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ABSTRACT
As compared to the FFT, the recently introduced Sparse Fourier
Transform (SFT) achieves substantial reduction in the complexity
of detecting frequencies in signals that are sparse in the frequency
domain. However, the SFT requires the significant frequencies to be
on the grid and the exact sparsity of the signal to be known. In this
paper, we propose a framework that overcomes these issues. Our
method makes use of a pre-permutation window to confine the leak-
age within finite frequency bins and the Neyman-Pearson criterion to
detect weak signals without knowing the exact signal sparsity. Vari-
ous numerical experiments and an application to radar target detec-
tion demonstrate the advantages of the proposed method.

Index Terms— Multi-dimensional signal processing, sparse
Fourier transform, detection and estimation.

1. INTRODUCTION

Conventional signal processing in radar, sonar, and communication
systems usually involves applying the Discrete Fourier Transform
(DFT) followed by a detection stage. The DFT is usually imple-
mented via the Fast Fourier Transform (FFT). Recently, by lever-
aging the sparsity of a signal in the frequency domain, the Sparse
Fourier Transform (SFT) [1,2] can further reduce the complexity re-
quired to identify the underlying frequencies. Different versions of
the SFT have been investigated in several applications including a
fast Global Positioning System (GPS) receiver, wide-band spectrum
sensing, light field reconstruction, etc. [3–5].

One of the constrains in the aforementioned SFT algorithms is
the assumption that the signal frequencies are all on-grid. In real-
ity, however, depending on the grid size, the signal frequencies can
fall between grid points. The consequence of off-grid frequencies is
leakage to other frequency bins, which essentially reduces the spar-
sity of the signal. Our early work to address these issues appeared
in [6], where the Realistic Sparse Fourier Transform (RSFT) was
proposed, i.e., a high dimensional extension of the SFT in [2], which
allows off-grid frequencies owning to a pre-permutation windowing
process.

The current literature on multi-dimensional extensions of the
SFT [7–11] mainly addresses sample complexity, i.e., using the least
number of time domain samples to reconstruct the signal frequen-
cies. In order to detect the significant frequencies in an approxi-
mately sparse settings, arising for example when the signal is cor-
rupted by additive noise, the aforementioned methods assume know-
ing the exact sparsity, and compare the frequency domain peaks with
a predefined threshold. However, in many real applications, the ex-
act signal sparsity may be either unknown or subject to change. For
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example, in the radar case, in which the sparsity of the received sig-
nal in some high dimensional space corresponds to the the number
of targets to be detected, it is typically unknown and usually varies
from time to time. Also, setting up an ideal detection threshold is not
trivial in noisy cases since it relates to the tradeoff between proba-
bility of detection and false alarm rate.

In this work, we put the RSFT of [6] into a Neyman-Pearson
(NP) detection framework. As it will be explained later, the RSFT in-
volves two detection stages which are interconnected, i.e., the output
of the first stage serves as the input of the second stage. Based on the
signal model and other design specifications, we give the (asymptot-
ically) optimal thresholds for the two detection stages. These thresh-
olds are jointly found by formulating and solving an optimization
problem, which minimizes the Signal to Noise Ratio (SNR) cor-
responding to the weakest sinusoid within the signal, and its con-
straints reflect the relationship between the signal SNR, probability
of detection and false alarm rate for both stages. As a result, the
detection of frequencies does not require the knowledge of the exact
signal sparsity. Due to space constraints, some details of the work
are deferred to an extended version of this paper [12].

Notation: We use lower-case (upper-case) bold letters to denote
vectors (matrices). (·)T and (·)H respectively denote the transpose
and conjugate transpose of a matrix or a vector. ‖ · ‖ is Euclidean
norm for a vector. [a]i is the ith element of vector a. All operations
on indices in this paper are taken modulo N , denoted by [·]N . We
use b·c to denote rounding to floor. [S] refers to the set of indices
{0, ..., S − 1}, and [S] \ a is for eliminating element a from set [S].
We use {0, 1}B to denote the set of B-dimensional binary vectors.
We use diag(v) to denote forming a diagonal matrix from the vector
v and use E{·} to denote expectation. The DFT of signal s is de-
noted as ŝ. We also assume that the signal length in each dimension
is an integer power of 2.

