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ABSTRACT

In this paper, we present a new approach for inverse halftoning of error diffused halftones using a shearlet repre-
sentation. We formulate inverse halftoning as a deconvolution problem using Kite et al.’s linear approximation
model for error diffusion halftoning. Our method is based on a new M-channel implementation of the shearlet
transform. By formulating the problem as a linear inverse problem and taking advantage of unique properties
of an implementation of the shearlet transform, we project the halftoned image onto a shearlet representation.
We then adaptively estimate a gray-scaled image from these shearlet-toned or shear-tone basis elements in a
multi-scale and anisotropic fashion. Experiments show that, the performance of our method improves upon
many of the state-of-the-art inverse halftoning routines, including a wavelet-based method and a method that
shares some similarities to a shearlet-type decomposition known as the local polynomial approximation (LPA)
technique.
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1. INTRODUCTION

Digital halftoning, sometimes referred to as spatial dithering, is a process of rendering a gray-scale image into
a binary (black-and-white) image. Commonly used halftoning methods include white-noise dithering, blue-
noise dithering, ordered dithering and error diffusion 1–4 . The process of recovering a gray-scaled image from a
given halftone image is known as inverse halftoning. In this work, we will mainly focus on inverse halftoning
techniques for halftone images based on error diffusion methods such as Floyed-Steinberg3 and Jarvis at el. 2 .
Some of the uses of inverse halftoning include applications to resizing, contrast enhancement, compression,
removal of aliasing artifacts when displaying halftoned images on a non-printed medium, and digital archiving
of old newspaper/articles. All of these processes can be improved if a gray-scaled version can be recovered
before manipulation. It has been shown that error diffusion halftoning can be approximately modeled as a linear
system4 and thus the problem of inverse halftoning can be viewed as a special deconvolution problem. In this
paper, we propose the use of a specially adapted shearlet-based deconvolution method to recover the gray-scaled
image from its halftone. In the next section, we describe the linear approximation to the error diffusion halftoning
process as described in 4 .

2. LINEAR MODEL FOR ERROR DIFFUSION

Halftoning by an error diffusion model is based on the following non-linear process: Given the Floyd-Steinberg
or the Jarvis error filter
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the quantization error at • is diffused over a causal neighborhood according to the matrix values. More precisely,
each pixel is identified in a raster-scan indexing scheme. Starting at the top-left pixel, the pixel’s gray-scale value
is made into a binary number by thresholding (1, if the value is greater than or equal to 1/2, and 0 otherwise).
The quantization error is then diffused on neighboring pixels using the weights from hFS or hJ and the next pixel
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in the raster-scan indexing is then made into a binary number. The process continues until the bottom-right
pixel has been transformed. Note that the weights are non-zero only for those pixel locations that have not
already been scanned, so that the diffusion never goes backward with respect to the scanning direction.

The error diffusion halftoning can be modeled as a convolution of the original gray-scaled image with a filter
plus additive colored noise.4 More precisely, for an image x of size N×N , the halftone y(n1, n2) can be expressed
as follows:

y(n1, n2) = (p ∗ x)(n1, n2) + (q ∗ υ)(n1, n2) (1)

where 0 ≤ n1, n2 ≤ N − 1, ∗ denotes convolution, p and q denote the impulse responses determined by the error
diffusion model, and υ is the additive white noise. Equation (1) in the discrete Fourier transform (DFT) domain
can be written as

Y (k1, k2) = P (k1, k2)X(k1, k2) +Q(k1, k2)Υ(k1, k2),

where, for −N/2 ≤ k1, k2 ≤ N/2 − 1, Y (k1, k2), P (k1, k2), X(k1, k2), Q(k1, k2), and Υ(k1, k2) are the 2D DFTs
of y, p, x, q and υ, respectively. The transfer functions P and Q are defined by

P (k1, k2) =
K

1 + (K − 1)H(k1, k2)

and

Q(k1, k2) =
1 −H(k1, k2)

1 + (K − 1)H(k1, k2)
,

where H(k1, k2) is the DFT of an error diffusion filter (i.e. the DFT of hFS or hJ). The values K = 2.03 or
K = 4.45 can be used for the Floyd-Steinberg or the Jarvis error filter, respectively.4

3. INVERSE HALFTONING VIA DECONVOLUTION

In inverse halftoning given a halftone y(n1 , n2) and knowing p(n1, n2) and q(n1, n2) the objective is to recover
x(n1, n2) from (1). Since, p and q are linear time invariant filters, recovering x from y can be viewed as a
deconvolution problem. Once we invert the convolution operator P , the resulting aspect of the deconvolution
problem can be viewed as a denoising problem in the presence of colored noise. This can be seen from the
following:

X̃(k1, k2) =
Y (k1, k2)

P (k1, k2)

= X(k1, k2) +
Q(k1, k2)Υ(k1, k2)

P (k1, k2)
,

where the second term in the above equation represents the colored noise. Many methods have been proposed
for denoising images in the presence of colored noise. In this paper, we employ shearlet-based denoising to obtain
an estimate of the halftoned image.

