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of-field that provides diffraction limited images with rezkd spatial sampling. The technique uses
a cubic phase element in the pupil of the system and a nonlneeavery algorithm to produce
images that are insensitive to object distance. We presgetienental results that validate system
performance and demonstrate a greater than four-foldaseran depth-of-field with a reduction in
sampling requirements by a factor of at least t{@p.2012 Society of Photo-Optical Instrumenta-
tion Engineers. DOI: 10.0000/XXXX

Subject terms: Computational imaging, millimeter wave ging, extended depth-of-field, image
reconstruction, sparsity.

Manuscript compiled April 11, 2012

Optical Engineering April 11, 2012/Vol. 00(0)



Optical Engineering 00(0), 000000 (April 11, 2012)

1 Introduction

Interest in millimeter wave (mmW) and terahertz imaging inaseased in the past several years.
This interest is driven, in part, by the ability of these fneqcies to penetrate poor weather and
other obscurants, such as clothes and polymers. Millinvedses are electromagnetic waves typ-
ically defined in the 30 to 300 GHz range with correspondingeilengths between 10 to 1 mm.
Radiation at these these frequencies is non-ionizing arigeiefore considered safe for human
use. Applications of this technology include the detectibrtoncealed weapons, explosives and
contraband.

However, when used for short range imaging (as opposed totenfionjugate imaging in astron-
omy) most mmW systems have a narrow depth-of-field (DoF)dik&nce over which an object
is considered in focus. If individuals are moving toward mager through a corridor, the weapons
would be visible only for the brief moment when they were ia tlepth-of-field. This is one reason
individuals are scanned in portals. However, extensiorssémning over a volume could provide
scanning without creating bottlenecks, for example, in llipumarketplace where security is im-
portant but a visible display of security might be counteductive. In® Mait et al. presented a
computational imaging method to extend the depth-of-fiéld passive mmW imaging system to
allow for operation over a volume. The method uses a cubisgbhement in the pupil plane of the
system in combination with post-detection signal processd render system operation relatively
insensitive to object distance. Using this technique iaseel the depth-of-field of a 94 GHz imager
to 68” (1727 mm), which is four times its conventional vald@pproximately 17” (432 mmj.

Unfortunately this system, as well as others discussedédnrlitbrature'? form an image by
scanning a single-beam in azimuth and elevation. Althoeghtime mmW imaging has also been
demonstrated using an array of sensors, such systemsingoedmplexity and are costly. Although
total scan time per sample is a function of positioning artegration times, to first order at least,
if one can reduce the number of samples and maintain imag@ngrmmance, one can increase
scan rates with minimal detriment. To reduce the number wipsas required to form an image,
researchers have applied compressive sampling méethAtaisnmWw imaging®*

In this paper, we describe a passive mmW imaging system wittnded depth-of-field that
can produce images with reduced number of samples. Our chetlies on using a far fewer
number of measurements than the conventional systems andaace the sampling requirements
significantly, especially when scanning over a volume. Wnstiat if the mmW image is assumed
sparse in some transform domain, then one can reconstrocidggtimate of the image using this
new image formation algorithm.

1.1 Paper organization
The organization of the paper is as follows. Secq@rovides background information on passive

mmW imaging with extended depth-of-field using a 94GHz syst®ectiors provides background
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on compressive sensing. The proposed undersampling seteesxribed in Sectioh We demon-
strate experimental results in Sectibrand Sectior6 concludes the paper with a brief summary
and discussion.

2 Millimeter wave imaging system

In® we used a 94-GHz Stokes-vector radiometer to form imagesster scanning the system’s
single beam. The radiometer has a thermal sensitivity odk@&h a 30-ms integration time and 1-
GHz bandwidth. A Cassegrain antenna witP4d (610 mm) diameter primary parabolic reflector
and al.75” (44.5 mm) diameter secondary hyperbolic reflector is maumtethe front of the
radiometer receiver. The position of the hyperbolic seeonds variable but fixed in our system
such that the effective focal length is 6” (152.4 mm) (i.be system ig/4) and the image distance
is 5.81” (147.6 mm).

