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Abstract

We propose a novel Convolutional Coding-based Rain
Removal (CCRR) algorithm for automatically removing
rain streaks from a single rainy image. Our method
first learns a set of generic sparsity-based and low-rank
representation-based convolutional filters for efficiently
representing background clear image and rain streaks, re-
spectively. To this end, we first develop a new method for
learning a set of convolutional low-rank filters. Then, using
these learned filter, we propose an optimization problem to
decompose a rainy image into a clear background image
and a rain streak image. By working directly on the whole
image, the proposed rain streak removal algorithm does not
need to divide the image into overlapping patches for lean-
ing local dictionaries. Extensive experiments on synthetic
and real images show that the proposed method performs
favorably compared to state-of-the-art rain streak removal
algorithms.

1. Introduction
Many computer vision algorithms such as detection,

tracking and classification are specifically designed for im-
ages and videos that are collected in controlled and con-
strained environmental conditions. However, in many appli-
cations such as self driving cars and aerial imaging, one has
to process images and videos that collected in outdoor un-
constrained environments containing undesirable artifacts
such as rain, snow, and fog. The performance of many
computer vision algorithms often degrades when they are
presented with the outdoor images containing some of these
artifacts. As a result, removing these artifacts automatically
before applying them to various computer vision algorithms
can improve their performances significantly.

Various methods have been developed in the literature
for removing these artifacts. Some of them include auto-
matic haze removal [9, 22, 14, 18], fog removal [17], snow
removal [33], and rain streak removal [12, 5, 4, 16, 15, 13,
6]. In this paper, we focus on the problem of automatically

(a) Input (b) Ground Truth (c) Rain streak

Figure 1: Rain streak removal from a single image. A rainy
image (a) can be viewed as the superposition of clean back-
ground image (b) and rain streak image (c).

removing rain streaks from a single image. Rain streaks
often reduce the visibility due to their scattering and blur-
ring artifacts. Automatic de-raining or rain streak removal
is a difficult inverse problem because we do not know the
location and the statistics of the rain streaks in the given im-
age. The amount and location of rain streaks often change
depending on how hard it is raining.

One can model the observed rainy image as the superpo-
sition of two images - one corresponding to rain streak and
the other corresponding to clear background (see Figure 1)
[15, 4, 12]. Let y ∈ RMN ,yc ∈ RMN and yr ∈ RMN

be the lexicographically ordered vectors corresponding to
M ×N rainy image (Y ), clear background image (Yc) and
rain streak image (Yr), respectively. Then, the input rainy
image can be expressed as

y = yc + yr. (1)
Given y, the goal of rain streak removal is to decompose it
into yc and yr and the recovered yc represents the de-rained
image.

Assuming that yc and yr can be sparsely represented
in appropriate dictionaries, several recent works have pro-
posed sparsity-based optimization algorithms for separating
rain streaks and background images from the rainy images
[12, 11, 16, 25]. For instance, [12] proposed a sparsity-
based method to cluster the learned dictionary atoms into
two groups. Then using these two groups of atoms, they
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Figure 2: An overview of the proposed convolutional coding-based rain streak removal algorithm.

develop a method to separate a rainy image into rain streaks
and clear images. One of the limitations of this method
is that the recovered clean image tends to be smooth with
blurry edges. Another discriminative sparse coding-based
de-raining method was proposed in [16] in which mutual
exclusivity property is enforced to find the sparse codes for
separation. In [11], unsupervised clustering was applied
on the observed dictionary atoms via affinity propagation
to identify the image dependent components for de-raining.
A nonlocal means filtering framework was proposed in [13]
for filtering elliptical shapes corresponding to rain drops in
the given image. Motivated by the low-rank property of
textures [23, 19], a low-rank representation-based frame-
work for rain streak removal was proposed in [4]. Gaussian
Mixture Model (GMM) based [15] as well as Convolutional
Neural Network (CNN) based [5] methods have also been
proposed for de-raining in the literature. Several authors
have made use of the temporal information in a video for
de-raining [32, 7, 6].

One of the limitations of some of these approaches such
as [12, 4] is that they are patch-based and they do not specif-
ically use the global structure of the background image. As
a result, the de-rained image often tends to contain com-
ponents from the background image or the background im-
age often contains rain components. Furthermore, sparse
dictionary-based rain streak removal methods use image
patches to lean local dictionaries. As a result, they of-
ten contain shifted versions of the same features [2]. To
deal with this, Convolutional Sparse Coding (CSC) meth-
ods have been introduced in which shift invariance is di-
rectly modeled in the objective [29, 2, 10, 28]. CSC has
been successfully applied in various image processing and
computer vision applications [30, 20, 8, 31].

