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Abstract—Due to the ability of millimeter waves (mmWs)
to penetrate dielectric materials such as plastic, polymer and
clothes, the mmW imaging technology has been widely used for
the detection of concealed weapons and objects. The use of mmW
images has also recently been proposed for biometric person
recognition to overcome certain limitations in image acquisition
at visible frequencies. This paper proposes a biometric person
recognition system based on the shape information extracted
from real mmW images. To this aim, we report experimental
results using the mmW images with different body shape-based
feature approaches such as contour coordinates, shape contexts,
Fourier descriptors and row and column profiles. We also study
various distance-based and classifier-based matching schemes.
Experimental results suggest the potential of performing person
recognition through mmW imaging using only shape information,
a functionality that could be integrated in the security scanners
deployed in airports.

Index Terms—mmW imaging, body shape information, border
control security, contour coordinates, dynamic time warping,
support vector machines, shape contexts, Fourier descriptors,
row and column profiles.

I. INTRODUCTION

ILLIMETER waves (mmWs) are high-frequency elec-
tromagnetic waves in the range of 30 — 300 GHz with
wavelengths between 10 to 1 mm. These types of waves have
been recently found to have interesting properties for various
pattern recognition applications. The use of mmW imaging
in particular has been gaining interest in the security research
community [1]-[3], mainly due to its low intrusiveness and the
ability to pass through clothing and atmospheric occlusions.
Traditional applications of this technology include concealed
weapon detection (CWD) [4]. Radiation at the mmW frequen-
cies is non-ionizing and is therefore considered safe for human
exposure. As a result, mmW scanners have been deployed
in several international airports, replacing the former X-rays
scanners. The suitability of these frequencies for CWD relies
on the different response (due to difference of temperatures)
between metallic objects and the human body skin.
Research in mmW imaging has focused in increasing the
narrow depth of field (distance over which an object is
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Fig. 1: Two full-scanning screening images from the mmW
TNO database acquired with a stereo radiometric scanner.
A full-scanning screening image is comprised of two single
images with slight variations in pose. Two different head poses
are depicted: frontal (above) and lateral (below). Figures are
extracted from [9].

considered in focus) and the screening time of mmW imaging
systems, in order to perform CWD through a corridor without
creating bottlenecks [5], [6]. Automatic detection of concealed
weapons, explosives, and contraband through mmW imaging
is still an active area of research [4], [7], [8].

In the area of biometric person recognition, some re-
searchers have studied the use of images acquired beyond
the visible spectrum (e.g. X-ray [10] and infrared (IR) [11],
[12]) with the aim of overcoming the limitations such as
illumination variations and body occlusions.

Millimeter wave images present some benefits for biometric
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Fig. 2: Benefits of mmWs for imaging: ) transparency through
body clothes (extracted from [3], and #i) transparency through
face clutter (images from the mmW TNO database)

person recognition, which make them especially noteworthy
for further exploration and study. The key benefits lie in the
wave properties enabling it to pass through clothes and other
obscurants. As a consequence, shape information retrieved
from the mmW images may be more robust to clothing
variations than visible images. For the same reason, mmW
imaging can also be exploited to retrieve texture information,
which could potentially be used as discriminatory information
in person recognition applications (see the torsos in Fig. 1).
Furthermore, mmWs are also able to pass through accessories
such as balaclavas, caps or artificial beards. This property
makes mmW images less susceptible to spoofing attacks when
compared to images in the visible spectrum [13]. People
modifying their body constitution or using sophisticated facial
masks may be easily detected using mmW images.

Based on the interest among the security research com-
munity in these frequencies, together with the promising
recent results for mmW person recognition [9], [14], one may
consider the possibility of using mmW images acquired from
the screening scanners located at the airports simultaneously
for both detecting hidden objects and performing person
recognition. This two-fold control procedure could address
better the security issues, threads and challenges faced in
today’s society.

Despite the interesting properties of mmW images, only a
few works have used mmW images for person recognition
purposes. This shortage of biometric recognition research
based on the mmW images is mainly due to the lack of
databases of images of people acquired at this frequency
band as well as the privacy concerns of these images [15].
Alefs et al. developed one of the first reported efforts for
person recognition using real mmW passive images acquired in
outdoors scenarios [9] (see Fig. 1). They exploited the texture
information contained in the torso region of the image through
multilinear eigenspaces techniques. On the other hand, the
works by Moreno-Moreno et al. [16] and by Gonzalez-Sosa et
al. [14] proposed and analyzed a biometric person recognition
system based on shape information extracted from synthetic
images from the BioGiga database, exploiting geometrical
measures between different silhouette landmarks and features
based on contour coordinates, respectively. In all cases, images

were extracted using a frequency of 94 GHz. In the present
work, we will form an in depth analysis of the discriminative
capability of shape-based features using real mmW images
from the mmW TNO database [9]. In the context of mmW
scanners placed at airports, subjects are scanned following a
cooperative protocol with the arms upwards and legs separated
between each other (see Fig. 13). As our idea is to study the
possibility of using the same mmW scanned images for both
CWD and person recognition applications, we elaborate our
study under the assumption of this cooperative protocol.