One can model the 94-GHz imaging system as a linear, spatiabherent, quasi-monochromatic
systent The intensity of the detected image can be represented asvalotion between the in-
tensity of the image predicted by the geometrical opticé Wit system point spread functién

ii(z,y) = li(z,y)|* = oy(z,y) * *h(z,y), 1)

wheresx represents two-dimensional convolution. The functigfr, y) represents the inverted,
magnified image of the object that a ray-optics analysis ®ftfstem predicts.
The second term in Eql), h(z,y), is the incoherent point spread function (PSF) that acsount
hz,y) = <1

for wave propagation through the aperture
1 —r Y
S ASYARY;

wherep(xz/Af,y/Af) is the coherent point spread function. The functigm, y) is the inverse
Fourier transform of the system pupil functiétiu, v),

2

, (2)

p(z,y) = FT'[P(u,v)].

Without loss of generality, we assume object and imagé\ase N arrays. We can then rewrite
Eqg. (1) in matrix notation as
i =Ho,, (3)

wherei ando, are N? x 1 lexicographically ordered column vectors representimeg¥h< N arrays
ii(x,y) andoy(z,y), respectively, and is the N? x N? matrix that models the incoherent point
spread functior(x, y).

Displacement of an object from the nominal object plane efithaging system introduces a
phase error in the pupil function that increases the width@dint response and produces an out of
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focus image. The system’s depth-of-field is defined as thamle in object space over which an
object can be placed and still produce an in-focus image.

For a 94 GHz imager with an aperture diameffer= 24” and object distancé, = 180" (4572
mm), DoF ~ 17.4” (442 mm) which ranges fror75.2” (4450.1 mm) tal92.6” (4892 mm)3

In,®> we demonstrated how to extend the DoF using a cubic phaseetémconjunction with
post-detection processing. The cubic phase elefignt v) is

P.(u,v) = exp(jb.(u,v))r ect (;—u, g—v) , (4)

- [()(2)]

andr ect is the rectangular function. The phase function is separabtheu andv spatial fre-
guencies and has spatial extépntand&, along the respective axis. The constanepresents the
strength of the cubic phase. Fifj.shows the cubic phase element mounted on the antenna. Al-
though fabrication introduces artifacts from spatial ahdge quantization into the cubic element
response, their impact on performance is negligible.

where

(€)

Fig. 1 Cubic phase element. (a) Side view of the cubic phase element mounted the antenna. (b) Front view.
(c) Detail of fabricated cubic phase element.

Fig. 2 shows the measured PSFs for conventional imaging and imagth a cubic phase. The
width of the in-focus PSF at 180" (4572 mm) is approximatey, which is consistent with a 1
mm pixel width. The out-of-focus planes are at approximdt@lir times and twice the DOF at 113"
(2870 mm) and 146.5” (3721 mm), respectively, which coroespto 0.32 and 0.16 wavelengths
of defocus. Note that the response of the cubic phase systegtatively unchanged, whereas the
response of the conventional system changes considefapbst-detection signal processing step
is necessary to produce a well-defined sharp respdn'$e.

If we assume a linear post-detection process

ip(x7y> = “’('Tv y) * *w(x, y)7 (5)
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we can implement(x, y) as a Wiener filter in frequency space,

H(u, v)
W)= (6)
| He(u, v)| LI

where H.(u, v) is the optical transfer function associated with the culiage element}/ (u, v)

is the Fourier transform af (z, y), the parameteK is a measure of the signal-to-noise ratio, and
the functionsd, and® are the expected power spectra of the object and noise ctasgg The
optical transfer function is usually estimated from the exxpentally measured point responses.
One can view the estimatéglz, y) as a diffraction limited response. We rewrite ES). i matrix
notation as

i, = Wi
= WHo,, (7)
wherei, is the N2 x 1 column vector corresponding to arrgyz, y) andW is the N? x N2 con-

volution matrix corresponding to the Wiener filtez, y). The issue we address in the remainder
is with what fidelity can we estimafg using less thatv? measurements af

(a) (b) (c)

(d) (e) 63)]

Fig. 2 Measured point spread functions for conventional imaging and imaging with a cubic phase. PSFs for
conventional system at (a) 113" (2870 mm), (b) 146.5” (3721 mm), and (c) 180" (4572 mm). (d)-(f) PSFs for
a system with cubic phase at the same distances for (a)-(c).