In this paper, we present a CSC and Convolutional Low-
Rank Coding (CLC) based method for rain streak removal
from a single image. We first learn a set of CSC and CLC

filters to efficiently represent the background image and rain
streaks, respectively. Then, using the learned filters, we de-
velop an image separation algorithm based on sparse and
low-rank coding. Figure 2 gives an overview of the pro-
posed Convolutional Coding-based Rain Removal (CCRR)
method.

This paper makes the following contributions.

1. We present an optimization framework for CLC for ef-
ficiently representing low-rank rain streaks.

2. CCRR is proposed in which pre-trained CSC and CLC
filters are used to efficiently represent background im-
age and rain streaks, respectively. Using these fil-
ters, we propose an image separation method based on
sparse and low-rank coding for rain streak removal.

3. We develop alternating direction method of multipliers
(ADMM) based optimization frameworks [1] for solv-
ing the proposed CLC and CCRR algorithms.

Rest of the paper is organized as follows. In Section 2,
we give a brief introduction to CSC and formulate the pro-
posed CCRR method. Details of the CCRR optimization
are given in Section 3. Experimental results are presented
in Section 4. Section 5 concludes the paper with a brief
summary and discussion.

2. Background and Problem Formulation

In this section, we give a brief background on CSC
and formulate the proposed convolutional coding-based rain
streak removal problem.

2.1. Convolutional Sparse Coding

In CSC, given a set of M training samples {ym}Mi=1, the
objective is to learn a set of convolutional filters {dk}Ki=1



by solving the following optimization problem

argmin
d,x

1

2

M∑
m=1

∥∥∥∥∥ym −
K∑

k=1

dk ∗ xm,k

∥∥∥∥∥
2

2

+

λ

M∑
m=1

K∑
k=1

‖xm,k‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, · · · ,K},

(2)

where xm,k are the sparse coefficients that approximate
the data ym when convolved with the corresponding fil-
ters dk of fixed support and for an N -dimensional vector
x, ‖ · ‖q denotes the `q-norm, 0 < q < ∞, defined as

‖x‖q =
(∑N

i=1 |xi|q
) 1

q

. Here, ∗ represents the 2-D con-
volution operator and λ is a positive regularization param-
eter. Several methods have been proposed in the literature
for solving the above optimization problem [2, 10, 28, 27].
In particular, [28], [27] developed an efficient method that
jointly uses the space and Fourier domains to solve the CSC
problem. In this paper, we adapt the method proposed in
[28] for learning the convolutional filters due to its simplic-
ity and efficiency.

2.2. Convolutional Coding-based Rain Removal

In order to separate the rain streaks and the background
image from the mixture model (1), we need efficient repre-
sentations for rainy component and the background image.
Since rain streaks are texture like, they are inherently low-
rank in nature. In fact, this assumption has been used in [4]
for de-raining. In order to learn a set of low-rank filters for
efficiently representing rain streaks, we propose the follow-
ing CLC problem

argmin
d,x

1

2

M∑
m=1

∥∥∥∥∥ym −
K∑

k=1

dk ∗ xm,k

∥∥∥∥∥
2

2

+

λl

M∑
m=1

K∑
k=1

‖xm,k‖∗

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, · · · ,K},

(3)

where ‖ · ‖∗ is nuclear norm, representing the sum of singu-
lar values and λl is a positive regularization parameter.

Assume that we have learned a set of convolutional
sparsity-based filters {dc,k} using CSC to sparsely repre-
sent the clear background part and another set of convo-
lutional low-rank-based filters {dr,k} using CLC to effi-
ciently represent the rain streaks. That is, we have learned
{dc,k}Kc

k=1 and {dr,k}Kr

k=1 such that yc =
∑Kc

k=1 dc,k ∗xc,k

and yr =
∑Kr

k=1 dr,k ∗xr,k, where xc,k are the sparse coef-
ficients and xr,k are the low-rank coefficients that approx-
imate yc and yr when convolved with the filters dc,k and
dr,k, respectively. Then, we propose to estimate the clear
background and rain components via xc,k and xr,k, respec-

