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Abstract. In this paper, we introduce a millimeter wave imaging modality with extended depth-

of-field that provides diffraction limited images with reduced spatial sampling. The technique uses

a cubic phase element in the pupil of the system and a nonlinear recovery algorithm to produce

images that are insensitive to object distance. We present experimental results that validate system

performance and demonstrate a greater than four-fold increase in depth-of-field with a reduction in

sampling requirements by a factor of at least two.c© 2012 Society of Photo-Optical Instrumenta-

tion Engineers. DOI: 10.0000/XXXX
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1 Introduction

Interest in millimeter wave (mmW) and terahertz imaging hasincreased in the past several years.1–3

This interest is driven, in part, by the ability of these frequencies to penetrate poor weather and

other obscurants, such as clothes and polymers. Millimeterwaves are electromagnetic waves typ-

ically defined in the 30 to 300 GHz range with corresponding wavelengths between 10 to 1 mm.

Radiation at these these frequencies is non-ionizing and istherefore considered safe for human

use. Applications of this technology include the detectionof concealed weapons, explosives and

contraband.1

However, when used for short range imaging (as opposed to infinite conjugate imaging in astron-

omy) most mmW systems have a narrow depth-of-field (DoF), thedistance over which an object

is considered in focus. If individuals are moving toward an imager through a corridor, the weapons

would be visible only for the brief moment when they were in the depth-of-field. This is one reason

individuals are scanned in portals. However, extensions toscanning over a volume could provide

scanning without creating bottlenecks, for example, in a public marketplace where security is im-

portant but a visible display of security might be counterproductive. In,3 Mait et al. presented a

computational imaging method to extend the depth-of-field of a passive mmW imaging system to

allow for operation over a volume. The method uses a cubic phase element in the pupil plane of the

system in combination with post-detection signal processing to render system operation relatively

insensitive to object distance. Using this technique increased the depth-of-field of a 94 GHz imager

to 68” (1727 mm), which is four times its conventional value of approximately 17” (432 mm).3

Unfortunately this system, as well as others discussed in the literature,1, 2 form an image by

scanning a single-beam in azimuth and elevation. Although real-time mmW imaging has also been

demonstrated using an array of sensors, such systems introduce complexity and are costly. Although

total scan time per sample is a function of positioning and integration times, to first order at least,

if one can reduce the number of samples and maintain imaging performance, one can increase

scan rates with minimal detriment. To reduce the number of samples required to form an image,

researchers have applied compressive sampling methods4, 5 to mmW imaging.6–11

In this paper, we describe a passive mmW imaging system with extended depth-of-field that

can produce images with reduced number of samples. Our method relies on using a far fewer

number of measurements than the conventional systems and can reduce the sampling requirements

significantly, especially when scanning over a volume. We show that if the mmW image is assumed

sparse in some transform domain, then one can reconstruct a good estimate of the image using this

new image formation algorithm.

1.1 Paper organization

The organization of the paper is as follows. Section2 provides background information on passive

mmW imaging with extended depth-of-field using a 94GHz system. Section3 provides background
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on compressive sensing. The proposed undersampling schemeis described in Section4. We demon-

strate experimental results in Section5 and Section6 concludes the paper with a brief summary

and discussion.

2 Millimeter wave imaging system

In3 we used a 94-GHz Stokes-vector radiometer to form images by raster scanning the system’s

single beam. The radiometer has a thermal sensitivity of 0.3K with a 30-ms integration time and 1-

GHz bandwidth. A Cassegrain antenna with a24” (610 mm) diameter primary parabolic reflector

and a1.75” (44.5 mm) diameter secondary hyperbolic reflector is mounted to the front of the

radiometer receiver. The position of the hyperbolic secondary is variable but fixed in our system

such that the effective focal length is 6” (152.4 mm) (i.e., the system isf /4) and the image distance

is 5.81” (147.6 mm).

One can model the 94-GHz imaging system as a linear, spatially incoherent, quasi-monochromatic

system.3 The intensity of the detected image can be represented as a convolution between the in-

tensity of the image predicted by the geometrical optics with the system point spread function12

ii(x, y) , |i(x, y)|2 = og(x, y) ∗ ∗h(x, y), (1)

where∗∗ represents two-dimensional convolution. The functionog(x, y) represents the inverted,

magnified image of the object that a ray-optics analysis of the system predicts.

The second term in Eq. (1), h(x, y), is the incoherent point spread function (PSF) that accounts

for wave propagation through the aperture
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1
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wherep(x/λf, y/λf) is the coherent point spread function. The functionp(x, y) is the inverse

Fourier transform of the system pupil functionP (u, v),

p(x, y) = FT−1[P (u, v)].