3 Compressive imaging

Compressive sampling is a new concept in signal processidgdormation theory in which one
measures a small number of non-adaptive linear combirsatiba signal. The number of measure-
ments is usually much smaller than the number of samplesi#imte the signal. From these small
number of measurements, the signal is then reconstructadby-linear procedure®
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More precisely, supposig € CN* is k-sparse in a basis (or a Dictionary) so thati, = Ve,
with || @ ||[o= k < N2 In the case wheij, is compressible i, it can be well approximated by
the bestk-term representation. Consider a randoenx N? measurement matrig with n < N2
and assume that measurements, that make up a vedtpare made such that

i, = @i,
=PV
= Oa.

According to CS theory, whe® satisfies the restricted isometry property (RiPpne can recon-
structi, via its coefficientsx by solving the following/! minimization problent:>

& =argmin | « ||; Subjecttoi, = PVa. 8)
A matrix O is said to satisfy the RIP of ordérwith constantg, < (0, 1) if
(L=3r) v 3=l Ov [53< (L+d) [ v 113 9)

for anyv such that| v ||o< k.
In the case of noisy observations, the following optimizatproblem can be solved to obtain an
approximate solution

& =argmin || « ||; subjectto|i, — Oalls <e. (10)
[0 7
where we have assumed that the observations are of the fiofdarm
i, =0a+n, (11)

with ||n[|? = €.

One popular class of measurement matrices satisfying arsmtie one consisting of i.i.d. Gaus-
sian entries. It is a well known fact thatdfis ann x N? Gaussian matrix where > O (klog N?)
andV is a sparsifying basis, then satisfies the RIP with high probability. One can also usedyee
pursuits and iterative soft or hard thresholding algorghtm recover signals from compressive
measurements.

4  Accelerated imaging with extended depth-of-field

Since our objective is to form mmW images with reduced nundfesamples, we propose the
following sampling strategy. Because our sensor is a sihgem system that produces images by
scanning in azimuth and elevation, we can reduce the nunilsanoples by randomly undersam-
pling in both azimuth and elevation. Mathematically, thiscants to introducing a mask in Ed.)(

iy = Mi
— MHo,, (12)
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wherei,; is anN? x 1 lexicographically ordered column vector of observatiorihwnissing in-
formation. HereM is a degradation operator that remoyesamples from the signal. We construct
the N2 x N? matrix M by replacingp elements in the diagonal of th€? x N? identity matrix
with zeros. The locations of the zeros determines which arsgnples are discarded.

To account for the Wiener filter in Eg5) used to process the intermediate image produced by
the cubic phase element, we write the observation model as

i, = Wiy
— WMi
—~ WMHo,. (13)

We use the relation in Eq7) to write Ho,, in terms of the diffraction limited responsig,
Ho, = Gi,, (14)

whereG is the regularized inverse filter that correspond¥oWith this, and assuming the pres-
ence of additive noisg, we rewrite the observation model EG3f as

i, = WMGi, + 1, (15)

wheren denotes théV? x 1 column vector corresponding to noise We assume thajn||? = €.
Having observed, and knowing the matrice®v, M andG, the general problem is to estimate
the diffraction limited responsé,. Assume that, is sparse or compressible in a basis or fraine
so thati, = P« with ||a||o = K < N?, where the/, sparsity measurg. ||, counts the number of
nonzero elements in the representation. The observaticieiim. (L5) can now be rewritten as

i,=WMGYa + 7. (16)

This is a classic inverse problem whose solution can bemdddyy solving the following optimiza-
tion problem
& = argmin | « ||; subjectto||i, - WMGYal|; <e. (17)

One can clearly see the similarity between this problem hacbmpressed sensing problem dis-
cussed in the previous section. Once the representatidarweds estimated, we obtain the final
estimate of, asip = Wa. Note that the recovery @t from Eq. (L6) depends on certain conditions
on the sensing matridW MG ¥ and the sparsity ofe.!’

5 Experimental Results

In this section, we demonstrate the performance and apjligaof our method on real mmw
data. In these experiments, we use an orthogonal wavetedtfaran (Daubechies 4 wavelet) as a
sparsifying transform. There has been a number of appreaiggested for solving optimization
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problems such as EqLT). In our approach, we employ a highly efficient algorithmttisesuitable
for large scale applications known as the Gradient Praedir Sparse Reconstruction (GPSR)
algorithm?8

12"

7
@

Fig. 3 (a) Representation of the extended object used to compare conventional and cubic-phase imaging.
(b) Schematic of object illumination.

