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Abstract—Despite their advantages, MIMO radars have not
seen a massive deployment. One of the main limitations of the
MIMO radar is its implementation cost, stemming from the large
number of transmit and receive radio frequency channels, and
the high data throughput that results in costly digital signal
processing (DSP). This paper proposes MIMO-RSFT radar,
a MIMO radar which employs the Realistic Sparse Fourier
transform (RSFT) and achieves reduced DSP complexity. Slow-
time and fast-time coded waveforms are investigated in the
context of the MIMO-RSFT radar. The key steps of deriving
the optimal detection thresholds for the MIMO-RSFT radar in
3-D are provided, and the feasibility of the MIMO-RSFT radar
is demonstrated via simulations.

Index Terms—Array signal processing, sparse Fourier trans-
form, MIMO radar.

I. INTRODUCTION

A collocated multi-input multi-output (MIMO) radar [1],
[2] can see targets everywhere at anytime without steering its
beams as a traditional phased array radar does. The MIMO
radar’s wide angle coverage is achieved by multiple channels
for transmitting and receiving. During the transmission, a set
of mutually orthogonal waveforms are transmitted by each
array element with an omni-directional beam pattern; after
the signal is received from each digitized receiving channel,
multiple narrow beams are formed in the digital signal pro-
cessor (DSP) using beamforming methods. A typical MIMO
radar structure is shown in Fig. 1 with an uniform linear array
(ULA) configuration. Although MIMO radars enjoy improved
parameter identifiability and larger number of targets that can
be simultaneously identified compared to its phased array
counterpart [2], they have not been widely used in practical
applications. One of the reasons is the high implementation
cost involved, which is mainly due to: 1) the large number
of transmit and receive radio frequency (RF) channels; and
2) the high data throughput and complex processing, which
results in costly DSPs. The cost of the RF channels can be
reduced by sharing the transmit and receive antennas, i.e.,
each antenna element can be used both for transmitting and
receiving in a pulse mode [1]. In this paper, we will assume
such configuration and address the reduction of the cost of
DSP.

Modern pulse radars usually employ the pulse compression
(PC) technique to increase their sensitivity (ability to detect
weak signals) and range resolution. To implement PC in
MIMO radars, the waveforms must have good cross- and auto-
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Fig. 1. Collocated MIMO Radar System with ULA. The half-wavelength
spacing ULA with N elements is used both for transmitting and receiving.
Each element transmits an orthogonal waveform, which is generated by a
direct digital synthesizer (DDS). The orthogonality of the waveforms results
into an omni-directional transmit beam pattern, while multiple narrow beams
are formed simultaneously by the beamforming in the DSP.

correlation properties [3], which are properties needed for PC
and waveform decoding (WD). WD is a process that separates
the orthogonal waveforms from each transmitter, so that the so
called transmit beamforming [1] can be applied subsequently
to compensate for time delay caused during transmission. To
this end, code division multiple access (CDMA) waveforms
[3], [4] are usually adopted. Depending on the application,
the baseband CDMA code sequences can be applied on the
slow-time (time across pulses) or on the fast-time (time within
a single pulse), yielding different processing schemes and
computational complexities (see Section III).

The high degrees of freedom in MIMO radars results in
high dimensional computations. For the MIMO radar of Fig.
1, in order to detect targets and estimate their range and
direction-of-arrival (DOA), we need to do processing in a 3-D
space, i.e., range, transmit DOA and receive DOA. Although
parametric methods yield in general better resolution, conven-
tional, Fourier transform-based methods are often preferable
in practice due to their robustness to noise and their lower
computational complexity [5]. In fact, matched filtering for
range processing, and transmit and receive beamforming for
DOA processing can be effectively implemented via the fast
Fourier transform (FFT) (see e.g., [6]), which (see Fig. 3) has
a complexity of O(RN2 log(RN2)) for each pulse repetition
interval (PRI), where N,R are the number of array elements
and the number of the range bins, respectively. When N,R are
large, or, when the dimension of signal processing continuous



to increase (for instance, when both azimuth and elevation
DOA are considered), the computation of the FFT becomes
costly.

The recently introduced Sparse Fourier transform (SFT) [7],
leverages the sparsity of signals in the frequency domain and
achieves substantial reduction of the complexity required to
identify the underlying frequencies. In the radar scenario, the
number of targets within the radar coverage is usually far less
than the number of resolution cells in the high dimensional
parameter space, which motivates the application of SFT in
radar processing. However, most of the existing SFT algo-
rithms require that the signal frequencies to be on the grid and
the exact sparsity to be known. In our previous work [8], [9],
we proposed the Realistic Sparse Fourier Transform (RSFT)
algorithm, which introduces a pre-permutation windowing to
address the off-grid frequencies and employs Neyman-Pearson
(NP) detection to identify frequencies without knowledge of
the exact sparsity.