Without loss of generality, we assume object and image areN × N arrays. We can then rewrite

Eq. (1) in matrix notation as

i = Hog, (3)

wherei andog areN2×1 lexicographically ordered column vectors representing theN ×N arrays

ii(x, y) andog(x, y), respectively, andH is theN2 × N2 matrix that models the incoherent point

spread functionh(x, y).

Displacement of an object from the nominal object plane of the imaging system introduces a

phase error in the pupil function that increases the width ofa point response and produces an out of
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focus image. The system’s depth-of-field is defined as the distance in object space over which an

object can be placed and still produce an in-focus image.

For a 94 GHz imager with an aperture diameterD = 24” and object distancedo = 180” (4572

mm),DoF ≈ 17.4” (442 mm) which ranges from175.2” (4450.1 mm) to192.6” (4892 mm).3

In,3 we demonstrated how to extend the DoF using a cubic phase element in conjunction with

post-detection processing. The cubic phase elementPc(u, v) is

Pc(u, v) = exp(jθc(u, v))rect

(

u

ξu

,
v

ξv

)

, (4)

where

θc(u, v) = (πγ)

[

(

2u

ξu

)3

+

(

2v

ξv

)3
]

andrect is the rectangular function. The phase function is separable in theu andv spatial fre-

quencies and has spatial extentξu andξv along the respective axis. The constantγ represents the

strength of the cubic phase. Fig.1 shows the cubic phase element mounted on the antenna. Al-

though fabrication introduces artifacts from spatial and phase quantization into the cubic element

response, their impact on performance is negligible.3

(a) (b) (c)

Fig. 1 Cubic phase element. (a) Side view of the cubic phase element mounted the antenna. (b) Front view.

(c) Detail of fabricated cubic phase element.

Fig. 2 shows the measured PSFs for conventional imaging and imaging with a cubic phase. The

width of the in-focus PSF at 180” (4572 mm) is approximately 2mm, which is consistent with a 1

mm pixel width. The out-of-focus planes are at approximately four times and twice the DOF at 113”

(2870 mm) and 146.5” (3721 mm), respectively, which correspond to 0.32 and 0.16 wavelengths

of defocus. Note that the response of the cubic phase system is relatively unchanged, whereas the

response of the conventional system changes considerably.A post-detection signal processing step

is necessary to produce a well-defined sharp response.13–15

If we assume a linear post-detection process

ip(x, y) = ii(x, y) ∗ ∗w(x, y), (5)
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we can implementw(x, y) as a Wiener filter in frequency space,

W (u, v) =
H∗

c (u, v)

|Hc(u, v)|2 + K−2Φ̂N (u,v)
ˆΦL(u,v)

, (6)

whereHc(u, v) is the optical transfer function associated with the cubic phase element,W (u, v)

is the Fourier transform ofw(x, y), the parameterK is a measure of the signal-to-noise ratio, and

the functionŝΦL andΦ̂N are the expected power spectra of the object and noise, respectively. The

optical transfer function is usually estimated from the experimentally measured point responses.

One can view the estimatedip(x, y) as a diffraction limited response. We rewrite Eq. (5) in matrix

notation as

ip = Wi

= WHog, (7)

whereip is theN2 × 1 column vector corresponding to arrayip(x, y) andW is theN2 × N2 con-

volution matrix corresponding to the Wiener filterw(x, y). The issue we address in the remainder

is with what fidelity can we estimateip using less thanN2 measurements ofi.

Fig. 2 Measured point spread functions for conventional imaging and imaging with a cubic phase. PSFs for

conventional system at (a) 113” (2870 mm), (b) 146.5” (3721 mm), and (c) 180” (4572 mm). (d)-(f) PSFs for
a system with cubic phase at the same distances for (a)-(c).

3 Compressive imaging

Compressive sampling is a new concept in signal processing and information theory in which one

measures a small number of non-adaptive linear combinations of a signal. The number of measure-

ments is usually much smaller than the number of samples thatdefine the signal. From these small

number of measurements, the signal is then reconstructed bya non-linear procedure.4, 5
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More precisely, supposeip ∈ CN2

is k-sparse in a basis (or a Dictionary)Ψ, so thatip = Ψα,

with ‖ α ‖0= k ≪ N2. In the case whenip is compressible inΨ, it can be well approximated by

the bestk-term representation. Consider a randomn × N2 measurement matrixΦ with n < N2

and assume thatn measurements, that make up a vectorio, are made such that

io = Φip

= ΦΨα

= Θα.

According to CS theory, whenΘ satisfies the restricted isometry property (RIP),16 one can recon-

structip via its coefficientsα by solving the followingℓ1 minimization problem:4, 5

α̂ = arg min
α

‖ α ‖1 subject to io = ΦΨα. (8)

A matrix Θ is said to satisfy the RIP of orderk with constantsδK ∈ (0, 1) if

(1 − δk) ‖ v ‖2
2≤‖ Θv ‖2

2≤ (1 + δk) ‖ v ‖2
2 (9)

for anyv such that‖ v ‖0≤ k.