(b)

The extended object used in our experiments is represemtéid.i3(a). Images of an extended
object for conventional imaging system1dt3”, 146” and180” are shown in Fig4(a)-(c), respec-
tively. Each image is represented by 4151 measurements, or pixels. The object size within the
image is a function of optical magnification. Note that thevantional imaging system produces
images with significant blurring. In contrast, even witheiginal processing, the images produced
with cubic phase element retain more discernable charsiitsrof the object than the images from
the conventional system, as shown in FEi)-(f). It can be seen from Figl(g)-(i) that post pro-
cessing compensates for the effect of the cubic phase etemédmetains frequency content that is
otherwise lost in a conventional system. The wider bandwiult addition to the noise suppress-
ing characteristics of the Weiner filter, produce images aipgear sharper than those produced by
a conventional imaging system. Hence, one can extend thenreger which the system gener-
ates diffraction limited images. In fact, #if was shown that th&oF of a conventional 94-GHz
imaging system can be extended from 17.4” to more than 68”.

In our first experiment, we used ony% of the measured data. The samples were discarded
according to a random undersampling pattern shown in Figigs. 6(a)-(c) show the sparsely
sampled cubic phase data. The reconstructed images abtayrsolving problemX7) are shown
in Fig. 6(d)-(f). The reconstructions of the extended object arepamable to the processed images
from a system with cubic phase. This can be seen by compaigng(g)-(i) with Fig. 6(d)-(f). One
of the obvious reasons for this is that, although we haveaedithe number of measurements by
half, a substantial number of them are nonzero. But thisheillrue in any arbitrary scene and does
not detract from our approach.

Nonetheless, to pursue this further, we considered otHaesaf undersampling and their im-
pact on reconstruction. Fi@.is a collection of representative recovered images at tiee thbject

8
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(2) (h) ()

Fig. 4 Images from a conventional imaging system at (a) 113", (b) 146" and (c) 180". (d)-(f) Images from a
system with cubic phase at the same object distances as for (a)-(c). (g)-(f) Processed images from a system
with cubic phase at the same object distances as for (a)-(c).

Fig. 5 A random undersampling pattern.

Optical Engineering April 11, 2012/Vol. 00(0)
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distances of interest for measurements betwE®h and 40% in increments ofl0%. Note that
even with only 30% and 40% of the original measurements, ecwnstruction is able to recover
recognizable characteristics of the original images.

(d) (e) ®

Fig. 6 50% Sparse sampled data from a modified imaging system at (a) 113", (b) 146", and (c) 180". (d)-(f)
Diffraction limited images recovered by solving (17) at the same object distances as for (a)-(c).

To quantify the impact of undersampling, we calculated #lative error in images recovered
from sparsely sampled data. We define the relative egf@s

_ Ix =%l

ER = y (18)

%]
wherex corresponds to post processed image with full measurerardssis the estimated image
from sparsely sampled data.

For a given undersampling percentagéetween 10 and 90 , we generated 10 different ran-
dom undersampling masks consistinggomeasurements. To recover the image, we solved the
¢1-minimization problem of Eq.1(7) for each mask using the GPSR algorithm and computed
Fig. 8 represents the average relative error for the 10 masks axtdn of the number of meas-
urements.

From Fig.8, we see that the reconstruction quality generally imprasethe number of meas-
urements increases. Furthermore, reconstruction cuoressponding to all three distances 113",
146" and 180" follow a similar pattern, which underscoresdepth invariance of the system. Note
that, for all three distances, as the number of measurernmameases from 0% to 50%, the rela-
tive error decreases from abdlit% to 25%. This behavior is reflected qualitatively in Fig.After
the number of measurements increases beyofidthe relative error decreases less rapidly. With
90% of the measurements, the relative error is approximdtely. Taken together, Fig$.through
8 indicate the potential to extend depth-of-field using splggrsampled measurements in a cubic
phase system. This is an important capability if one wisbescteen individuals rapidly as they
move through a corridor instead of a portal.
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10% measurements

i 146 180~

20% measurements

1137 1467 180~

30% measurements

1137 1467 180~
40% measurements

17137 146™ 180~

Fig. 7 Diffraction limited images recovered by solving (17) at different object distances from various number

of measurements.
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Fig. 8 Relative error vs. number of measurement curves.
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6 Discussion and Conclusion

