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Abstract

Imaging using millimeter waves (mmWs) has many ad-
vantages including ability to penetrate obscurants such as
clothes and polymers. Although conceal weapon detection
has been the predominant mmW imaging application, in
this paper, we aim to gain some insight about the potential
of using mmW images for person recognition. We report
experimental results using the mmW TNO database con-
sisting of 50 individuals based on both hand-crafted and
learned features from Alexnet and VGG-face pretrained
CNN models. Results suggest that: i) mmW torso region
is more discriminative than mmW face and the entire
body, ii) CNN features produce better results compared
to hand-crafted features on mmW faces and the entire
body, and iii) hand-crafted features slightly outperform
CNN features on mmW torso.

I.. Introduction
Millimeter waves (mmW) are high-frequency electro-

magnetic waves usually defined to be in the range of
30 − 300 GHz with corresponding wavelengths between
10 to 1 mm. Since radiation at these frequencies is non-
ionizing, it is considered to be safe for human exposure.
Imaging using mmW has gained the interest of the security
community [3], [12], [10], mainly due to its low intrusive-
ness and the ability to pass through clothing and other
atmospheric obscurants such as cloud cover, fog, smoke,
rain and dust storms. The predominant application of
mmW images in the literature has been concealed weapon
detection (CWD) or contraband. Indeed, the majority of
international airports currently use mmW scanners for
detecting concealed objects.

Exploration of mmW images for other purposes such
as person recognition has been scarcely addressed in the
literature. The privacy concerns of mmW images and the
high cost of data acquisition are the two main obstacles

Fig. 1: A sample mmW image from the mmW TNO
database [2].

that have prevented researchers from discovering new
applications of mmW imaging. A sample mmW image
corresponding to an individual in the mmW TNO dataset
is shown in Figure 1. Since millimeter waves can penetrate
through clothing, in mmW images, we are able to see
things that can not be seen in a visible image. As a result,
information collected in a mmW image can be used for
person recognition in addition to its traditional use of
CWD.

To this end, Alefs et al. [2] developed one of the
first reported efforts for person recognition using real
mmW passive images acquired in outdoors scenarios.
They exploited the texture information contained in the
torso region of the image through multilinear eigenspaces
techniques. However, the experimental protocol carried
out in that work was really optimistic, being far away
from a realistic verification scenario in which a traveler
would enter in a mmW scanner to verify his identity



with a previous enrolled sample. On the other hand, the
works by Moreno-Moreno et al. [8] and by Gonzalez-
Sosa et al. [5] proposed and analyzed a biometric person
recognition system using shape information, based on the
idea that shape information retrieved from mmW images
may be more robust to clothes variations than if it were
extracted from visible images. In the mentioned works,
shape information is extracted from BIOGIGA database
[8], which contains synthetically generated mmW images.
They exploited geometrical measures between different
silhouette landmarks and features based on contour co-
ordinates, respectively. In all cases, images were extracted
in the range of 94 GHz.

In this work, we present further insight about the
potential of using mmW images for person recognition.
As mmW waves have the ability to pass through clothes,
person recognition may be achieved not only through face
information, but also through other parts of the body such
as the torso or even the whole body. We empirically
show the discrimination capabilities of different mmW
body parts using both hand-crafted features and deep
convolutional neural networks (CNN) features.

Rest of the paper is organized as follows. Section
II introduces the different mmW body parts considered
in this work and some preprocessing techniques applied
to them. Section III describes the selected hand-crafted
and CNN features analyzed and compared throughout the
paper. Section IV presents the mmW TNO database, while
Section V gives details about the experimental protocol for
both person verification and identification. Experimental
results are presented in Section VI. Finally, Section VII
concludes the paper with a brief summary and discussion

II.. Preprocessing

In this work, three mmW body parts are considered:
mmW face, mmW torso and mmW whole body (see
the first column of Fig. 2). These mmW body parts are
extracted from the original mmW images by manually
defining the corresponding bounding boxes. The approxi-
mate size of these bounding boxes is 70 × 90 for mmW
face; 120 × 170 for mmW torso and 250 × 450 for the
body (width × height format). Then, mmW faces are
histogram equalized using the INface toolbox v2.0 [11].
Millimeter torso and body are not histogram equalized.