In the case of noisy observations, the following optimization problem can be solved to obtain an

approximate solution

α̂ = arg min
α

‖ α ‖1 subject to ‖io − Θα‖2 ≤ ǫ. (10)

where we have assumed that the observations are of the following form

io = Θα + η, (11)

with ‖η‖2 = ǫ2.

One popular class of measurement matrices satisfying an RIPis the one consisting of i.i.d. Gaus-

sian entries. It is a well known fact that ifΦ is ann×N2 Gaussian matrix wheren > O (k log N2)

andΨ is a sparsifying basis, thenΘ satisfies the RIP with high probability. One can also use greedy

pursuits and iterative soft or hard thresholding algorithms to recover signals from compressive

measurements.

4 Accelerated imaging with extended depth-of-field

Since our objective is to form mmW images with reduced numberof samples, we propose the

following sampling strategy. Because our sensor is a single-beam system that produces images by

scanning in azimuth and elevation, we can reduce the number of samples by randomly undersam-

pling in both azimuth and elevation. Mathematically, this amounts to introducing a mask in Eq. (1),

iM = Mi

= MHog, (12)
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whereiM is anN2 × 1 lexicographically ordered column vector of observations with missing in-

formation. Here,M is a degradation operator that removesp samples from the signal. We construct

theN2 × N2 matrix M by replacingp elements in the diagonal of theN2 × N2 identity matrix

with zeros. The locations of the zeros determines which image samples are discarded.

To account for the Wiener filter in Eq. (5) used to process the intermediate image produced by

the cubic phase element, we write the observation model as

io = WiM

= WMi

= WMHog. (13)

We use the relation in Eq. (7) to writeHog in terms of the diffraction limited response,ip,

Hog = Gip, (14)

whereG is the regularized inverse filter that corresponds toW. With this, and assuming the pres-

ence of additive noiseη, we rewrite the observation model Eq. (13) as

io = WMGip + η, (15)

whereη denotes theN2 × 1 column vector corresponding to noise,η. We assume that‖η‖2 = ǫ2.

Having observedio and knowing the matricesW,M andG, the general problem is to estimate

the diffraction limited response,ip. Assume thatip is sparse or compressible in a basis or frameΨ

so thatip = Ψα with ‖α‖0 = K ≪ N2, where theℓ0 sparsity measure‖.‖0 counts the number of

nonzero elements in the representation. The observation model Eq. (15) can now be rewritten as

io = WMGΨα + η. (16)

This is a classic inverse problem whose solution can be obtained by solving the following optimiza-

tion problem

α̂ = arg min
α

‖ α ‖1 subject to ‖io − WMGΨα‖2 ≤ ǫ. (17)

One can clearly see the similarity between this problem and the compressed sensing problem dis-

cussed in the previous section. Once the representation vector α is estimated, we obtain the final

estimate ofip aŝip = Ψα̂. Note that the recovery ofα from Eq. (16) depends on certain conditions

on the sensing matrixWMGΨ and the sparsity ofα.17

5 Experimental Results

In this section, we demonstrate the performance and applicability of our method on real mmW

data. In these experiments, we use an orthogonal wavelet transform (Daubechies 4 wavelet) as a

sparsifying transform. There has been a number of approaches suggested for solving optimization
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problems such as Eq. (17). In our approach, we employ a highly efficient algorithm that is suitable

for large scale applications known as the Gradient Projection for Sparse Reconstruction (GPSR)

algorithm.18

(a) (b)

Fig. 3 (a) Representation of the extended object used to compare conventional and cubic-phase imaging.

(b) Schematic of object illumination.

The extended object used in our experiments is represented in Fig. 3(a). Images of an extended

object for conventional imaging system at113”, 146” and180” are shown in Fig.4(a)-(c), respec-

tively. Each image is represented by 41× 51 measurements, or pixels. The object size within the

image is a function of optical magnification. Note that the conventional imaging system produces

images with significant blurring. In contrast, even withoutsignal processing, the images produced

with cubic phase element retain more discernable characteristics of the object than the images from

the conventional system, as shown in Fig.4(d)-(f). It can be seen from Fig.4(g)-(i) that post pro-

cessing compensates for the effect of the cubic phase element and retains frequency content that is

otherwise lost in a conventional system. The wider bandwidth, in addition to the noise suppress-

ing characteristics of the Weiner filter, produce images that appear sharper than those produced by

a conventional imaging system. Hence, one can extend the region over which the system gener-

ates diffraction limited images. In fact, in,3 it was shown that theDoF of a conventional 94-GHz

imaging system can be extended from 17.4” to more than 68”.