2. SIGNAL MODEL AND PROBLEM FORMULATION

We model the continuous time signal as a superposition of K sinu-
soids plus additive white noise. We sample the signal uniformly both
in I and Q channels with a sampling frequency above the Nyquist
rate. Assume the total sampling time is divided into T consecu-
tive equal length segments, each of which contains N samples, and
K << N (i.e., the signal is sparse in the frequency domain). The
signal samples over the time segment s ∈ [T ], can be expressed in
vector form as

rs =
∑
i∈[K]

bi,sv(ωi) + ns, (1)

where v(ωi) denotes the ith complex sinusoid with frequency ωi ∈
[0, 2π), i.e., v(ωi) = [1 ejωi · · · ej(N−1)ωi ]T , and bi,s denotes
the corresponding complex weight. We further assume that ωi is un-
known deterministic and constant during the whole process, and bi,s



takes random value for each segment. More specifically, we model
bi,s as a circularly symmetric complex Gaussian process with distri-
bution bi,s ∼ CN (0, σ2

bi). Likewise, the noise ns is distributed as
ns ∼ CN (0, σ2

nI), where 0 is an N -dimensional zero vector, and
I ∈ RN×N is the identity matrix. We also assume that each sinusoid
and the noise are uncorrelated. In addition, the neighboring sinu-
soids are resolvable in the frequency domain, i.e., their frequency
spacing is greater than ηm 2π

N
, where ηm ∈ N is a broadening pa-

rameter of a window that applies on rs.
Let SNRi = σ2

bi/σ
2
n be the SNR of the ith sinusoid. Let

us define the worst case SNR as SNRmin , mini∈[K](SNRi).
Let Pd denote for the probability of detection for the sinusoid with
SNRmin, and Pfa the corresponding probability of false alarm on
each frequency bin.

We want to detect and estimate each ωi from the input signal
with certain requirements on SNRmin, Pd and Pfa. From a non-
parametric and data-independent perspective, this is a classic spec-
tral analysis and detection problem that can be solved by any FFT-
based spectrum estimation method. For instance, this can be done
by using the Bartlett method [13] followed by an NP detection pro-
cedure. In this case, the FFT computes the signal spectrum on N
frequency bins, and the detection is carried on each bin to determine
whether there exists a significant frequency or not. In what follows,
we will solve this detection and estimation problem using the RSFT.

3. DETECTION IN THE RSFT

The RSFT is summarized in Algorithm 1. First, the pre-permutation
windowing confines the leakage from off-grid frequencies within
limited number of frequency bins. Then, the permutation procedure
reorders the input data in the time domain, causing the frequencies
to also reorder. The permutation causes closely spaced frequencies
to appear in well separated locations with high probability. Then,
a flat-window [2] is applied on the permuted signal for the purpose
of extending a single frequency into a (nearly) boxcar, for a reason
that will become apparent in the following. The windowed data are
aliased, and the frequency domain equivalent of this aliasing is un-
dersampling by N/B. The flat-window used at the previous step
ensures that no peaks are lost due to the effective undersampling in
the frequency domain. After this stage, an FFT of length B is em-
ployed. The permutation and the aliasing procedure effectively map
the signal frequencies from the N -dimensional space into a reduced
B-dimensional space, where the first stage detection procedure finds
the significant frequencies’ peaks, and subsequently their indices are
reverse mapped into the original N -dimensional frequency space.
However, the reverse mapping yields not only the true location of the
significant frequencies, but also N/B ambiguous locations for each
frequency. To remove the ambiguity, multiple iterations of process-
ing with randomized permutation are performed. Finally, the second
stage detection procedure locates theK most significant frequencies
from the accumulated data for each iteration.