We have utilized a computational imaging technique alorty winonlinear reconstruction method
and demonstrated that extended depth-of-field is possibfgalssive millimeter wave imaging even
when the cubic phase data is sparsely sampled. Becausmetdl wave systems image tempera-
ture contrasts, a careful analysis of noise and contrasicin Systems in necessary to assess the true
impact of inserting a cubic phase element in the pupil pldrtbesystem and sparsely sampling
the data. We are considering a more extensive study usitigtieacenes and objects to determine
the level of undersampling that one can apply to a generalciimmW imaging, for example, for
concealed weapon detection. Our future plan includes thlysis of the artifacts introduced by the

cubic phase element and random undersampling in terms @ftiné spread function as was done
in.o

Acknowledgments

The authors would like to thank Charles Dietlein of ARL fouitful observations and comments
on our work and to Prof. Rama Chellappa of the University ofyWand for engaging discussions
about the project. This work was partially supported by a MfiBm the Army Research Office
under the Grant W911NF-09-1-0383.

References

1. R. Appleby and R. N. Anderton, “Millimeter-wave and subimieter-wave imaging for security and surveil-
lance,”Proceedings of the |EEE, vol. 95, no. 8, pp. 1683 -1690, Aug. 2007.

2. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeterawe imaging,1EEE Microwave Magazine, vol. 4, no. 3,
pp. 39 — 50, sept. 2003.

3. J. Mait, D. Wikner, M. Mirotznik, J. van der Gracht, G. Batann, B. Good, and S. Mathews, “94-GHz imager
with extended depth of fieldfEEE Transactions on Antennas and Propagation, vol. 57, no. 6, pp. 1713 -1719,
june 2009.

4. D. Donoho, “Compressed sensintfZEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-1306,
Apr. 2006.

5. E. Candes, J. Romberg, and T. Tao, “Robust uncertaintgiptes: exact signal reconstruction from highly in-
complete frequency informationlEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489-509, Feb.
2006.

6. S.D.Babacan, M. Luessi, L. Spinoulas, and A. K. KatsaggyéCompressive passive millimeter-wave imaging,”
in IEEE ICIP, 2011.

7. N. Gopalsami, T. W. Elmer, S. Liao, R. Ahern, A. Heifetz, @. Raptis, M. Luessi, S. D. Babacan, and A. K.
Katsaggelos, “Compressive sampling in passive millimetave imaging,” inProc. SPIE, vol. 8022, 2011.

8. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. Xa8y, “Millimeter-wave compressive holography,”
Appl. Opt., vol. 49, no. 19, pp. E67-E82, Jul 2010.

9. C. A. Fernandez, D. Brady, J. N. Mait, and D. A. Wikner, “Bgafourier sampling in millimeter-wave compres-
sive holography,” irDigital Holography and Three-Dimensional Imaging, 2010, p. JMA14.

12
Optical Engineering April 11, 2012/Vol. 00(0)



Optical Engineering 00(0), 000000 (April 11, 2012)

10. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Bardgiand D. M. Mittleman, “A single-pixel terahertz
imaging system based on compressed sensikmpl’. Phys. Lett., vol. 93, no. 12, pp. 121 105-3, 2008.

11. 1. Noor, O. Furxhi, and E. L. Jacobs, “Compressive senfin a sub-millimeter wave single pixel imager,” in
Proc. SPIE, vol. 8022, 2011.

12. J. W. Goodmarintroduction to Fourier optics. Englewood, CO: Roberts and Company, 2005.

13. W.T. Cathey and E. R. Dowski, “New paradigm for imagingteyns,”Appl. Opt., vol. 41, no. 29, pp. 6080-6092,
Oct. 2002.

14. J. Edward R. Dowski and W. T. Cathey, “Extended depth &f flerough wave-front coding Appl. Opt., vol. 34,
no. 11, pp. 1859-1866, Apr. 1995.

15. S. Bradburn, W. T. Cathey, and E. R. Dowski, “Realizatiohfocus invariance in optical-digital systems with
wave-front coding,’Appl. Opt., vol. 36, no. 35, pp. 9157-9166, Dec. 1997.

16. E. Candes, J. Romberg, and T. Tao, “Stable signal regdv@m incomplete and inaccurate measurements,”
Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207-1223, August 2006.

