-
ters to zero. Then we introduce the proposed modifications
to the 1-MPM to arrive at Dual-minimax probability ma-
chines(DMMP). Finally we introduce the robust version of
DMMP.
Single-class MPM. For given set of data x ∼ (x̂,Σx)
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Figure 2. Comparisons of one-class classification methods. Classification planes obtained for data denoted by green circles in the first
picture are shown. Negative spaces learned by both one-class SVM and SVDD overlaps with regions where positive samples appear.
Comparatively, 1-MPM has learned a tighter hyper-plane agreeing with structure of data. Negative space learned by considering directions
that minimizes and maximizes data variance in the proposed method provides a very low overlap with sample data.

(where data is from any distribution with mean x̂ and co-
variance Σx), 1- MPM seeks to find a hyper-plane (a, b)
with a ∈ Rn \ {0}, b ∈ R at least with a probability of
α, such that data lies in the positive half space defined by
{z|z ∈ Rn,aT z ≥ b} even in the worst case scenario. Sim-
ilar to in one-class SVM, 1-MPM tries to maximize the dis-
tance between the origin and learned hyper-place with the
objective of arriving at a tighter lower bound to the data.
With this background, the objective function of single class
MPM can be formulated as in,

max
a6=0,b

b√
aTΣxa

s.t. inf
x∼(x̂,Σx)

P(aTx ≥ b) ≥ α,

when the distance between the origin and the hyper-
plane is measured in terms of Mahalonabis distance with re-
spect to Σx. Since this problem is positively homogeneous
in (a, b) and because a 6= 0 is always satisfied when b > 0,
value of b is taken to be one without loss of generality. Then,
a equivalent optimization problem can be obtained by min-
imizing the reciprocal of Mahalonobis distance as in,

min
a

√
aTΣxa s.t. inf

x∼(x̂,Σx)
P(aTx ≥ 1) ≥ α. (1)

Using the core MPM theorem in [20], where it is stated
that infx∼(x̂,Σx) P(aTx ≥ b) ≥ α is equivalent to b −
aT x̂ ≥ K(α)

√
aTΣxa, where K(α) =

√
α

1−α , equa-
tion 1 can be re-written as,

min
a
||aTΣ

1
2
x ||2 s.t. 1− aT x̂ ≥ K(α)||aTΣ

1
2
x ||2. (2)

Here we note that for a real symmetric covariance ma-
trix Σ

1
2
x always exists. Since optimization problem shown

in equation 2 is a second order cone program it can be effi-
ciently solved using convex optimization tools.
Maximum variance MPM (MVMPM). When the derived
optimization problem in equation 1 is solved, the solver is

effectively searching for a feasible vector a that minimizes√
aTΣxa. However, we note that aTΣxa is the covari-

ance of data projected on vector a. Therefore, by solving
equation 1, 1-MPM is effectively searching for a feasible
direction along which data will have a very low variance. In
fact, in an unconstrained setting, optimal solution of equa-
tion 1 would be vmin(Σx), the Eigen vector corresponding
to the lowest Eigen value of Σx, as mina,||a||2=1 aTΣxa =
vmin(Σx).

However, studies on Principle Component Analy-
sis(PCA) suggests that selecting a projection that minimizes
covariance is a poor choice for data representation [2]. PCA
suggests that directions along where covariance is largest
are the most sensible choices in this regard. It is shown that
such directions are less effected by noisy variations of data
[2]. Based on this background, we propose to learn a second
hyper-plane (ã, b̃) such that the data projected on the hyper-
plane ã has the largest possible variance. Specifically we
aim to solve,

max
ã

√
ãTΣxã s.t. inf

x∼(x̂,Σx)
P(ãTx ≥ 1) ≥ α̃. (3)

Here we note that maximizing
√

ãTΣxã is equivalent to
minimizing

√
ãTΣx

−1ã. Optimization problem in equa-
tion 3 can be transformed into another second order cone
program of the form,

min
ã
||ãTΣ

− 1
2

x ||2 s.t. b− ãT x̂ ≥ K(α̃)||ãTΣ
− 1

2
x ||2. (4)

Solution of equation 4 gives a second hyper-plane (ã, b̃)
which can be used for decision making.
Generalizing for Multiple Sub-distributions. In devis-
ing hyper-planes (a, b) and (ã, b̃) in preceding sub-sections,
second order statistics were exploited under the assumption
that all data points are sampled from a single underline dis-
tribution. However, in face representation, images of the
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Figure 3. Effect of having sub distributions in data. Shown in Fig-
ure is representation of face images belonging to a single user.
Projection vector that minimizes covariance is shown by a gray
solid line (a) 1-MPM considers overall second order statistics of
the data. (b) When data is clustered, two clusters with different
sub-distributions can be identified. The projection vector obtained
in this case is more representative of data.

same identity with variations (such as distinct poses) are
likely to lie in different face sub-spaces. Therefore, for
applications in face recognition, it is more reasonable to
assume that data are sampled from a set of distinct sub-
distributions.