4. THE SHEARLET TRANSFORM

The shearlet construction can be considered as a natural extension of wavelets into two-dimensions.5 Its
representative elements are defined by the two-dimensional affine system
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1
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is a product of a shearing and anisotropic dilation matrix for (a, s) ∈ R
+ ×R. The generating function ψ is such
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Figure 1. Frequency support of the shearlets for different values of a and s.

where ψ1 is a continuous wavelet for which ψ̂1 ∈ C∞(R) with supp ψ̂1 ⊂ [−2, 1/2]∪ [1/2, 2], and ψ2 is chosen so

that ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1], with ψ̂2 > 0 on (-1,1), and ‖ψ2‖2 = 1. Under these assumptions, a function
f ∈ L2(R2) can be represented as

f(x) =

∫

R2

∫
∞

−∞

∫
∞

0

〈f, ψast〉ψast(x)
da

a3
ds dt,

for a ∈ R
+, s ∈ R, and t ∈ R

2. The operator S defined by Sf(a, s, t) = 〈f, ψast〉 is referred to as the continuous
shearlet transform of f ∈ L2(R). It is dependent on the scale variable a, the shear s, and the location t. An
illustration of the spatial frequency support is shown in Figure 1.

The collection of discrete shearlets is given by

{ψj,`,k = | detA|j/2 ψ(B` Ajx− k) : j, ` ∈ Z, k ∈ Z
2},

where
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)
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)
.

Shearlets form a Parseval frame (tight frame with bounds equal to 1) for L2(R2) for the appropriate choices of
generating function ψ.6

It is known that for a certain class of images that can be modeled as piecewise smooth functions that are
smooth away from a C2 edge (that is, a composite of a C2 function plus an indicator function of a set whose
boundary is C2), wavelets do not yield the best possible non-linear approximation rate. Specifically, using the N
largest wavelet coefficients, the approximation error for such an image decays as O(N−1) as N increases. On the
other hand, a representation such as shearlets or curvelets7 yields the nearly optimal non-linear approximation
rate of O(N−2(logN)3) as N increases. It is this faster decay rate that gives shearlets an improved performance
over wavelets in estimating such images.



Figure 2. Shearlet-based inverse halftoning.

5. GENERALIZED CROSS VALIDATION FOR SHEARLET THRESHOLDING

In this section, we describe a shearlet-thresholding scheme based on a GCV function for the purpose of noise
reduction8. One of the major advantages of this GCV method is that it obtains nearly the optimal thresholding
without knowing the noise variance. It depends only on the data and automatically adjusts the shrinkage
parameter according to the data. A similar GCV method for wavelet thresholding has been proposed in 9–11 .

Suppose
y = x + γ,

where the vectors y, x and γ represent respectively the observation, the original image and the colored noise
that is assumed to be second order stationary (i.e. the mean is constant and the correlation between two points
depends only on the distance between them). Corresponding to a threshold τ , define the soft-threshold function
Tτ (x) to be equal to x− τsign(x) if |x| > τ and zero otherwise.

If yj,` represents the vector of shearlet coefficients of y at scale j and direction `, then we can write

R(τ ) =
∑

j

∑

`

Lj,`

L
Rj,`(τj,`),

where Lj,` is the number of shearlet coefficients on scale j and direction `, L is the total number of shearlet
coefficients, and

Rj,`(τj,`) =
1

Lj,`
‖Tτ (yj,`) − xj,`‖2.

The minimizer of GCVj,`(τj,`) is asymptotically optimal for the minimum risk threshold Rj,`(τj,`) for scale j and
directional component `, where

GCVj,`(τj,`) =

1

Lj,`
‖ Tτ (yj,`) − yj,` ‖2

[
Lj,`,0

Lj,`

]2
,



and Lj,`,0 is the total number of shearlet coefficients that were replaced by zero.12 Thus, a good shearlet-based
denoised estimate can be found by using the values τj,` that minimize GCVj,` for each j and `.

6. INVERSE HALFTONING USING SHEAR-TONES

Having established a method for obtaining a good image estimate when the image is corrupted by colored noise,
let us now focus on how we are to use this method as part of an inverse halftoning routine. Since our model
is described by (1), a suitable estimate can be found by regularizing the convolution operator from a discrete
Fourier basis. Using the regularized inverse operator

Pα(k1, k2) =
P (k1, k2)

|P (k1, k2)|2 + α2|Q(k1, k2)|2
(2)

for some regularizing parameter α ∈ R+, an image estimate in the Fourier domain is given by

Xα(k1, k2) = Y (k1, k2)Pα(k1, k2),

for −N/2 ≤ k1, k2 ≤ N/2 − 1. This type of regularization is often referred to as Tikhonov-regularization. When
an estimate of the power spectral density (PSD) can be accurately determined, a Wiener-based solution can be
found by using

Pα(k1, k2) =
P (k1, k2)Px̂(k1, k2)

|P (k1, k2)|2Px̂(k1, k2) + α2σ2|Q(k1, k2)|2
(3)

where α ∈ R
+ and Px̂(k1, k2) is the estimated PSD of the image for −N/2 ≤ k1, k2 ≤ N/2 − 1.