Body shape information from mmW images may not be
substituted as a primary biometric such as face or fingerprint,
but it may be useful for narrowing the search of possible
suspects with very little effort. Furthermore, since mmW can
pass through clothing and other materials, one can perhaps use
it to detect spoofing. Besides, for some specific applications
such as screening scanners at airports, mmW images have
clear benefits which could be used to improve the recognition
rates obtained by more traditional biometrics. In the future,
it could also be possible to have visible cameras along with
mmW scanners and therefore benefit from the properties of the
different spectral regions through multimodal fusion schemes.

This paper is structured as follows. A brief review of
shape-based biometric recognition applications is described in
Section II. The mmW TNO database used in this paper is
described in Section III. Section IV describes the different
shape-based features used in the biometric system, while Sec-
tion V addresses the different matching approaches explored
in this work. The experimental protocol and results of these
methods are presented in Section VI and VII respectively.
Finally, Section VIII concludes the paper with a brief summary
and discussion.

II. RELATED WORK ON SHAPE-BASED BIOMETRIC
PERSON RECOGNITION

By shape information, we mean any type of information
that may be retrieved from binary images. Body shape-based
recognition techniques are enclosed within the wide area of
object shape-based recognition. A general survey about the
different techniques of modeling shape can be found in [17],
[18]. In the area of person recognition, several biometrics traits
exploit the shape information:

a) Hand Shape: Different information from hand shape
silhouettes has been used to perform authentication: widths
and lengths of the hand [19], others also include the palm size
[20]; hand contour [21]; or independent component analysis
features [22].

b) Gait: The appearance-based gait approaches use the
lower part of the silhouette of the body normally in a lateral
view to model the subject. Features may be acquired from a set
of frames belonging to the same cycle, or frame independently.
The most common features are based on an average silhouette
[23] (Gait Energy Image, Active Energy Image) .

c) Signature: Offline and online signature recognition
methods explore signature shape information through its area,
aspect ratio, contour coordinates, number of edge points,
horizontal and vertical histogram, curvature, etc. [24].
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Fig. 3: Body shape-based person recognition using mmW imaging.

d) Fingerprint and Vein: There are previous works in the
literature that address fingerprint recognition through ridge-
based structure description [25]. Likewise, there are some
works that utilizes the skeleton pattern of the vein [26] or
their shape [27] to perform identification. Some knuckle point
perimeter distances have been also proved to improve a vein
triangulation system [28].

e) Soft Biometrics: Body shape information has also
been used to extract certain soft biometrics such as gender
[29] or even age [30].

III. THE MMW TNO DATABASE

Further research on mmW imaging has been predominantly
blocked by two principal issues: i) high cost of acquisition
devices, and i) privacy concerns. Certainly, the average cost
of commercial mmW scanners surpasses $150.000!, impeding
easy access to mmW data. Even more critical are the privacy
issues that enclose mmW images. As mmWs can pass through
materials and clothes, mmW images from human beings
present partially naked figures, worsening the scene regarding
the utilization of these data for research purposes.

Images are recorded using a passive stereo radiometer
scanner in an outdoor scenario. The passive mmW radiation
emitted by the subject arrives to a mirror that provides the
mmW passive radiation to two hyperbolic antennas. Therefore,
each full scanning is a set of two single images with slightly
different points of view of size 696 x 499 (width x height).
Fig. 1 shows some full-scanning examples. As can be seen,
radiation passes completely through the upper part clothes,
whereas the lower part clothes remain partially in the mmW
image (see for example the belt). This fact has to do with the
different attenuation of each specific material.

The database is comprised of images belonging to 50 diffe-
rent male subjects in 4 different scenarios. These 4 different
scenarios derive from the combination of 2 different head
poses and 2 different facial occlusions. In the first head pose
configuration, the subject is first asked to stand in front of the
scanner with head and arms position at a fixed rack (frontal
head pose). In the second pose configuration (lateral head
pose), the subject is asked to turned his head leftward whereas
the torso is asked to remain fixed (it may suffer some small
changes due to the head movement). Fig. 1 depicts above a
full-scanning with frontal head pose and below a full-scanning
with lateral head pose (0° and 90° in the yaw axis respectively)

'Source from https://www.propublica.org/special/scanning-the-scanners-a-
side-by-side-comparison.