When multiple sub distributions exist, approximating the
data spread using a single covariance matrix is sub-optimal
as illustrated in in Figure 3. Data distribution shown in Fig-
ure 3 has two identifiable clusters. Shown in sub-figures (a)
and (b) are minimum variance direction with respect to the
distribution when existence of one and two clusters are as-
sumed respectively. Here, we note that minimum variance
directions sough in the former case does not agree with the
spread of data. This fact is valid for both minimum and
maximum variance directions. In such situations, decision
boundaries given by 1-MPM and maximum variance MPM
too will be sub-optimal. Sub-optimality of 1-MPM in the
presence of sub-distributions has been discussed in [16] in
the context of binary classification. However, ours is the
first work that addresses this issue with respect to one-class
classification.

In order to mitigate the effect of sub-distributions, we
propose to leverage both local and global level information.
In particular, we view the given dataset both as a single clus-
ter and as a collection of sub-clusters in decision making. In
our approach, first we determine the number of clusters n in
the dataset using Caliński-Harabasz[4] method. Then, data
is clustered into n clusters using the Ward’s method[39].
We calculate global mean and variance (x̂G,Σx,G) with re-
spect to the whole dataset along with cluster-wise statistics
(x̂i,Σx,i) for each ith cluster. Since we require to find the
direction with minimum/maximum variance, we propose
to optimize over cumulative covariance of each individual

cluster
∑
i

√
aTΣx,ia while constraints are defined with

respect to global statistics (x̂G,Σx,G). In the following
sub-section we generalize 1-MPM and maximum-variance
MPM for the case of multiple sub-distributions to arrive at
the proposed algorithm - Dual MPM (DMPM).
Robust MPM formulation. In MPM versions presented in
the preceding subsections, it is assumed that sample mean
and covariance is a reasonable estimate of true statistics in
the underline distribution. However, in practice, this may
not always be the case. Therefore, decision boundaries ob-
tained with the current formulation will be highly suscep-
tible to population noise. As a preventive measure [21]
presents a robust version of 1-MPM.

In the robust 1-MPM formulation, it is assumed that dif-
ference between sample covariance and true covariance of
the distribution will not exceed ρ and mahalanobis distance
between sample mean and true mean with respect to true
covariance will not exceed ν2. Under these assumptions, it
is shown in [21] that aTΣxa term in equation 1 gets substi-
tuted by aT (Σx + ρIn)a while K(α) term is changed into
K(α) + ν. With the same argument, assuming that differ-
ence between sample covariance and true covariance of the
distribution will not exceed ρ̃ for Σ−1x , the robust version of
MVMPM can be obtained by substituting ãTΣx

−1ã term
in equation 3 by ãT (Σx + ρ̃In)

−1
ã.

Single-class Dual MPM (DMPM). In this work we pro-
pose to use both hyper-planes (a, b) and (ã, b̃) collectively
for decision making. Specifically, we treat the union of
positive half spaces of the two hyper-planes as the positive
space with respect to the given class. Given global and local
clusters (x̂G,Σx,G) and (x̂i,Σx,i) for i = 1 . . . c, where c
is the number of clusters , We solve the following joint-
optimization problem:

minimize
a,ã

c∑
i=1

||aT (Σx,i + ρIn)
1
2 ||2 + ||ãT (Σx,i + ρ̃In)

− 1
2 ||2

subject to (K(α̃) + ν)||ãT (Σx,i + ρ̃In)
− 1

2 ||2 − 1 ≤ ãT x̂

(K(α) + ν)||aT (Σx,i + ρIn)
1
2 ||2 − 1 ≤ aT x̂,

(5)
to find hyper-plane parameters a and ã. Since products

of a and ã do not appear in the optimization statement, this
problem can be solved independently for a and ã using two
second order cone programs. Once hyper-plane parameters
are obtained, given a test sample y, identity of the sample
would be assigned to be negative if aTy < 1 ∩ ãTy < 1,
and positive otherwise.

4. Experiments
We evaluate the effectiveness of the proposed method

over three publicly available mobile active authentication
datasets with the face modality. As baseline comparisons



we considered following one-class classification methods:

1. Linear One-class SVM (1SVM) [32]. LibSVM
package[8] was used to implement one-class SVM.

2. Linear SVDD (SVDD) [38]. SVDD extension to Lib-
SVM provided in [6] was used.

3. Kernel one-class SVM (k1SVM) [32]. LibSVM im-
plementation of one-class SVM was used with a RBF
kernel.

4. Kernel SVDD (kSVDD) [38]. SVDD performed on
a higher dimensional space using a RBF kernel. Lib-
SVM extension found at [6] was used for implementa-
tion.