The RSFT algorithm discussed in this work is slightly different
from that presented in [6]. In this paper, we apply the iteration from
the pre-permutation windowing to the accumulation stage for each
different data segment, while in [6], we assume that the input data
is the same for each iteration. The main reason for this change is to
reduce the variance of the estimation. The major difference from [6]
is that we apply NP criteria in both detection stages, which obviates
the need for knowing the signal sparsity; in our previous work [6],
the first and second stage detection was performed by counting re-
spectively the dK and K highest peaks in the frequency domain,

Algorithm 1 RSFT algorithm
Input: complex signal rs, s ∈ [T ] in any fixed dimension
Output: o, sparse frequency locations of input signal

1: procedure RSFT(rs)
2: Generate a set of σs, s ∈ [T ] randomly for each dimension
3: ā← 0
4: for s← 0 to T do
5: Pre-Permutation windowing: y←Wrs
6: Permutation: p← Pσsy
7: Flat windowing: z←Wp
8: Aliasing: f ← Aliasing(z)
9: N-D FFT: f̂ ← NDFFT(f)

10: First stage detection: c← NPdet1(|f̂ |2)
11: Reverse mapping: a← Reverse(c)
12: Accumulation: ā← ā + a
13: end for
14: Second stage detection: o← NPdet2(ā)
15: return o
16: end procedure

where d is a number empirically determined by the pre-permutation
windows in each dimension.

In the following, we investigate the two stages of detection sep-
arately, then summarize the solution into an optimization problem.
The analysis is done in one dimension, while the high-dimensional
extension is straightforward.

First Stage Detection: The first stage detection is performed on
each data segment. After pre-permutation windowing, permu-
tation and flat-windowing, the input signal can be expressed as
z = WPσsWrs, where σs is the permutation parameter for the sth
segment and is assumed uniformly distributed; Pσs is the permuta-
tion matrix, and [Pσsx]i = [x]σsi; W = diag(w), W = diag(w̄),
where w and w̄ are pre-permutation window and flat-window, re-
spectively.

The time domain aliasing can be described as f = Vσsrs,
where Vσs =

∑
i∈[L] WiPσsW, and L = N/B, Wi is the

ith sub-matrix of W, which is comprised of the iBth to the ((i +
1)B − 1)th rows of W. Applying FFT on f , the output of the
kth entry can be expressed as [f̂ ]k = uHk Vσsr, k ∈ [B], where
uk = [1 ejk∆ωB · · · ejk(B−1)∆ωB ]T , and ∆ωB = 2π/B. Sub-
stituting (1) into f , and taking out of the summation the mth sinu-
soid, which we assume is the weakest sinusoid with SNR equals to
SNRmin, we get

[f̂ ]k = bmuHk Vσsv(ωm)

+
∑

j∈[K]\m

(
bju

H
k Vσsv(ωj)

)
+ uHk Vσsn.

(2)

Since [f̂ ]k is a linear combination of bi, [n]j , i ∈ [K], j ∈ [N ], it
holds that [f̂ ]k ∼ CN (0, σ2

fk), where

σ2
fk = σ2

bmα(k, σs, ωm) +
∑

j∈[K]\m

(
σ2
bjα(k, σs, ωj)

)
+ σ2

nβ(σs),

and α(k, σs, ω) = |uHk Vσsv(ω)|2, β(σs) = ‖WPσsw‖2. It
is easy to see that σ2

fk is a summation of weighted variances of each
signal and noise components.

We now investigate the pth bin where ωm is mapped to. The
permutation modularly dilates the highest gridded peak of ωm, i.e.,



b ωm
∆ωN
c,∆ωN = 2π/N by σs, while the following aliasing and FFT

stages rescale the frequency location by B/N . Thus, we can local-
ize p as p(ωm, σs) = bB

N
[σsb ωm∆ωN

c]Nc. Since the signal is sparse
in the frequency domain, we assume that only ωm maps to bin p,
and the side-lobes (leakage) are far below the noise level, owning
to the two stages of windowing, which attenuates the leakage down
to a desired level. Thus, the effect of leakage from other sinusoids
can be ignored. Thus, we can approximate the variance of [f̂ ]p as
σ2
fp ≈ σ2

bmα(p, σs, ωm) + σ2
nβ(σs). The bin u ∈ [B], to which no

significant frequency is mapped, contains only noise, and the corre-
sponding variance for [f̂ ]u is σ2

fu ≈ σ2
nβ(σs).Hence, the hypothesis

test for the first stage detection on [f̂ ]j , j ∈ [B] is formulated as
• H0: no significant frequency is mapped to bin j;
• H1: at least one significant frequency is mapped to bin j with

the worst case SNR equals to SNRmin.
By applying a likelihood ratio test (LRT) on each bin in [B], we

establish the relationship of SNRmin, threshold γ, expected prob-
ability of detection P̄d and false alarm rate P̄fa in the first stage of
detection. Specifically,