TABLE I: The mmW databases available for person recogni-
tion purposes. Here, M stands for male and F for female.

BioGiga [16] mmW TNO [9]
Nature Synthetic simulation | Real scanner
Architecture Active and Passive Passive
Scenarios Outdoors and Indoors | Outdoors
Subjects 25 (M) and 25 (F) 50 (M)
Images subject | 24 8
Total Images 1200 400
Variations Pose and Clothes Pose and Clutter

In order to prove the benefits of mmW imaging above visual
imaging, images with different facial configurations were also
extracted. In this case, a second round of images with the first
and second head pose configurations were extracted but now a
large part of the facial region was occluded using an artificial
beard or balaclava. We will refer to these two different facial
clutter configurations as clutter and non clutter, respectively.

As mentioned before, each scanning is a set of two images.
By dividing this set into single images of 348 x 499, the
TNO database is comprised of 50 subjects x 2 head pose
configurations x 2 facial clutter configurations x 2 images per
set, making a total of 400 images in the whole mmW TNO
database. Table I compares the two mmW datasets available
for person recognition.

As shown in Fig. 1, subjects appear with their legs and
arms separated from their body (with the arms downwards).
In the case of commercial applications, such as in Fig. 13,
subjects usually have their arms upwards. Apart from this
minor difference, we can say that in both cases subject follows
a cooperative protocol. Hence, conclusions drawn from TNO
images may be translated to mmW images acquired for border
control applications.

IV. BoDY SHAPE FEATURES

The biometric recognition module of this work aims to
perform person recognition through body shape-based infor-
mation extracted from mmW images. Fig. 3 shows the general
scheme followed in this work. First we need to preprocess
the mmW input image, in order to obtain a binarized image
from which to extract shape-based features. This work has
been mainly aimed to explore the potential use of mmW
images for person recognition purposes. In order to extract
conclusions that could directly be related to the discrimination
capabilities of body shape feature approaches, we isolate our
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Fig. 4: Body shape features proposed in this work to perform person recognition using mmW images. The left side shows a
binarized image (above) and different body part regions extracted after the segmentation (below). The right side shows the

different shape-based features employed in this work. From
Fourier descriptors and shape contexts.

proposed system by manually segmenting the mmW images.
Concretely, the segmentation operation carried out in this work
is done by selecting a set of 200 manual points. With the
resulting binarized image, a finer detail contour is extracted.
The preprocessing stage of this system also implies the mean
normalization of both contour coordinates (column x and row
), in order to achieve robustness against translations. Different
feature approaches are considered in this work, classifying
them into two main categories: contour-based features and
image-based features.

A. Contour-based Features

The different feature approaches extracted from the contour
coordinates considered in this work are: 7) contour coordinates,
11) Fourier descriptors, and iii) shape contexts.

1) Contour  Coordinates  (CC): are used as
the Dbaseline feature approach, being defined as
contour_coordinates(n) = (x,,yn),n 1,..., e,

being n.. the number of pixels that compose the contour
that the silhouette edge describes with the background
(approximately 2000 points), and (z,,y,) the coordinates of
each one of those pixels. The starting point of the sequence

top to bottom: contour coordinates, row and column profiles,

is the middle point of the head. Fig. 4 shows the y and x
coordinates of the subject silhouette.

2) Fourier Descriptors (FD): are simple to compute and
robust against translations and rotations since the effect these
transformations cause on the descriptors is completely known
[17]. For each pair (z,,y,) we define the complex variable
Un = X + Jyn. The Discrete Fourier Transform of w,, is
obtained as

Nece

2
£(1) = Zuke:z:p(fjnilk),l = 0,1, 10 — 1. (1)
kzo cc

The coefficients f(l) are known as the Fourier descriptors
of the boundary. Fig. 4 shows real and imaginary part of
the Fourier descriptors. As can be seen, the discriminatory
information of the Fourier descriptors lies in the lower
frequencies, which accounts for the gross shape information.