5. Single class MPM (1MPM)[21]. Implementation of
the original work of single class MPM was done by
the authors.

6. One-class kNFST (kNFST) [3]. A single null-space
direction is found where intra-class distance of the
class is low. Code released by authors was used for
evaluations.

7. One-vs-set machine (1vsSet) [31]. An additional
hyper-plane is learned to reduce open-space risk. Im-
plementation is based on the code provided by authors.

All baselines along with the proposed method was evalu-
ated using a common protocol. Each dataset was split into
two halves in terms of classes. Classes of the second half of
the split were considered to be unknown classes for all tests.
During testing, classes of the first split was considered one
at a time as the known class to perform one-class classifi-
cation between the known class and all unknown classes.
Objects of the known class is further split into two to form
a training set and a testing set. In our experiments we used
200 samples taken randomly from the training set to train
the classifier. Hyper-parameters of all methods were cho-
sen based on a validation set. For all MPM based meth-
ods we set ν = 0 [21]. For all tests we used 4096 dimen-
sional VGG-Face face descriptor [24] as the feature. Prior
to testing, we first performed principle component analy-
sis to reduce the dimension of the feature to 199 to make
sure covariance matrices are full rank. In order to compare
performance of each method, we used average detection ac-
curacy(ADA) defined as, ADA = TP+TN

2 ,where, TP and
TN are the true positive rate and true negative rate respec-
tively. For all experiments, obtained average detection ac-
curacy results for each method are tabulated in Table 1.

5. Results
In this section we first present experimental results car-

ried on UMDAA01, MOBIO and UMDAA02 datasets.

Then, we analyze the impact of each component of the pro-
posed system using a ablation study. The section is con-
cluded with a discussion about the ability of the proposed
method to generalize to larger test sets.

5.1. UMDAA01 Face Dataset

The UMDAA-01 dataset [14] contains images captured
using the front-facing camera of a iPhone 5S mobile device
of 50 different individuals captured across three sessions
with varying illumination conditions. Images of this dataset
contain pose variations, occlusions, partial clippings as well
as natural facial expressions as evident from the sample im-
ages shown in Figure 4(a). For our experiments we concate-
nated images from all three sessions to form 50 classes. Ac-
cording to Table 1, Both linear versions of one class SVM
and SVDD have obtained average detection results for this
dataset. We note that 1-MPM, kernel SVDD and kernel one
class SVM has obtained average detection accuracy in mid
70%. However, proposed method has achieved the best per-
formance at 82.5% improving performance of 1-MPM by
6%.

5.2. MOBIO Face Dataset

MOBIO dataset contains images and voice samples of
150 individuals sourced across six locations. Data of each
individual is sourced through either smartphone devices or
laptops. In this experiment we only consider face images of
the dataset. Sample images of the dataset are shown in Fig-
ure 4(b). Comparative to the other two datasets considered
in the paper, MOBIO contains less variations and mostly
front-facing face images as evident from Figure 4. Never-
theless, this dataset provides means to understand the stabil-
ity of methods for significantly higher number of users. As
evident in Table 1, MPM based methods have demonstrated
superior performances in this dataset. Performance of other
methods are comparable to that of UMDAA01. In partic-
ular, we note our method has reported an improvement of
more than 5% compared to 1-MPM.

5.3. UMDAA02 Face Dataset

The UMDAA-02 Dataset [23] is an unconstrained mul-
timodal dataset with 44 subjects where 18 sensor observa-
tions were recorded across two month period using a Nexus
5 mobile device. Authors of [23] have made face modal-
ity and touch-data modality publicly available. In our work
we only consider the face modality to perform tests. A
sample set of images obtained from this data set is shown
in Figure 4(c). UMDAA02 is a more challenging dataset
compared to UMDAA01 and MOBIO as apparent from the
sample images shown in Figure 4. In particular, we note
the existence of a huge intra-class variations in this dataset
in terms of poses, partial faces, illumination as well as ap-
pearances of the users. In this dataset, we first sorted all 44
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Figure 4. Sample images taken from the two Mobile AA datasets used for testing. (a)UMDAA01. (b)MOBIO. (c) UMDAA02. Each
column shows multiple images captured from a single user.

Table 1. Tabulation of average detection accuracy for considered one-class classification methods for UMDAA01 and UMDAA02 datasets
(variance is indicated within parenthesis).