III.. Feature Representation

In this section, we provide details of the different
features employed in this work. Features are first extracted
from conventional hand-crafted approaches. Then, some
details regarding the feature extraction from the cutting-
edge deep learning approaches are given.

HOG LBP

Fig. 2: Histogram of Oriented Gradients (HOG) and Local
Binary Patterns (LBP) features from the different mmW
body parts: face, torso and the whole body.

A.. Hand-Crafted Features

Among the wide variety of hand-crafted features pre-
sented in the literature for biometric recognition, we select
two of the most widely used ones for mmW person recog-
nition: i) Local Binary Patterns (LBP) and ii) Histogram
of Oriented Gradients (HOG).

1) Local Binary Patterns features: Local Binary Pa-
tterns provide discriminatory texture information that has
been proved to be robust against illumination variations
[7]. In this case, first images are resized to 100 × 150
(width × height format). The image is then divided into
non overlapping 10 × 10 blocks. For each block the LBP
histogram feature is computed with radius 1, 8 neighbours
and uniform patterns, resulting in a 59-length vector. The
final feature vector of each image is the concatenation of
all the histograms from all blocks. Extracted LBP features
from the face, torso and body parts are shown in the
third column of Fig. 2. Note though that the final feature
vector is in terms of histograms of LBP from each block.
LBP features are extracted based on the implementation



TABLE I: Alexnet and VGG-face configurations. Size
follows width × height × depth format.

Description Alexnet [6] VGG-face [9]
# of layers 21 39
# of conv-relu layers 5 16
# of parameters 60 M 135 M
Input Size 227 × 227 × 3 224 × 224 × 3
Output Size of conv1 55 × 55 × 96 224 × 224 × 64
Output Size of conv2 27 × 27 × 256 112 × 112 × 128
Output Size of conv3 13 × 13 × 384 56 × 56 × 256

provided by [1].
2) Histogram of Oriented Gradients features: His-

togram of Oriented Gradients are able to retain both
shape and texture information. Likewise, first images are
resized to the same dimension used for LBP features. HOG
features are also computed block-wise. They comprise
histogram calculation followed by histogram normaliza-
tion. Each 10 × 10 block is described by a histogram of
gradients with 8 number of orientations, with each gradient
quantized by its angle and weighted by its magnitude.
Then, four different normalizations are computed using
adjacent histograms, resulting in 8 × 4-length feature
vector for each block. The final feature vector of a given
image is the vectorization of the HOG features from all
blocks. Extracted HOG features from the face, torso and
body parts are shown in the second column of Fig. 2. One
can clearly see the different gradient magnitudes of each
of the 150 blocks in this figure. Each of the HOG features
are extracted using the implementation provided in [4].

B.. Convolutional Neural Network features

In recent years, features obtained using deep CNNs have
yielded impressive results on various computer vision and
biometrics recognition problems such as face recognition.
Recent studies have shown that in the absence of massive
datasets or hardware infrastructure, transfer learning can be
effective as it allows one to introduce deep CNNs without
having to train it from scratch. This is possible because
the lower layers (the ones closest to the input layer) in
CNNs learn low-level features, and the layers closer to the
output learn high-level features. One can think of the lower
layers as learning things like edges, and the higher layers
as learning more complex shapes. As a result, higher layers
can be tuned to the task at hand. Therefore, one can use
the lower layers of commonly used deep CNNs such as
AlexNet [6] or VGG-face [9] to extract general features,
that can then be used to train other classifiers or matchers.

In this paper, we use two pretrained CNN models,
namely AlexNet and VGG-face to extract features for
mmW person recognition by finetuing these model on a
subset of the mmW TNO dataset.