3) Shape Contexts (SC): were first introduced by Be-
longie et al. [31]. This technique describes a specific point
considering the relative distance and angle to the rest of
the points within a shape through a logarithmic and polar
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histogram. The number of radial bins (r_bins) and theta bins
(0_bins) are the main parameters of this descriptor. As a
result: ) the overal number of bins in the logarithmic and
polar histogram is r_bins x 6_bins, and i7) the shape contexts
of a shape described by N points forms a vector of size
(N x r_bins x r_bins). Given a point p; within the shape
boundary, their corresponding logarithmic and polar histogram
h; is computed as follows:

hy(k) = #{q # pi : (q — pi) € bin(k)}. @)

Equation 2 specifies that component k of histogram h;
contains the number of points different to point p; that lies
in bin(k), where bin(k) is the bin associated to a particular
combination of radial and angular distance and k ranges
from 1 to r_bins x 6_bins. The final feature vector of SC
is the concatenation of all h; vectors of all points within the
boundary. All radial distances from the remainder points of the
sequence are computed and then normalized by the average
distance. Any point that surpasses a preset relative distance
is considered an outlier and it is not taken into account for
the log polar histogram. Fig 4 shows an example of the
12 x 5 shape contexts descriptor for a particular point within
the mmW body shape. Dark colors imply a high density of
points within a bin, while lighter colors imply a lower density.

B. Image-based Features

Unlike the previous subsection in which features were ex-
tracted from contour coordinates, we describe here the shape-
based approach that extract features from the binarized image.

1) Row and Column Profiles (RCP): Given the binarized
image I, whose pixels belonging to the foreground (fg) are set
to 1 (I(xyg,ysy) = 1) and pixels belonging to the background
(bg) are set to 0 ({(xpg,ybg) = 0), we compute row and
column profiles as follows:

row_profile(y) = Z I{z,y),y=1,..n, (3)
r=1

column_profile(z) = Z I(z,y),z=1,..n. (4)
y=1

being n, and n. the height and width of the normalized body
image. Hence, the row profile and column profile dimension-
ality will be of 499-length and 348-length, respectively. Fig.
4 shows the row and column profiles of the binarized image.

C. Extraction of Body Regions

Different body parts are extracted using information from
the binarized image and the global contour coordinates se-
quences. Five body regions are extracted: head, torso, right
arm, left arm and legs. Concretely, the head is extracted
by exploring the first minimum of the row profile; legs are
also extracted by looking at the maximum of the row profile
(normally coincides with the y coordinate in which the arms
are almost at their border); and the torso is the region between

the head and the legs. Right and left arms are extracted by
inspecting the binarized image from the center of the torso.
By going leftwards and rightwards respectively, we detect the
background region between the torso and the arms, which let
us find the vertical line that separates the arms from the body.

It is worth noting that this body parts extraction is feasible
due to the constrained position of people the body scanners
(they are told to stand in a specific position, which is normally
shown previously to the subjects). In this work, body parts
regions are described through CC and RCP.

V. MATCHING
A. Distance-based Matching

1) Dynamic Time Warping (DTW): In the specific case of
row and column profiles, individual distances are computed in-
dependently between row profiles and column profiles. These
distances are then averaged. With Fourier descriptors, we use
their absolute value to compute similarities.

2) Modified Hausdorff Distance (MHD): The Hausdorff
distance is an effective method for shape comparisons [32].
Rather than measuring superposition, it estimates proximity.
Two sets of points are close in terms of Hausdorff distance
if every point of each set is close to some point of the other
set. Likewise DTW, this distance may deal with sequences
of points with different dimensionality. In this work, we
apply the modified Hausdorff distance that aims to be more
robust against noise by averaging individual distances rather
than selecting the maximum (original version). The MHD

between two sets of coordinates A = ai,as,....,an, and

B =b1,bs,....,bnNy is defined as:
MHD(A, B) = max(h(A, B),h(B, A4)). (5)

where 1

h(AvB) = Ezggg”a*b”v (6)

a€A

1 .

h(B, A) = ﬁbéglelglla—blk (7

B. Classification-based Matching

1) Support Vector Machines (SVM): We employ SVMs as
classifiers. As SVMs require features with the same length,
some previous operations are needed. CC are truncated or
interpolated to the mean length of all sequences. FD and SC
are recomputed with the new normalized contour coordinates.
RCP do not require any operation, as they have already a
fixed size. Due to the high dimensionality of those features,
a dimensionality reduction operation is also applied using
Discrete Continuous Transform (DCT). Only for the case
of FD we select the first k& Fourier descriptors instead of
computing DCT over Fourier descriptors.

VI. EXPERIMENTAL PROTOCOL

The experimental protocol followed in the previous work
using the mmW TNO database [9] was very optimistic. It
assumed 4 images as input (test images) and 4 images as
training. Individual distances were computed comparing pairs
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of images under the same head pose and point of view condi-
tions, which is not a realistic situation. Then, the final distance
was the minimum over the 4 former individual distances.