tively by solving the following CCRR optimization problem
x̂c,k, x̂r,k = arg min

xc,k,xr,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kr∑
k=1

dr,k ∗ xr,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 + λr

Kr∑
k=1

‖xr,k‖∗

+ βTV

(
Kc∑
k=1

dc,k ∗ xc,k

)
,

(4)

where β, λr and λc are positive regularization parameters
and TV is the total variation (i.e. sum of the absolute
variations in the image). Note that in CCRR, we enforce
sparsity constraint on the coefficients corresponding to the
background image and low-rank constraint on the coeffi-
cients corresponding to the rain streaks. Once, xc,k and
xr,k are estimated, the two components can be obtained by
ŷc =

∑Kc

k=1 dc,k ∗ x̂c,k and ŷr =
∑Kr

k=1 dr,k ∗ x̂r,k, where
ŷc represents the de-rained image.

3. Optimization
In this section, we derive the framework for solving the

proposed CLC and CCRR optimization problems.

3.1. CLC

The problem (3) can be solved by iteratively updating dk

and xm,k, as it is a bi-convex optimization problem. The
updating procedure is as follows:

3.1.1 Fix xm,k and update dk

We solve the following optimization problem for updating
each filter

argmin
dk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22

subject to ‖dk‖2 ≤ 1, ∀k.

(5)

We can regard the constrains ‖dk‖2 ≤ 1 as post-processing
after each iteration. Then, (5) can be rewritten as

argmin
dk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22. (6)

To solve (6) in the DFT domain, we zero pad dk so that
it has the same spatial support as xm,k. We form another
optimization problem (7) that can directly include the zero-
padding and normalization procedure for dk in the objective
[28] as

arg min
dk,gk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22 +
K∑

k=1

lCzp
(gk)

subject to dk − gk = 0 ∀k, (7)



where lCzp is the indicator function of the constraint setCzp
1. The iterative update methods for solving (7) via scaled
form of ADMM are as follows

dk
(j+1) =argmin

dk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22

+
σ

2

K∑
k=1

‖dk − g
(j)
k + q

(j)
k ‖

2
2,

(9)

gk
(j+1) =argmin

gk

K∑
k=1

lCzp
(gk)

+
σ

2

K∑
k=1

‖d(j+1)
k − gk + q

(j)
k ‖

2
2,

(10)

qk
(j+1) = q

(j)
k + d

(j+1)
k − g

(j+1)
k , (11)

where q is the scaled dual variable. The optimization prob-
lem (9) can be solved using the DFT-based method pro-
posed in [28], and (10) can be solved using a proximal al-
gorithm [21].

3.1.2 Fix dk and update xm,k

We rewrite (3) as

arg min
xm,k,zm,k

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22

+ λl

M∑
m=1

K∑
k=1

‖zm,k‖∗

subject to xm,k − zm,k = 0, ∀k.

(12)

Then, the iterative update rules for solving (12) are as fol-
lows

xm,k
(j+1) = arg min

xm,k

1

2
‖ym −

K∑
k=1

dk ∗ xm,k‖22

+
ρ

2

K∑
k=1

‖xm,k − z
(j)
m,k + u

(j)
m,k‖

2
2,

(13)

zm,k
(j+1) = argmin

zm,k

λl

K∑
k=1

‖zm,k‖∗+

ρ

2

K∑
k=1

‖x(j+1)
m,k − zm,k + u

(j)
m,k‖

2
2,

(14)

um,k
(j+1) = u

(j)
m,k+x

(j+1)
m,k − z

(j+1)
m,k . (15)

1lC() is defined as

lC(p) =

{
0, if p ∈ C
∞, if p /∈ C.

(8)

Problem (13) can be solved using the optimization method
proposed in [28] and (14) can be solved using Singular
Value Thresholding (SVT) [3].

3.2. CCRR

If we discard the TV part in (4), then the resulting op-
timization problem can be solved iteratively over xc,k and
xr,k.

3.2.1 Update step for xc,k

When xr,k is fixed, we need to solve the following problem
to obtain the sparse coefficients xc,k

x̂c,k = argmin
xc,k

1

2

∥∥∥∥∥y −
Kr∑
k=1

dr,k ∗ xr,k −
Kc∑
k=1

dc,k ∗ xc,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 . (16)

This problem can be solved using the DFT-based ADMM
method [28].