P̄fa = e
− γ

σ2
nβ̄ , P̄d(ωm) = P̄

β̄
ᾱ(p,ωm)SNRmin+β̄

fa , (3)

where P̄d(ωm) = E{P̃d(σs, ωm)}, P̄fa = E{P̃fa(σs)}, ᾱ(p, ωm) =

E{α̃(p, ωm, σs)}, and β̄ = E{β̃(σs)}. The expectation is taken
with respect to the permutation σs, and P̃d(σs, ωm)}, P̃fa(σs)
are the probability of detection for the weakest frequency and
false alarm rate on each bin, respectively. The derivation of (3)
is straightforward, since the two competing statistics are all zero-
mean circularly symmetric Gaussian scalars with different variances.

Second Stage Detection: Let cσs ∈ {0, 1}B denote the output
of the first stage detection for the sth segment, with permutation
parameter σs. Each entry in cσs is a Bernoulli random variable,
i.e., for j ∈ [B], [cσs ]j ∼ Bernoulli

(
P̃fa(σs)

)
under H0, and

[cσs ]j ∼ Bernoulli
(
P̃d(ωm, σs)

)
underH1. Note that under H1,

we assume that [cσs ]j corresponds to the weakest sinusoid. For the
other K − 1 co-existing sinusoids, since their SNR may be greater
than SNRmin, their probability of detection may also be greater
than P̃d(ωm, σs).

The reverse mapping stage hashes the B-dimensional cσs back
to the N -dimensional aσs . After accumulation of T iterations, each
entry in the accumulated output is summation of T Bernoulli vari-
ables with different success rate. On defining ā as the accumulated
output, then for its ith, i ∈ [N ] entry, we have

[ā]i =
∑

i∈R(j,σs),s∈[T ]

[cσs ]j , (4)

where R(j, σs) denotes for the reverse mapping of the jth entry
in [B] to the ith entry in [N ], with the permutation parameter σs.
Note that in (4), each term inside the sum corresponds to a different
segment, i.e., [cσs ]j is from the sth segment. Since σs is drawn
randomly for each segment, j may take different values, and relates
to i viaR(j, σs).

Now, the hypothesis test for the second stage detection on
[ā]i, i ∈ [N ] is formulated as
• H0: no significant frequency exists.
• H1: there exists a significant frequency, whose SNR is at

least SNRmin.

Under both hypothesis, as T → ∞, [ā]i follows a normal distribu-
tion. Specifically, underH1,

[ā]i ∼ N(µa1(ωm), σ2
a1(ωm)), (5)

where µa1(ωm) = T P̄d(ωm), σ2
a1(ωm) ≤ T P̄d(ωm)(1−P̄d(ωm)).

UnderH0,

[ā]i ∼ N(µa0(ωm), σ2
a0(ωm)), (6)

where µa0(ωm) = FηpP̄d(ωm) + (T − F )P̄fa, σ2
a0(ωm) ≤

FηpP̄d(ωm)(1 − ηpP̄d(ωm)) + (T − F )P̄fa(1 − P̄fa), and
F = TKηm

B
, where ηm is the broadening parameter of the pre-

permutation window w. ηp ∈ [1, 1
P̄d(ωm)

] is a calibration parameter
of the probability of detection for the other K − 1 co-existing
sinusoids.

To derive (5) and (6), we first explore the properties of mapping
and reverse mapping, which guarantees that a mapped location can
be reverse mapped (with ambiguities), and two distinct locations
with the same permutation parameter are mapped to distinct loca-
tions. With these properties, we notice that underH1, assuming that
[ā]i corresponds to the weakest sinusoid, each term inside the sum

of (4) is distributed as [cσs ]j ∼ Bernoulli
(
P̃d(ωm, σs)

)
, s ∈ [T ].

UnderH0, the sum in (4) is composed of F Bernoulli variables with
success rate P̃d(ωm, σs), and T − F Bernoulli variables with suc-
cess rate P̃fa(σs). The parameter ηm reflects the fact that sparsity is
affected by the pre-permutation windowing. And since we assume
that v(ωm) has the minimum SNR, i.e., SNRmin, other sinusoids
with higher SNR will have larger P̄d. Hence, we multiply P̄d(ωm)
with ηp to calibrate the success rate of [cσs ]j under H1. Next, by
applying Lyapunov Central Limit Theory [14], it is easy to show
that [ā]i approaches normal distribution asymptotically.