The experimental protocol proposed in this work aims to
simulate the real situation in which a traveler would enter in
the mmW scanner deployed in the security area of an airport.
To this aim, enrolment is carried out in the first use of the
mmW scanner. At the same time the subject is being scanned
to target concealed weapons or dangerous objects, he is also
compared with the previously enrolled template associated to
the identity claimed in his passport. To simulate this scenario,
we report results in verification mode. It would also be possible
to compare the mmW image of the person with a watchlist of
suspects. This case has been also considered and identification
results are reported. Additionally, in order to gain insight
from the benefits of using mmW images, we explore different
experimental protocols.

a) Frontal Protocol: This protocol is set up as the
baseline protocol. Among the 4 images with frontal head pose,
we randomly select 2 images as gallery images and 2 images
as probe images.

b) Cross-Pose Protocol: With this protocol, we aim to
study the robustness of the different shape-based features
proposed against pose variations. The mmW TNO database
contains images with frontal head pose and with lateral head
pose (see Fig. 1). To this aim, we randomly select 2 images
from the frontal head pose subset as gallery images, and 2
images from the lateral head pose subset as probe images.

c) Cross-Clutter Protocol: Millimeter waves are able
to pass through materials such as clothes. The mmW TNO
database contains images with some clutter artifacts (caps,
beards or balaclavas). With this protocol, we aim to gain
insight about the influence of wearing artifacts over the task
of person recognition. Therefore, we match frontal images
without clutter against frontal images with clutter. We report
experiments following this protocol for just some approaches,
as clutter directly affects texture but not shape information.

In order to compute verification results, we face gallery
images against probe images, generating 200 similarity target
scores (2 probe images/subject x 50 subjects x 2 gallery
images/subject) and 9800 similarity non-target scores (2 probe
images/subject x 50 subjects x 49 impostor subjects x 2
images/subject). For each particular protocol, we define two
random splits of gallery and probe images and then results are
averaged. It is also worth noting that for the SVM classifier,
the number of target scores is reduced to 100, as probe images
are compared to a model trained with 2 gallery images.

In the identification mode, given a probe image, we compare
it against each one of the 2 gallery images of a particular
subject individually. Then, a final score results as a linear
combination of the individual scores.

Verification results are reported in terms of the Equal Error
Rate (EER) and Receiver Operating Characteristic curves
(ROC). In the ROC curves, True Acceptance Rate (TAR)
is depicted against False Acceptance Rate (FAR). EER is
the value attained when False Acceptance Rate and False
Rejection Rate (FRR=1-TAR) coincide. Identification results

are reported using the Cumulative Match Characteristic curves
(CMC) and Rank-1 rates (R1). The CMC curves plot the
recognition rate achieved at every rank value. For instance,
Rank-1 means the percentage of cases in which the system
outputs the genuine subject as the most probable subject, rank-
5 means the percentage of cases in which the systems output
the genuine subject among the first 5 candidates, and so forth.

VII. RESULTS

This section describes the experimental results carried out
to analyze the discrimination capabilities of different body
shape-based feature approaches for the task of person recog-
nition using mmW imaging. First, Section VII-A and Section
VII-B study the influence of different configurations of shape
contexts and row and column profiles, respectively. Then, the
effect of the feature dimensionality is assessed in Section
VII-C. In this case, we report results in the verification
mode and using the frontal protocol. The performance of the
different classifiers with the different feature approaches is
addressed in Section VII-D. Then, the feasibility of using body
regions separately to perform person recognition is addressed
in Section VII-E. Lastly, some insight regarding the challenges
ensuing automatic segmentation of mmW images are covered
in Section VII-F.

A. Exploring Shape Contexts

Shape contexts are computed with two main parameters:
the number of angular bins (f_bins) and the number of radial
bins (r_bins) of the log polar histogram. Fig. 5 a) and b)
show the performance of shape contexts varying angular and
radial bins, respectively. When varying the number of angular
bins, the number of radial bins is fixed to 5, while 12 angular
bins are used when varying the number of radial bins (5 radial
bins and 12 angular bins are the default values proposed by
the author [31]). The distance-based approach employed in
this experiment is DTW.

If any of these two parameters increase, the log polar
histogram of a sequence possesses much more detail on the
distribution of all points with respect to a specific one, hence
being more able to discriminate between subjects (reduction in
EER). For the angular dimension, we obtain better results if we
increase the angular dimension up to 48 bins. From these fig-
ures we can see that mmW person recognition through shape
contexts benefit more significantly from a more detailed radial
distribution of points rather than detailed angular distribution.
The best configuration is achieved when using 50 radial bins
and 12 angular bins, with an EER of 9.5%.