17. M. Elad,Sparse and Redundant Representations. From theory to applicationsin Signal and Image processing.
Springer, 2010.

18. M. Figueiredo, R. Nowak, and S. Wright, “Gradient prdi@e for sparse reconstruction: Application to com-
pressed sensing and other inverse probleh&&E Journal of Selected Topicsin Signal Processing, vol. 1, no. 4,
pp. 586 -597, dec. 2007.

19. V. M. Patel, G. R. Easley, D. M. Healy, and R. Chellappartpressed synthetic aperture radd#eEE Journal
of Selected Topicsin Sgnal Processing, vol. 4, no. 2, pp. 244 —254, april 2010.

Vishal M. Patel is a member of the research faculty at the University of Maryland Insti-
tute for Advanced Computer Studies (UMIACS). He received the B.S. degrees in Electrical
Engineering and Applied Mathematics (with honors) and the M.S. degree in Applied Math-
ematics from North Carolina State University, Raleigh, NC, in 2004 and 2005, respectively.
He received his Ph.D. from the University of Maryland, College Park, MD, in Electrical En-
gineering in 2010. He was an ORAU postdoctoral fellow with the U.S. Army Research
Laboratory in 2010.

His research interests are in signal processing, computer vision and patter analysis with applications
to radar imaging and biometrics. His published works include compressed sensing, sparse representation,
face recognition, iris recognition, synthetic aperture radar imaging and image restoration.

He is a member of Eta Kappa Nu, Pi Mu Epsilon and Phi Beta Kappa.

Joseph N. Mait received his BSEE from the University of Virginia in 1979 and received his
graduate degrees from the Georgia Institute of Technology; his MSEE in 1980 and Ph.D.
in 1985.

Since 1989 Dr. Mait has been with the U.S. Army Research Laboratory (formerly Harry
Diamond Laboratories), where he is presently a senior technical (ST) researcher. Early in
PR/ his career Dr. Mait was an assistant professor of Electrical Engineering at the University
of Virginia. He was also an adjunct associate professor at the University of Maryland, Col-

13
Optical Engineering April 11, 2012/Vol. 00(0)



Optical Engineering 00(0), 000000 (April 11, 2012)

lege Park, and an adjunct professor at Duke University. He has held visiting positions at the Lehrstuhl fur
Angewandte Optik, Universitat Erlangen-Nirnberg, Germany and the Center for Technology and National
Security Policy at the National Defense University in Washington DC.

Dr. Mait's research interests include sensors and the application of optics, photonics, and electro-
magnetics to sensing and sensor signal processing. Particular research areas include diffractive optic de-
sign and computational imaging. He also had an unexpected sojourn into autonomous systems, where for
six years he led ARLs program on micro-autonomous systems and technology.

He is currently Editor-in-Chief of Applied Optics. He is a Fellow of SPIE and OSA, and a senior member of
IEEE. He is also a member of Sigma Xi, Tau Beta Pi, and Eta Kappa Nu, and is a Raven from the University
of Virginia.

List of Figure Captions:

1. Figurel Cubic phase element. (a) Side view of the cubic phase elemamted the antenna.
(b) Front view. (c) Detail of fabricated cubic phase element

2. Figure2 Measured point spread functions for conventional imagimjimaging with a cubic
phase. PSFs for conventional system at (a) 113" (2870 mm)L4®.5” (3721 mm), and (c)
180” (4572 mm). (d)-(f) PSFs for a system with cubic phas@éatsiame distances for (a)-(c).

3. Figure3 (a) Representation of the extended object used to compaveicbonal and cubic-
phase imaging. (b) Schematic of object illumination.

4. Figure4 Images from a conventional imaging system at (a) 113", (I6) &d (c) 180”. (d)-
() Images from a system with cubic phase at the same objstrdies as for (a)-(c). (9)-(f)
Processed images from a system with cubic phase at the sgewt distances as for (a)-(c).

5. Figure5 A random undersampling pattern.

6. Figure6 50% Sparse sampled data from a modified imaging system atl@) (b) 146",
and (c) 180". (d)-(f) Diffraction limited images recoverbd solving (L7) at the same object
distances as for (a)-(c).

7. Figure? Diffraction limited images recovered by solvin@7q) at different object distances
from various number of measurements.

oo
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