The Optimization Problem: Based on the above discussion, the
optimal threshold design can be solved by the following optimization
problem, i.e.,

Minimize{µ,P̄fa,P̄d} SNRmin

s.t. P̄d(ωm) = P̄
β̄

ᾱ(p,ωm)SNRmin+β̄

fa , Pfa =

∫ ∞
µ

ga0(u)du

Pd =

∫ ∞
µ

ga1(u)du, µ ∈ [T ], 0 ≤ P̄fa ≤ 1, 0 ≤ P̄d ≤ 1,

(7)

where ga0(u), ga1(u) are the asymptotic PDF of [ā]i (which corre-
sponds to the weakest sinusoid) underH0 andH1, respectively. We
take the upper bounds of the variances in both distributions. It can
be shown numerically that the actual variances are close to their up-
per bounds; the proof is omitted due to lack of space. Since both of
them are Normal distributions, with fixed threshold µ, we can solve
for P̄d(ωm), P̄fa, and then compute the SNRmin. By exhaustive
search for µ ∈ [T ], the minimum worst case SNR, i.e., SNR∗min,
can be found, and the corresponding µ∗ is the optimal threshold for
the second stage of detection. The optimal threshold for the first
stage of detection, i.e., γ∗, can thus be calculated via (3).
Remark 1. For the second stage detection, the LRT is obtained based
on two Normal distributions. The test statistic underH1 is “stable”,
because it only depends on P̄d(ωm). On the other hand, under H0,
the distribution depends on the number of co-existing sinusoids, as
well as on each sinusoid’s SNR. A larger K and a higher SNR will
“push” the distribution underH0 closer to the distribution underH1,
hence causing a degradation of the detection performance. In order
to compensate for this, a larger SNRmin is required.



Remark 2. In (6), we set a parameter ηp to calibrate the distribution
of [ā]i under H0. By setting ηp as 1 or 1

P̄d(ωm)
, we can get respec-

tively the lower and upper bound of SNR∗min for the variation of
SNR of other co-existing sinusoids. If K is the maximum budget of
signal sparsity, the optimal thresholds found by solving (7) provides
the optimal thresholds for the worst case. If the actual signal spar-
sity were less than K, Pfa would be lower than the expected value,
while Pd would be unchanged according to Remark 1.

4. NUMERICAL RESULTS

In this section, we verify our theoretical findings and compare to
the detection method in the SFT via simulations. We use the fol-
lowing parameters: N = 1024, T = 50, B = 64, ηm = 3, Pd =
0.9, Pfa = 10−6, ωm = 64.5∆ωN ≈ 0.4. As pre-permutation
window, we adopt a Dolph-Chebyshev window with 40dB atten-
uation. We use the same window to convolve with a boxcar whose
bandwidth is 1/B in the frequency domain to create the flat window.
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ā (normalized)
Second threshold µ

∗

(d)
Fig. 1. Detection with Unknown Signal Sparsity. The optimized
thresholding approach is robust to the unknown sparsity. The ma-
genta dots in (b) and (c) correspond to ωm. (a) Second stage detec-
tion by counting peaks whenK = 10. (b) Second stage detection by
thresholding when K = 10. (c) Second stage detection by counting
10 peaks, while the true sparsity is 3. (d) Second stage detection
with the threshold optimized for K = 10, while the true sparsity is
3.

To show that the proposed method is robust to the signal spar-
sity, we do not assume that we know K, instead, a guess for K,
i.e., K = 10 is used. Fig. 1 shows the detection with counting-K-
peaks and optimal thresholding, respectively. When the guess for K
is correct, both methods can locate all the significant frequencies, as
shown in Fig. 1 (a) and (b). However, when the true sparsity is 3,
the counting-K-peaks will result into many false alarms, while the
optimal thresholding method, which is optimal forK = 10, can still
recover the correct significant frequencies (see Fig. 1 (d)). More-
over, compared to (b), it yields similar Pd for the weakest signal but
better Pfa, since the noise level is much lower than expected.