3.2.2 Update step for xr,k

For a fixed xc,k, we have to solve the following problem to
obtain xr,k

x̂r,k = argmin
xr,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kr∑
k=1

dr,k ∗ xr,k

∥∥∥∥∥
2

2

+ λr

Kr∑
k=1

‖xr,k‖∗ . (17)

This problem is very similar to the sub-problem that we
solve in CLC for finding the low-rank coefficients when dk

are fixed. Let yp = y −
∑Kc

k=1 dc,k ∗ xc,k. Then (17) can
be rewritten as

x̂r,k = argmin
xr,k

1

2

∥∥∥∥∥yp −
Kr∑
k=1

dr,k ∗ xr,k

∥∥∥∥∥
2

2

+λr

Kr∑
k=1

‖xr,k‖∗ ,

which can be solved using the optimization procedure de-
scribed in the previous subsection for CLC.

Finally, the TV correction is applied only on the back-
ground rain-free part to control the edges in the clear im-
age. The overall CCRR algorithm for rain streak removal is
summarized in Algorithm 1, where L is the total iteration
number and i is the iteration index.

4. Experimental Results
In this section, we present the results of our proposed

CCRR algorithm for single image de-raining on both gray-
scale and color images. We compare the performance of
our method with that of four state-of-the-art single im-
age de-raining methods - sparse dictionary-based method



Algorithm 1: The CCRR Algorithm for Rain Removal.

1 Input: {dc,k}Kc

k=1, {dr,k}Kr

k=1, y, λc, λr, L
2 Initialization
3 for i = 1 : L
4 Obtain xc,k by solving (4) when fixing xr,k.
5 Obtain yc by applying the TV correction [24].
6 Use yc to replace

∑Kc

k=1 dc,k ∗ x̂c,k in (4).
7 Obtain x̂r,k by solving (4) when fixing xc,k.
8 end for
9 ŷr =

∑Kr

k=1 dr,k ∗ x̂r,k,
10 ŷc=y - ŷr;
11 Output: ŷc, ŷr

(Auto-SP) [12], discriminative sparse coding-based method
(Dis-SP) [16], low-rank representation-based method (Low-
rank) [4] and a CNN-based method (CNN) [5]. In these ex-
periments, we use Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) [26] to measure the per-
formance of the routines tested.

Sample training images shown in Figure 3 (a) are used
to learn the convolutional sparse filters {dc,k} using CSC.
Similarly, some training images in the Figure 3 (b) are uti-
lized to learn the convolutional low-rank filters {dr,k} using
CLC. The corresponding CSC and CLC learned filters are
shown in Figure 3 (c) and (d), respectively. The size of each
CSC filter is set equal to 8 × 8 and the size of each CLC
filter is set equal to 6×6 for all experiments. From Figure 3
(d), one can see that these filters are oscillatory in nature
and they do a good job in capturing the rain texture patters.
These filters can capture the low-rank structure found in the
rain streaks. Similarly, from Figure 3 (c), we observe that
the learned filters look similar to those found in a Gabor or
curvelet dictionary. They capture domain specific informa-
tion found in natural images such as edges and contours.

All testing images are excluded from the training proce-
dure. For the gray-scale images, the parameters λc and λr
are set equal to max(0.55−0.090∗i, 0.001) and max(5.20−
0.90 ∗ i, 0.05), respectively. For the color images, the pa-
rameters are set as λc = max(1.35− 0.435 ∗ i, 0.001) and
λr = max(5.30−0.72∗ i, 0.82). The total iteration number
L is set equal to to 6 for all experiments.

4.1. Rain Removal from Gray-scale Image

In the first set of experiments, we evaluate the quantita-
tive performance of different methods on the two synthetic
gray-scale images released by Kang et al. in [12]. These
synthetic rainy images are shown in Figure 5. The perfor-
mance of different de-raining methods in terms of PSNR
and SSIM is tabulated in Table 1. As can be seen from this
table, on average our method performs favorably over some
of the compared methods.

(a)

(b)

(c) (d)

Figure 3: (a) Training non-rain images used for learning
a set of sparsity-based filters {dc,k}. (b) Rain-streak im-
ages used for learning a set of low-rank filters {dr,k}. (c)
Learned non-rain filters {dc,k}. (d) Learned rain-streak fil-
ters {dr,k}.

(a) (b)
Figure 5: Synthetic gray-scale rainy images.