1) Alexnet: Alexnet [6] is a CNN that was trained for
the ISLVRC competition using a dataset of 1.2 million
images of 1000 classes (animals, objects, etc.) from the
Imagenet dataset. During the training we resized images
into the standard 227 × 227 input size. All images are also
scaled into [0, 1] and subtracted from their mean value. As
we only have 2 images per class, we augment the number
of images per class up to 10 by creating mirrored versions
of the original samples followed by adding some noise
with different standard deviations (4 additional images per
original sample). We use the stochastic gradient descent to
learn the parameters, with a momentum of 0.9, a number
of epochs of 100, and a batch size of 32 samples. The
learning rate and regularization parameter for the mmW
person recognition task were set to 10−5 (without decay)
and 10−3, respectively for all mmW body parts-based fine-
tuned networks. The bias and weight learning rate factor of
the non fine-tuned layers is set equal to their default value,
1, while the learning rate factor for bias and weights of the
fine-tuned layers are set equal to 20 and 100, respectively.

2) VGG-face: The VGG-face network [9] was inspired
by the previous VGG-Very-Deep-16 CNN network. It has
been trained using a dataset of 2.6 million faces and 2622
classes (people). We resized images into the standard 224
× 224 input size with the average face image subtracted.
We also perform data augmentation here following
the same strategy that we followed with the Alexnet.
Optimization is also achieved by stochastic gradient
descent using mini-batches of 32 samples and momentum
coefficient of 0.9. The VGG-face model is regularized
using dropout layers after fully connected layers with a rate
of 0.5. The learning rate and regularization parameter for
the mmW person recognition task were set equal to 10−6

and 10−4, respectively (no decay). The bias and weights
learning rate factors for non fine-tuned and fine-tuned
layers are set equal to the same values as with the Alexnet.

In both networks, we set the negative slope to 0 in
ReLU. The softmax loss layer computes the multinomial
logistic loss of the softmax of its inputs. After fine-tuning
the AlexNet or VGG-face on the target dataset, we extract
the deep feature as the output of the fc7 layer, which is
a 4096 dimension vector (for feature extraction), or feed
forward the sample until the last layer of the CNN, which
will give a class score (for classification purposes).

Table I describes the configuration of both CNNs. As
can be seen, VGG-face has a larger number of layers,
hence a larger number of learnable parameters. Notice also
from both networks that as it goes deep in the network,
the number of filters (depth dimension) in a convolutional
layer increases (see e.g. for Alexnet 96, 256 and 384 filters
for conv1, conv2 and conv3 respectively).

Besides, even if the input size of both networks is very



Alexnet VGG-face

conv1 conv2 conv3 conv1_1 conv2_1 conv3_1

Fig. 3: Feature maps from the resulting Alexnet and VGG-face fine-tuned nets for the different mmW parts: face (first
row), torso (second row) and whole body (last row). We show Alexnet features from conv1, conv2 and conv3 layers; while
VGG-face features are shown from conv1 1, conv2 1 and conv3 1 layers. Please notice that VGG-face feature maps have
a higher dimension than Alexnet feature maps, they have been arranged withe similar sizes in order to be display properly.

similar, the output size of the first three convolutional
layers are quite different between Alexnet and VGG-face.
As the latter contains more conv-relu layers, it may reduce
the dimensionality of convolutional outputs more gradually
than in Alexnet. Figure 3 depicts the outputs or feature
maps of conv1, conv2 and conv3 layers from Alexnet and
conv1 1, conv2 1 and conv3 1 from VGG-face for the
mmW face, mmW torso and mmW whole body. As can
be seen from this figure, the layers closest to the input
layer contains a lower number of filters with low-level
features such as edges. Conversely, deeper convolutional
layers hold a larger number of filter but with a lower
size, addressing high-level features such as complex shapes
or fine details. Even if outputs from convolutional layers
from both networks appear to be equal in dimensionality,
they have been arranged for display purposes. The larger
resolution of VGG-face outputs is clearly notable.