In our first experiment, we used only50% of the measured data. The samples were discarded

according to a random undersampling pattern shown in Fig.5. Figs. 6(a)-(c) show the sparsely

sampled cubic phase data. The reconstructed images obtained by solving problem (17) are shown

in Fig. 6(d)-(f). The reconstructions of the extended object are comparable to the processed images

from a system with cubic phase. This can be seen by comparing Fig. 4(g)-(i) with Fig.6(d)-(f). One

of the obvious reasons for this is that, although we have reduced the number of measurements by

half, a substantial number of them are nonzero. But this willbe true in any arbitrary scene and does

not detract from our approach.

Nonetheless, to pursue this further, we considered other values of undersampling and their im-

pact on reconstruction. Fig.7 is a collection of representative recovered images at the three object

8



Optical Engineering 00(0), 000000 (April 11, 2012)

Optical Engineering April 11, 2012/Vol. 00(0)

Fig. 4 Images from a conventional imaging system at (a) 113”, (b) 146” and (c) 180”. (d)-(f) Images from a
system with cubic phase at the same object distances as for (a)-(c). (g)-(f) Processed images from a system

with cubic phase at the same object distances as for (a)-(c).

Fig. 5 A random undersampling pattern.
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distances of interest for measurements between10% and40% in increments of10%. Note that

even with only 30% and 40% of the original measurements, our reconstruction is able to recover

recognizable characteristics of the original images.

Fig. 6 50% Sparse sampled data from a modified imaging system at (a) 113”, (b) 146”, and (c) 180”. (d)-(f)
Diffraction limited images recovered by solving (17) at the same object distances as for (a)-(c).

To quantify the impact of undersampling, we calculated the relative error in images recovered

from sparsely sampled data. We define the relative erroreR as

eR =
‖x̃ − x̂‖2

‖x̃‖2
, (18)

wherex̃ corresponds to post processed image with full measurementsandx̂ is the estimated image

from sparsely sampled data.

For a given undersampling percentageq between 10 and 90 , we generated 10 different ran-

dom undersampling masks consisting ofq measurements. To recover the image, we solved the

ℓ1-minimization problem of Eq. (17) for each mask using the GPSR algorithm and computedeR.

Fig. 8 represents the average relative error for the 10 masks as a function of the number of meas-

urementsq.

From Fig.8, we see that the reconstruction quality generally improvesas the number of meas-

urements increases. Furthermore, reconstruction curves corresponding to all three distances 113”,

146” and 180” follow a similar pattern, which underscores the depth invariance of the system. Note

that, for all three distances, as the number of measurementsincreases from10% to 50%, the rela-

tive error decreases from about60% to 25%. This behavior is reflected qualitatively in Fig.7. After

the number of measurements increases beyond50% the relative error decreases less rapidly. With

90% of the measurements, the relative error is approximately15%. Taken together, Figs.6 through

8 indicate the potential to extend depth-of-field using sparsely sampled measurements in a cubic

phase system. This is an important capability if one wishes to screen individuals rapidly as they

move through a corridor instead of a portal.
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Fig. 7 Diffraction limited images recovered by solving (17) at different object distances from various number
of measurements.
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Fig. 8 Relative error vs. number of measurement curves.
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6 Discussion and Conclusion

We have utilized a computational imaging technique along with a nonlinear reconstruction method

and demonstrated that extended depth-of-field is possible for passive millimeter wave imaging even

when the cubic phase data is sparsely sampled. Because millimeter wave systems image tempera-

ture contrasts, a careful analysis of noise and contrast in such systems in necessary to assess the true

impact of inserting a cubic phase element in the pupil plane of the system and sparsely sampling

the data. We are considering a more extensive study using realistic scenes and objects to determine

the level of undersampling that one can apply to a general case of mmW imaging, for example, for

concealed weapon detection. Our future plan includes the analysis of the artifacts introduced by the

cubic phase element and random undersampling in terms of thepoint spread function as was done

in.19
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4. Figure4 Images from a conventional imaging system at (a) 113”, (b) 146” and (c) 180”. (d)-

(f) Images from a system with cubic phase at the same object distances as for (a)-(c). (g)-(f)

Processed images from a system with cubic phase at the same object distances as for (a)-(c).

5. Figure5 A random undersampling pattern.

6. Figure6 50% Sparse sampled data from a modified imaging system at (a) 113”, (b) 146”,

and (c) 180”. (d)-(f) Diffraction limited images recoveredby solving (17) at the same object

distances as for (a)-(c).

7. Figure7 Diffraction limited images recovered by solving (17) at different object distances

from various number of measurements.

8. Figure8 Relative error vs. number of measurement curves.
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