For the high dimensional setting, we use the radar example in
[6], in which the signal from 4 targets lies in a 3-D range, velocity

Fig. 2. Radar Targets Reconstruction via 3-D SFT and the RSFT.
The SFT-based processing recovers the stronger targets (Targets 1
and 2) and their side-lobes by counting 50 frequency peaks in the
first stage of detection, while the RSFT-based method recovers the
main-lobes from all the targets with our detection framework.

and direction of arrival (DOA) space after applying DFT in each di-
mension. The significant frequencies are not assumed on-grid points
in that 3-D space. Moreover, the signal has a dynamic range of
20dB. In this scenario, it is difficult for the SFT to determine the
number of peaks to be counted since the leakage from stronger tar-
gets destroys the sparsity of the signal. To recover all the targets, the
number of peaks to be counted needs to be gradually increased until
all the targets are observed in the recovered 3-D space [6]. How-
ever, in reality, we do not know how many targets to recover, while
SNRmin, which corresponds to the target with smallest radar cross
section (RCS) at the largest unambiguous range, is easy to determine
at the testing phase of the radar. With knowledge of SNRmin and
a worst case signal sparsity K, we can find the detection thresholds
for the RSFT with a fixed Pfa and maximized Pd (by recasting (7)
for maximizing Pd with fixed SNRmin and Pfa). Fig. 2 shows our
detection results where it can be seen that the RSFT can recover all
the targets when the thresholds are determined by our optimization
procedure for SNRmin = −20dB, Pfa = 10−6,K = 10, while
the SFT recovers only the stronger targets (Targets 1 and 2) and their
side-lobes due to high level of leakage and incorrect knowledge of
the signal sparsity. We should emphasize that in a real system, deter-
mining the number of peaks to be counted for the SFT-based method
lacks a theoretical foundation, while the thresholding approach in
the RSFT is consistent with the conventional FFT-based processing,
both of which are based on the NP criterion.

5. CONCLUSION

In this paper, we have addressed the detection problem in the RSFT.
By incorporating the NP criterion, we have shown that the asymptot-
ically optimal thresholding can be achieved in the RSFT on the as-
sumed signal model. Moreover, it has been shown that our detection
framework is robust to the incomplete knowledge of signal sparsity,
and thus is more applicable to the real world problems. Some of the
interesting properties of the RSFT have also been revealed by our
analysis, such as the performance of detection not only relies on the
frequency under examination, but also depends on other co-existing
significant frequencies, which is very different from the traditional
FFT-based processing.
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[7] André Rauh and Gonzalo R Arce, “Sparse 2d fast fourier trans-
form,” Proceedings of the 10th International Conference on
Sampling Theory and Applications, 2013.

[8] Badih Ghazi, Haitham Hassanieh, Piotr Indyk, Dina Katabi,
Erik Price, and Lixin Shi, “Sample-optimal average-case
sparse fourier transform in two dimensions,” in Communi-
cation, Control, and Computing (Allerton), 2013 51st Annual
Allerton Conference on. IEEE, 2013, pp. 1258–1265.

[9] Frank Ong, Sameer Pawar, and Kannan Ramchandran, “Fast
and efficient sparse 2d discrete fourier transform using sparse-
graph codes,” arXiv preprint arXiv:1509.05849, 2015.

[10] Piotr Indyk and Michael Kapralov, “Sample-optimal fourier
sampling in any constant dimension,” in Foundations of Com-
puter Science (FOCS), 2014 IEEE 55th Annual Symposium on.
IEEE, 2014, pp. 514–523.

[11] Haitham Hassanieh, Maxim Mayzel, Lixin Shi, Dina Katabi,
and Vladislav Yu Orekhov, “Fast multi-dimensional nmr ac-
quisition and processing using the sparse fft,” Journal of
Biomolecular NMR, pp. 1–11, 2015.

[12] S. Wang, V. M. Patel, and A. Petropulu, “An Efficient High-
Dimensional Sparse Fourier Transform,” ArXiv e-prints, Oct.
2016.

[13] Petre Stoica and Randolph L Moses, Spectral analysis of sig-
nals, pp. 49–50, Pearson/Prentice Hall Upper Saddle River,
NJ, 2005.

[14] Robert B Ash and Catherine Doleans-Dade, Probability and
measure theory, p. 309, Academic Press, 2000.