From these experiments we have learnt that shape contexts
retain more discriminative information in the radial than in
the angular dimension. Indeed, every single point within the
human body shape contains points distributed throughout the
entire radial dimension. If we think about a particular point p
within the head contour, all points placed in the head would
be near to p, points placed around the neck and upper torso
would be middle-distance neighbors, while points belonging
to the legs or lower torso would be far-distance neighbors.
That will happen in a similar way with any considered point
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Fig. 6: Influence of the dimensionality of the different shape approaches: a) contour coordinates; b) row and column profiles

and c) Fourier descriptors.

within the contour. Unlike the radial dimension, not all points
within the contour would have neighbors in all angular bins.
That would be the particular case of all outer points of the
contour which will only have neighbors from a constrained
portion of the entire angular circumference. This evidence is
empirically proved with the experiments from Section VII-A.

B. Exploring Row and Column Profiles

When assessing the performance of row and column profiles
individually (using DTW as the matcher), we observed that
column profile obtaines better performance than the row
profile (14.75% and 22.12% of EER, respectively). Then,
the fusion of both profiles outperforms any of the individual
cases (10.75% of EER). The superior performance of column
profiles over row profiles might be because every subject has
a row profile always defined by a neck region, hip, waist and
so forth, regardless of their position, making this way the
interclass variability small. On the contrary, column profiles
depend more on the body position, that is, how the subject
places their arms and legs inside the mmW scanner. We
assume subjects have the tendency/inertia of positioning their
body in a particular way that helps to discriminate better
between subjects.

C. Influence of the Feature Dimensionality

In this section, we analyze the influence of the feature
dimensionality with respect to the system performance. Fig.
6 a), b), c) and Fig. 5 c¢) show the influence of the feature
dimensionality for contour coordinates, row and column pro-
files, Fourier descriptors and shape contexts, respectively. The
distance-based approach employed in this assessment is DTW.

For contour coordinates, shape contexts and row and column
profiles, the dimensionality reduction is achieved by selecting
a reduced number NN, taking 1 sample out of k& from the
corresponding feature vector obtained with the highest res-
olution, being 2000 (N < 2000) points for CC and SC
and width + height 850 (N < 850) for RCP. The
final dimensionality of the feature vector will depend on the
specific feature approach (SC=N x r_bins x 6_bins-length
vector; CC=N x 2-length and RCP=N x 1-length, respectively).
Regarding contour coordinates, the performance is moderately
improved up to 10.3% if the sequence is down sampled to
200 points. It it also worth noting that similar results are
obtained if we use 2000 (11.5%) or 70 points (11.8%). If the
sequence is down sampled even more, the performance starts
to degrade severely. Concerning row and column profiles, the
best performance is achieved with the highest resolution (850
points). Performance is kept almost similar when decreasing
down to 200 points, but with less than 200 points there is
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not enough discriminatory information to distinguish between
subjects.

In the case of the Fourier descriptors, the down sampling
operation is different. Rather than taking 1 out of k samples,
we select the first /N components of the sequence (N < 1000).
This is because Fourier descriptor discriminatory information
is not distributed homogeneously through the whole sequence,
but it is concentrated on the low frequency components. If
we pay attention to Fig. 6 c), we note that, if we use less
than 650 components, the Fourier descriptors are not able to
discriminate reliably. Also, the best result is obtained when
we get rid of the highest frequency components (using 650
components). This fact suggests that the most discriminatory
information relies only on the low frequency components.

In the case of shape contexts (see Fig. 5 c)), the influ-
ence of the feature dimensionality is explored with the best
combination of parameters (number of angular and radial
bins) discussed in Section VII-A, that turned out to be shape
contexts with 50 radial bins and 12 angular bins. The dimen-
sionality of the log polar histogram for a specific point is 600
(50 x 12). The high dimensionality of the whole contour is
600 x 2000, making it necessary to study the computational
time employed per comparison. For that reason, the time per
comparison (using DTW)), is also plotted in Fig. 5 c). Likewise
contour coordinates and row and column profiles approaches,
the performance of shape contexts is almost kept if the feature
is down sampled to 200 points. As with contour coordinates,
performance improvement is also observed here when down
sampling the sequence down to 400. Besides, the computa-
tional time per comparison between using 2000 and 400 or 200
is greatly reduced. In real applications, one should find a trade-
off between performance and computational time involved,
that in this particular case is achieved when using shape
contexts descriptors with dimensionality between 200 — 400.