IV.. The mmW TNO Database

The mmW TNO database (created by the Dutch Re-
search Institute TNO in The Hague) is the only database
available for research purposes that contains real images
of subjects extracted in the range of mmW specifically
designed for person recognition purposes [2]. Images are
recorded using a passive stereo radiometer scanner in an
outdoor scenario.

The database is comprised of images belonging to 50
different male subjects in 4 different scenarios. These
4 different scenarios derive from the combination of 2

different head poses and 2 different facial occlusions. In
the first head pose configuration, the subject is first asked
to stand in front of the scanner with head and arms position
fixed (frontal head pose). In the second pose configuration
(lateral head pose), the subject is asked to turned his head
leftward while the torso is asked to remain fixed (it may
suffer some small changes due to the head movement).
A second round of images with the first and second head
pose configurations were extracted but now a large part of
the facial region was occluded using an artificial beard or
balaclava (disguised).

As mentioned before, each scanning is a set of two
grayscaled images. By dividing this set into single images
of 348 × 499, the TNO database is comprised of 50
subjects × 2 head pose configurations × 2 facial clutter
configurations × 2 images per set, making a total of
400 images in the whole mmW TNO database. A sample
348× 499 image from this dataset is shown in Fig. 1.

V.. Experimental Protocol

We only consider in this work the subset of 200 images
which have frontal head pose configuration. The set of 4
images per subject is divided randomly and evenly into
training and test sets, with 2 images each. By selecting
randomly the 4 images, we ensure that disguised images
are not predominantly in any of the sets. We report
experiments in both identification and verification modes.



A.. Identification Mode

In the identification mode, a model is learnt for each
subject in the dataset. The model of the hand-crafted
features is computed by averaging the features from the
2 images belonging to the same class (subject).

In order to get identification results, all test images are
faced against the 50 subject models. For the hand-crafted
features, we compute cosine distances between a particular
subject model and the test features. For CNN, we just feed
forward the corresponding fine-tuned network (Alexnet or
VGG-face) with the test images to get the class scores
from the classification layer.

B.. Verification Mode

Verification implies one-to-one comparisons to find out
whether the two given images belong to the same subject
or not. Hand-crafted features are extracted as mentioned in
Section III-A. In order to extract the CNN features, we feed
forward both training and test images in the corresponding
fine-tuned networks and extract the features from the next-
to-last fully connected layer, resulting in a 4096-feature
vector (fc7).

Finally, for both hand-crafted and CNN features, train-
ing features are matched against test features using cosine
distance to obtain genuine and impostor scores.

VI.. Results
In this section, we present the performance results in

both verification and identification modes. Identification
results are reported in terms of cumulative match curves
(CMC), while Verification results are reported in terms
of receiving operating curves (ROC). For each mode, we
have assessed four different feature approaches, two hand-
crafted and two CNN-based. All the approaches are tested
with the three considered mmW body parts: mmW face,
mmW torso and mmW whole body. All the experiments
have been carried out using Neural Network and Paral-
lel Computing toolboxes from Matlab 2016b, along with
CUDA7.5 and GeForce GTX TITAN X.

A.. Verification

Fig. 4 shows the quantitative results in terms of ROC
curves and Equal Error Rate (EER) corresponding to mmW
face, mmW torso and mmW whole body. For each body
part, we report ROC curves for all feature approaches.

From Fig. 4 left, one can see that person recognition
through mmW faces achieve 30% of average EER for all
approaches, which are far from being comparable to the
state-of-the-art results in the visible face recognition. CNN
features are able to reach results which are slightly better
than hand-crafted features, obtaining a 27% of relative
improvement between the average EER of hand-crafted

and CNN features. These poor results may be due to
several reasons: low resolution and insufficient number of
samples per class to fine-tune the CNN pretrained models,
among others.

It is also worth noting the importance of applying
histogram equalization to mmW faces. We empirically
proved a reduction of EER by an average of 7% for
the different approaches when using histogram equalized
images.