1SVM[32] k1SVM[32] SVDD[38] kSVDD[38] kNFST[3] 1vsSet[31] 1MPM[21] DMPM

UMDAA01 0.632 0.748 0.582 0.763 0.560 0.670 0.768 0.825
(0.004) (0.004) (0.007) (0.013) (0.003) (0.005) (0.003) (0.007)

MOBIO 0.622 0.731 0.615 0.701 0.567 0.593 0.816 0.869
(0.002) (0.009) (0.018) (0.009) (0.012) (0.017) (0.003) (0.001)

UMDAA02 0.614 0.649 0.515 0.550 0.556 0.538 0.722 0.760
(0.008) (0.004) (0.007) (0.007) (0.003) (0.003) (0.006) (0.007)

subjects in terms of the number of images and following the
same protocol as before, we considered first 22 subjects as
known classes. The remaining 22 subjects were considered
to be unknown. In Table 1, we notice a drop in performance
in each method compared to other datasets. This is not sur-
prising due to the challenging nature of the dataset. In this
dataset, one-class SVM has performed better than SVDD
both in linear and kernel versions. Proposed method is able
to register best detection accuracy by improving 1-MPM by
a margin of nearly 4%.

5.4. Ablation Study

The presented method proposes two modifications on
top of the classical 1-MPM algorithm. In this subsec-
tion we investigate the effect of each individual proposal
on performance. We carried out experiments using max-
imum variance MPM(MV-MPM) and 1-MPM with multi-
ple sub-distributions(MD-MPM) introduced earlier in the
text. Obtained average detection accuracy values are tab-
ulated in Table 2. First, we note that in MOBIO dataset,
MD-MPM has not introduced an improvement on top of 1-
MPM in terms of mean detection accuracy. Since MOBIO
contains only front-facing images, this observation is justi-
fiable when it is assumed that data can be approximated by
single covariance matrix. On other two datasets, we note
that considering the existence of multiple sub-distributions
have improved performance of 1-MPM marginally. In com-
parison, Maximum-Variance MPM have obtained nearly a
3% gain in detection accuracy in both UMDAA01 and UM-

Table 2. Ablation study on how each component of the proposed
method influences on recognition performance. Average detection
accuracy values are tabulated with variance figures shown within
parenthesis. Here we note that Maximum variance MPM performs
better than 1-MPM.

1MPM MV-
MPM

MD-
MPM

DMPM

UMDAA01 0.768 0.793 0.769 0.825
(0.006) (0.005) (0.003) (0.007)

MOBIO 0.816 0.816 0.816 0.869
(0.006) (0.005) (0.004) (0.007)

UMDAA02 0.721 0.742 0.739 0.760
(0.003) (0.003) (0.003) (0.007)

DAA02. This observation validates our argument on the
suitability of using maximum covariance direction for one-
class classification. Dual-MPM which takes into account
all contributions of the paper has achieved the best detec-
tion accuracy performances across both datasets.

5.5. Impact of Number of Unknown Classes

In all experiments conducted above, we kept the number
of unknown classes fixed during testing. In this subsection,
we investigate the impact of number of unknown classes
has on detection accuracy. We conducted an experiment on
MPM based methods using UMDAA01 dataset. We con-
sidered first four classes one at a time as enrolled classes
and changed number of unknown classes from 22 to 37 in



Table 3. Impact of number of unknown classes have on perfor-
mance. DMPM is less affected by when number of unknown
classes are increased compared to 1-MPM.

# of unknown
classes

37 32 27 22

1-MPM 0.689 0.690 0.690 0.725
(0.016) (0.016) (0.016) (0.025)

DMPM 0.740 0.742 0.742 0.746
(0.029) (0.030) (0.030) (0.031)

steps and evaluated classification accuracy with respect to
remaining classes. Obtained results for this experiment is
tabulated in Table 3. Based on the tabulations in Table 3, it
is evident that detection accuracy decreases for both cases
when number of unknown classes are increased. This drop
is justifiable as decision ambiguity increases with number
of unknown classes [11]. However, a drastic drop in per-
formance can be observed for 1-MPM when number of un-
known classes are increased from 22 to 27. Performance
drop in DMPM is not as significant. This experiment em-
pirically shows that DMPM is more robust to the change of
number of unknown classes compared to 1-MPM.

6. Conclusion
In this paper we introduced a one-class classification

method targeting the application of face-based Active Au-
thentication. We developed our solution based on single-
class Minimax Probability Machines(1-MPM). We argued
that a better decision hyper-plane compared to 1-MPM
can be found by considering the maximum variance direc-
tion of data and we provided means to find such bound-
ary (MVMPM). In our experiments we showed that de-
cision boundary found in this manner is indeed better
than the decision boundary produced by 1-MPM. Further,
We proposed fusing positive hyper-planes of 1-MPM and
MVMPM to obtain a narrower negative space. Finally,
we generalized the proposed framework to the case where
underline distribution has multiple sub-distributions. Pro-
posed method was compared against standard one-class
classification frameworks using three publicly available
face-based AA datasets. In all datasets, proposed method
demonstrated an improvement of 4%-6% compared to 1-
MPM.
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