By the exploration of the dimensionality of the different
feature approaches considered, we have learnt that it is not
necessary to work with maximum resolution. If features with
lower dimensionalities are used, similar or in some cases better
results are obtained.

D. Verification and Identification results

1) Verification Task: Fig. 7 and 8 present the ROC curves
obtained for the different matching and shape feature ap-
proaches for the frontal and cross-pose protocols, respectively.

The feature approach that works better with DTW is row
and column profiles (10.75% of EER). For MHD, contour
coordinates achieved even better results with an EER value of
9.25%. Regarding SVM, row and column profiles are the shape
features that performed the best (8.0% of EER). Furthermore,
RCP-SVM achieves the best results among all combinations of
feature approaches and matchers. Note that this system is also
robust to variations in pose, as the performance is maintained
while following the cross-pose protocol (see Fig.8 c)).

It is also interesting to notice that MHD is not an appropriate
matcher for neither RCP nor FD. This is mainly because
neither of these shape approaches are retaining information
of shape coordinates, but about their size (RCP) or their

frequency information (FD). Besides, MHD does not take
into account any context information when computing the
distance. That allows to match points regardless of their spe-
cific situation within the shape. Unlike MHD, DTW algorithm
takes into account some spatial context information through
their global and local constraints. This justifies the better
performance of DTW with respect to MHD over RCP and
FD approaches. However, the best results for these descriptors
are achieved with SVM. Note that contour coordinates keep
their verification performance very similar for the different
matchers.

Fig 9 shows some examples of false negatives and false pos-
itives when using the CC-DTW following the frontal protocol.
While false negatives occur when the system wrongly rejects
two samples belonging to the same identity, false positives
take place when the system wrongly accepts two samples
that do not belong to the same identity. As can be seen, arm
movements may lead to false negatives. Besides, issues such as
similar height (case C) or similar constitution (case D) cause
mismatched identities. These examples show the limitations of
CC for recognition.

Table II presents the results obtained when following the
cross-clutter protocol with respect to the baseline frontal
protocol. As can be seen, verification results with the cross-
clutter protocol are almost the same, there is only slight
degradation. Hence, we deduce that mmW images might be
potentially robust to occlusions. However, it is also noticeable
that occlusions degrade more significantly texture than shape
information. Therefore, it would be more interesting to study
the influence of occlusions when assessing texture information
from the mmW images.

2) Identification Task: Fig. 10 and 11 present the CMC
curves obtained for the different matching and shape feature
approaches for the frontal and cross-pose protocols, respec-
tively. Some findings from the CMC curves are: 4) the feature
approach that works better with DTW are contour coordinates,
with Rlof 82.50% ii) contour coordinates is also the best
approach when using MHD, this time achieving higher rank-
1 rates (90%), and i) the best shape approach with SVM
is SC (R1 of 70%). The best system configuration in terms
of performance (CC-MHD with 90% of rank-1 in the frontal
protocol) is also the most robust against pose variations, as it is
able to maintain their performance in the cross-pose protocolfr.

It is also worth noting the limitations of Fourier descriptors
for person recognition applications. In almost all the matching
approaches, it is the shape feature approach with worst results
in terms of EER and R1. With these results, we foresee
that Fourier descriptors may be more suitable to recognize
objects that differ much more in their shapes. The interclass
variability between body human shapes is quite smaller than
other standard object recognition applications.

E. Body Regions

Table III presents the results obtained for different body
regions using contour coordinates and row and column profiles
for 5 different body regions: left arm, right arm, legs, torso and
head. The score level fusion of all parts is also computed. For
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Fig. 9: False negatives and false positives produced by the

False Negatives

CC-DTW system following the frontal protocol.

TABLE II: Assessment of the clutter influence over verification

experiments following the frontal protocol.

both approaches, the best body regions are left arm, right arm
and torso. From last row of Table III, one can deduce that
row and column profiles from different body parts contain
complementary information that help to improve the overall
performance. Nevertheless, the body part approach of row and

Body Part | No Clutter | Clutter
CC-DTW | 11.50 11.90
RCP-DTW | 10.75 12.5

TABLE III: EER in % of 5 body regions using contour coor-
dinates and row and column profiles as shape-based features
and dynamic time warping as distance-based matcher.

Body Part CC-DTW | RCP-DTW
! Left Arm 224 23.25
5 Right Arm | 21.25 23.20
' Legs 38.33 25.75
I Torso 20.25 17.97
Head 24.32 27.40
All Regions | 28.33 14.25

column profile does not outperform the corresponding global

approach (10.75% of EER for RCP-DTW). This fact leads us
to conclude that there is no benefit from addressing mmW
human shape through body regions.