Rainy CCRR Auto-SP [12] Low-rank [4] Dis-sp [16] CNN [5]

SSIM Fig 5(a) 0.6602 0.7699 0.7410 0.7641 0.6738 0.7751
Fig 5(b) 0.8579 0.8939 0.8654 0.8905 0.8774 0.8510

PSNR
(dB)

Fig 5(a) 24.75 25.78 24.78 25.42 25.61 24.82
Fig 5(b) 24.44 25.17 24.49 24.58 25.01 23.62

Table 1: Results on two synthetic gray-scale images.

In the second set of experiments with the gray-scale im-
ages, we use a real rainy gray-scale image (shown in the first
row of Figure 4) and visually inspect the performance of dif-
ferent de-raining methods by displaying the separated clear
background images (shown in the second row of Figure 4)
and rain streak images (shown in the third row of Figure 4)
corresponding to different methods. From the third row, we
can observe that our method can capture more rain streaks
and less of other structures, demonstrating the advantage of
using convolutional low-rank filters over just using sparsity
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Figure 4: Rain-streak removal results on a real gray-scale image.

as prior for the rain component. We also observe that the re-
covered rain-streak components from Dis-SP, Auto-SP and
CNN methods capture more information corresponding to
the background non-rain image.

4.2. Rain Removal from Color Images

Synthetic Images. We used two color rainy images
released by [12] with its ground truth to measure the
de-raining performance of different methods. The results
are shown in Fig 6. It can be observed that our method
outperforms all the other three methods quantitatively as
well as qualitatively. For example, from this figure, we see
that the Auto-SP method [12] tends to smooth the de-rained
part when removing the rain component, while the low-rank
method [4] fails to capture some rain components in the
background image. Even though the Dis-SP and CNN
methods have a very competitive visual quality, some rainy
components still remain in the de-rained image for both of
these methods. Furthermore, Dis-SP tend to enhance the
contrast of some details such as the face shown in the first
row in Figure 6 and the CNN-based rain removal method
has very poor quantitative performance. Similar visual and
quantitative results are also observed in the second and the
third row of Figure 6.

Real Images. We also evaluated the performance of our
proposed method on many real images downloaded from
the Internet. The de-rained results for all the methods and
their corresponding input rainy images are shown in Fig-
ure 7. The first row shows the input rainy images. Results
of Auto-SP [12], Low-rank-based method [4], Dis-SP [16],
CNN-based method [5] and our CCRR method are shown
in the second to fourth rows, respectively. From these de-
rained images, we observe that the Auto-SP and Low-rank
methods tend to smooth the details in the de-rained images
even though they can remove a lot of rain streaks. This
can be seen by observing the head part of the athletes in
the third column of this figure. The de-rained images from
the Dis-SP method still contains a lot of rain streaks. In
general, the CNN-based method achieves very good visual
quality, however, it fails to tackle heavy rain conditions, as
can be seen by comparing the results in the second and last
columns of Figure 7. Our proposed CCRR method can pre-
serve the details such as edges and contours while removing
the low-rank rain streaks. This experiment clearly demon-
strates the significance of the proposed method in removing
rain streaks from real-world rainy images under a variety of
different background and conditions.
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Figure 6: Rain-streak removal results on two synthetic color images. We compare the performance of our proposed CCRR
method with other three methods: Auto-SP [12], Low-rank [4] and Dis-SP [16].

5. Conclusion

We proposed the CCRR algorithm for removing rain
streaks from a given rainy image. Our method entails learn-
ing sparsity-based and low-rank representation-based filters
directly from training examples. Using these learned filters,
we proposed an optimization framework for de-raining.
Various experiments showed the significance of our CCRR
de-raining method over several recent state-of-the-art de-
raining methods.

In the future, we will investigate the possibility of de-
veloping convolutional sparse and low-rank coding-based
methods for haze and fog removal.

x̂c,k, x̂r,k = arg min
xc,k,xr,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kr∑
k=1

dr,k ∗ xr,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 + λr

Kr∑
k=1

‖xr,k‖∗

+ βTV

(
Kc∑
k=1

dc,k ∗ xc,k

)
,

(18)
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Figure 7: Rain-streak removal results on three real images. We compare the performance of our proposed CCRR method
with the other three methods: Auto-SP [12], Low-rank [4], Dis-SP [16] and CNN [5].
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