Superior performance of mmW torsos can be seen from
From Fig. 4 center, in which all considered features achieve
outstanding results, reaching the best result of 4.5% EER
with the HOG features. This may be due to the fact
that torso is somewhat more stable than other body parts
such as face in terms of pose or expression variations. It
is also surprising the fact that hand-crafted features are
performing better than the learned features. It may be due
to the robust nature of torsos, which allow spatial features
to be pseudo aligned effortlessly.

Hand-crafted features with mmW whole body are per-
forming similarly as with mmW faces (see Fig. 4 right).
In this case, a previous alignment of the body may have
helped to improve performance of this spatial-dependent
features. CNN features are performing reasonably, being
more discriminative than faces but less than torsos. It is
interesting to note that the VGG-face features perform
slightly better than the Alexnet features.

B.. Identification

Fig. 5 presents the CMC curves for all mmW body parts
and feature approaches. Rank-1 (R1) indicates the per-
centage of probe samples where the system has assigned
the right identity in the first place among the 50 possible
candidates.

Similar conclusions can be drawn from the CMC
curves: the best performance of the CNN features over the
hand-crafted features for mmW faces and mmW whole
body, the superiority of torsos regardless of the feature
approach, being hand-crafted feature also superior here.
The best performance of hand-crafted features for either
verification and identification may be due to the aforemen-
tioned lack of samples per class for properly fine-tuning
pre trained models, but also due to the distance between
source and target dataset. Bear in mind than Alexnet has
been trained using images of objects and VGG-face has
been trained using images of visible faces.

It is also worth noting that not always better EERs
in verification produce better R1. Such is the case of
VGG-face and Alexnet for mmW faces, in which VGG-
face achieves a better rank-1 (49%) than Alexnet (40%),
although Alexnet achieve less EER in verification mode.
This is happening also the other way around between
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Fig. 4: Verification results. ROC Curves are drawn for mmW face, mmW torso and mmW whole body (left, center and
right, respectively).
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Fig. 5: Identification results. CMC Curves are drawn for mmW face, mmW torso and mmW whole body (left, center and
right, respectively).

VGG-face and Alexnet for mmW whole body. Now the
approach with a larger EER is achieving better R1 results.
When working in identification mode, more insight can
be drawn also from confusion matrices. Fig. 6 plots the
confusion matrices of all mmW body parts and features
considered in this paper. As can be seen, the confusion
matrices of torso experiments are almost perfect, especially
those from the HOG features. Confusion matrices from the
mmW faces are the worst ones, while there is a remarkable
difference between the confusion matrices corresponding
to CNN features and hand-crafted features for mmW whole
body. It is also worth noting that each feature approach
confuses in a different manner, suggesting us that fusion
schemes between different approaches may play a key role
in the search of performance improvement and robustness.

VII.. Conclusions

This paper has presented one of the very first works ad-
dressing person recognition using mmW images. Different
mmW body parts have been considered in our work: face,
torso and whole body. We have carried out experiments

with several hand-crafted features and some state-of-the-art
CNN features. Some of the findings from the experiments
are: i) mmW torsos are the most discriminative body
parts in mmW images and mmW faces are the least
discriminative ones; ii) CNN features overcome hand-
crafted features with faces and whole body parts; iii) hand-
crafted features achieve outstanding results for torso-based
person recognition.

We believe one of the main drawbacks that prevent us
from exploiting more CNN learning capabilities in our
current application is the lack of a reasonable number of
samples per class (there are only 2 real images per class),
and the lower resolution of some of the body parts with
which we are working.

In our future work, we will consider different fusion
schemes at different levels to exploit the best of the
different feature approaches. We will also investigate the
possibility of fusing shape and texture information jointly.

In order to move towards real applications (e.g. border
control), we should consider performing person recog-
nition using active mmW images (those which include
artificial illumination in order to increase the resolution
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Fig. 6: Identification results. Confusion Matrices for the different mmW body parts and the 4 different feature extractor
considered.

of the resulting image), which are actually the ones that
are used in commercial mmW scanners. To this aim, we
would need datasets of active mmW images from different
subjects and a larger number of subjects, an issue that due
to privacy concerns is nowadays a real challenge.
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