F. Automatic Segmentation

As discussed earlier, we have manually segmented the

mmW images to study their discriminative capabilities for per-
son recognition. In this section, we briefly discuss some of the
challenges involved when an image segmentation algorithm
is used to automatically segment the body shapes from the
mmW images. From Fig. 1 one may think that segmenting
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body shapes is a straightforward task. However, this is not the
case for all the images in the database. In fact, images from
different subjects vary greatly in terms of their appearance,
making it more challenging to find an automatic segmentation
algorithm that works well in all cases. Fig. 12 shows a few
segmented images using the Active Contours algorithm [33]
from the mmW TNO database. As can be seen from this figure,
there are still some issues to overcome before introducing an
automatic segmentation module into the pipeline of the pro-
posed system: intra leg region not segmented, missing upper
torso, missing head, etc. Table IV presents some verification
results in terms of EER following the frontal protocol for
CC and RCP extracted from manual and automatic segmented
images, using DTW as the matcher. Though the performance
is poor for both shape-based approaches, RCP seems to be
less affected by the poorly segmented images. The inaccurate
results of automatic contours prevent us to clearly see the
suitability of different body shape approaches for the task of
person recognition.

VIII. CONCLUSIONS

The use of mmW images has been recently introduced in
computer vision applications such as weapon detection and
biometric person recognition applications. This is the first
work addressing the problem of person recognition through

A

Fig. 12: Examples of automatic segmentation using the active
contours algorithm [33] from different subjects in the mmW
TNO database.

TABLE IV: Verification results in terms of EER for person
recognition following the frontal protocol using body shape
features extracted from manually and automatically segmented
images.

Segmentation | CC-DTW | RCP-DTW
Manual 10.75 11.90
Automatic 45.75 29.25

body-shape information using real mmW images. Although
there is still room for improvement, the experiments carried
out show that person recognition through shape information
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contained in mmW images is feasible. More specifically, we
have learnt that: ) the performance is degraded severely when
N is reduced to 600 — 200 points, depending on the specific
feature approach, i) more discriminative information is re-
tained in the radial rather than the angular dimension of shape
contexts, 474) Fourier descriptors are not good at discriminating
between instances of shapes which are very similar among
them, which is the case of human body silhouettes, iv) the
best mmW person recognition in terms of performance and
pose robustness is row and column profiles along with support
vector machines (RCP-SMV with an EER of 8%) and contour
coordinates and modified Hausdorff distance (CC-MHD with
the R1 of 90%) for the verification and identification tasks,
respectively, and v) addressing mmW person recognition using
body regions is less convenient than using the global shape.

Comparing our conclusions with those extracted when using
BioGiga database in [14], we see that contour coordinates
with DTW have performed in a similar way in both mmW
databases, but shape contexts or Fourier descriptors have
worsened their performance considerably, showing us that
these descriptors are less suitable for real mmW images. An
additional factor to bear in mind apart from the real/synthetic
difference between the mmW TNO and BioGiga databases,
is the gender difference. The mmW TNO database only con-
tains images from male subjects, while BioGiga is a gender-
balanced database. This difference in gender may also be
affecting the performance of shape features used in this work.

The reader should notice that conclusions from our work are
constrained by some limitations. First, to prevent additional
segmentation mistakes that could distort us to extract conclu-
sions pertaining exclusively to the potential use of mmW for
person recognition applications, we have reported all our re-
sults using manually-segmented images. Future works should
report results using automatically segmented images. Second,
some of our conclusions can be dependent on the particular
characteristics of the mmW TNO database. For instance,
conclusions related to the minimum amount of components
needed to achieve optimal results could change if we deal
with a database with a larger number of subjects.

To obtain more reliable conclusions about the benefits and
limitations of mmW images for biometric purposes, we should
compare our approach with the corresponding images acquired
in other regions of the spectrum such as the visible range.
Currently, there are no available databases of visible and mmW
images for research purposes. However, this is certainly an
interesting issue which is worth studying in the future.

Real applications of CWD typically use active images like
the one shown in Fig 13. Although in this work we are using
passive images due to the lack of active images for research,
one may notice that the passive images employed in this work
are somewhat similar to active images. It is worth noting
though that active images have a better resolution and contrast
than passive images, factors that could be beneficial when
applying shape approaches to these images.

In our future work, we will analyze the texture information
retained in the mmW images for person recognition [35].
Furthermore, we will study the discriminative capability of
the mmW signature based on both shape and texture features.

Fig. 13: Example of a mmW image acquired with an active
mmW L3 ProVision Imaging scanner (extracted from [34]).
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