Taking advantage of the shearlet decomposition, we can adaptively control the regularization parameter to
be the best suited of each frequency supported trapezoidal region. Let Gj,` denote the DFT of the shearlet
filter gj,` for a given scale j and direction `. The shearlet coefficients of an estimate of the image for a given
regularization parameter αj,` can be computed in the Fourier domain as

Xαj,`
(k1, k2) = Y (k1, k2)Gj,`(k1, k2)Pαj,`

(k1, k2)

for −N/2 ≤ k1, k2 ≤ N/2 − 1.

The remaining aspect of the deconvolution problem is transformed into a denoising problem in the presence
of colored noise. This can be dealt with by thresholding the estimated shearlet coefficients using the GCV
determined previously without having to know the noise variance explicitly. Notice that {Y Gj,`} represents the
halftoned image projected onto a shearlet representation (shear-tone elements) and that, in order to indepen-
dently regularize and estimate from each shear-tone element, an M-channel filter bank decomposition of shearlets
is needed.12 An illustration of the shearlet-based method is shown in Figure 2.

There is a significant advantage in using the GCV for the shearlet thresholding, as the variance of the colored
noise at each location and scale dependent on α does not have to be estimated. In addition, a GCV-based
thresholding routine produces better results over schemes based on estimating the standard deviation of the
noise throughout the decomposition.

We summarize the main steps of the shearlet-based inverse halftoning algorithm as follows:

Shearlet-based Inverse Halftoning Algorithm

Given αj,`, for some j and `.

• Use the shearlet filter Gj,` and apply the regularized filter (2) or (3) to Y to obtain Xαj,`
.

• Apply the GCV based shearlet shrinkage to xαj,`
to obtain x̂αj,`

.

Form the final estimate by applying the inverse shearlet transform.



In the demonstrations below, the regularization parameters αj,k are considered as fixed design parameters
for the purposed of inverse halftoning. In what follows, one unique set of design parameters has been used.
Given the halftone image, it is possible to gain in performance if the parameters are chosen adaptively by using
methods such as those suggested in 12 .

7. EXPERIMENTAL RESULTS

In this section, we present results of our proposed algorithm and compare them with some of the recent multiscale
wavelet and wavelet-like inverse halftoning methods described in 1314 . In these experiments, we use the peak
signal-to-noise-ratio (PSNR) to measure the performance of the routines tested. For an image of size N × N
with L + 1 gray levels, the PSNR is defined as

PSNR = 20 log10

(
N × L

‖x̂− x‖2

)
,

where x̂ denotes the estimated inverse halftoned image. For the shearlet transform implementation, we used 1,
8, 8, 16, and 16 directions in the scales from coarse to fine.15 We apply the GCV based shrinkage to the outputs
from each of the 48 filters except for the output corresponding to the coarsest scale. Experiments have shown
that increasing the number of directions, every scale usually yields a better estimate.

We illustrate the performance of our inverse halftoning algorithm using a 512×512 Lena image and a 256×256
Zebra image halftoned using the Floyed-Steinberg algorithm.3 The results of the first example on the Lena image
are shown in Figure 3. The shearlet-based method yields a PSNR value 33.15 dB, which is better than the values
obtained by the other methods. The close-up views of this experiment are shown in Figure 4.

In a second set of experiments, we applied our algorithm on the Zebra image. The results are shown in
Figure 5. Again, the shearlet-based inverse halftoning algorithm outperforms the other methods in terms of
PSNR.

8. CONCLUSION

We have proposed a new method of inverse halftoning using a shearlet representation. This is based on formu-
lating the inverse halftoning problem as a deconvolution problem. Effective estimations are then made from this
formulation by using a generalized cross validation function and an M-channel implementation of the shearlet
transform. The results for this method demonstrate a state-of-the-art performance.
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Figure 3. Inverse halftoning experiment with the Lena image. (a) Original image. (b) Floyd-Steinberg halftone. (c)
Wavelet-based estimate (PSNR = 31.96 dB). (d) LPA-ICI-based estimate (PSNR = 32.53 dB). (e) Shearlet-based estimate
(PSNR = 33.15 dB).
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Figure 4. Close-ups of inverse halftoning experiment with the Lena image. (a) Original image. (b) Floyd-Steinberg
halftone. (c) Wavelet-based estimate (PSNR = 31.96 dB). (d) LPA-ICI-based estimate (PSNR = 32.53 dB). (e) Shearlet-
based estimate (PSNR = 33.15 dB).
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Figure 5. Inverse halftoning experiment with the Zebra image. (a) Original image. (b) Floyd-Steinberg halftone. (c)
Wavelet-based estimate (PSNR = 23.72 dB). (d) LPA-ICI-based estimate (PSNR = 23.22 dB). (e) Shearlet-based estimate
(PSNR = 24.22 dB).
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