In this paper, by leveraging our prior work [8], [9] we make
the following contributions:

1) We propose MIMO-RSFT radar, a reduced complexity
MIMO radar that employs the RSFT to reduce the cost
of the DSP.

2) We explore slow-time and fast-time coded waveforms
that support PC for MIMO radars. The implementation
of the RSFT and the resulting computational savings are
investigated for both cases.

3) We provide the key steps of deriving the optimal detec-
tion thresholds for the MIMO-RSFT radar based on the
signal model.

In our previous work [8], [9], an example of employing
the RSFT at the ubiquitous radar [10] was presented. The
ubiquitous radar has one transmitting channel and multiple
receiving channels, so it can be viewed as a single-input
multi-output (SIMO) radar. Compared to the SIMO radar
scenario, implementing the RSFT on a MIMO radar is more
involved, as in this case, the signal is not naturally sparse in
the range dimension. Moreover, additional processing needs to
be done, i.e., WD, PC and transmit beamforming. Extending
our previous work, we provide the key steps of deriving the
optimal detection thresholds in high dimensions, and make
some connections between the 1-D and N-D cases. Sparse
sensing in MIMO radars has received significant attention,
with compressed sensing-based MIMO (MIMO-CS) radar [11]
and matrix completion-based MIMO (MIMO-MC) radar [12],
being two recent approaches. Compared to MIMO-CS and
MIMO-MC radars, which reduce sample complexity of the
signal processing, the MIMO-RSFT radar aims at decreasing
computational complexity, which would allow for more af-
fordable hardware in real time processing.
Notation: We use lower-case (upper-case) bold letters to
denote vectors (matrices). (·)T and (·)H respectively denote
the transpose and conjugate transpose of a matrix or a vector,
while (·)∗ is the conjugate of a scalar. ‖ · ‖ is the Euclidean
norm for a vector. We use ∗ to denote the convolution of two
vectors. [a]i is the ith element of vector a, while [A]u,v,w is

the (u, v, w)th element of tensor A. [S] refers to the set of
indices {0, ..., S − 1}, and [S] \ a is for eliminating element
a from set [S]. We use diag(·) to denote forming a diagonal
matrix from a vector. The DFT of signal s is denoted as ŝ.
We also assume that the signal length in each dimension is an
integer power of 2.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider the MIMO radar configuration of Fig. 1. Dur-
ing transmission, a set of orthogonal CDMA waveforms are
transmitted by each antenna element. Let us denote the discrete
baseband signal, which is transmitted by the uth, u ∈ [N ]
element in the sth, s ∈ [T ] PRI by su,s ∈ CM . Suppose that
there are K targets within the radar coverage. For simplicity,
we do not incorporate Doppler in our signal model, thus im-
plicitly assuming that the targets are moving slowly and their
Doppler can be neglected. Note that including the Doppler
processing in the MIMO-RSFT radar is straightforward, and
is briefly discussed in Section IV-D. The received signal of the
ith, i ∈ [N ] receiving channel (after quadrature demodulation
and analog to digital conversion) is ri,s ∈ CR, which is a
superposition of the signals that are returned from K targets,
i.e.,

ri,s =
∑
k∈[K]

bk,sejiπ sin θk
∑
u∈[N ]

au,s(tk)ejuπ sin θk

+ ns,

(1)
where tk ∈ [R −M ], θk ∈ [−π/2, π/2] denote sample delay
and DOA (the angle between the line-of-sight of target and the
array normal) of the kth target, which are unknown determinis-
tic quantities and are assumed to be stationary within T PRIs.
The phase terms ejiπ sin θk and ejuπ sin θk are respectively
caused by the channel-wise time delay during reception and
transmission, by assuming that the signal is narrow-band and
the array elements are spaced apart by half wavelength. We use
au,s(tk) ∈ CR, R > M to represent the fast-time data samples
within the sth PRI, which contains a delayed by tk version of
su,s, i.e., [au,s]v+tk = [su,s]v, v ∈ [M ], and the other entries
of au,s equals to zero. The bk,s is the complex amplitude
of the kth target, which is circularly symmetric Gaussian and
distributed as bk,s ∼ CN (0, σ2

bk); the noise ns is temporal
and spatial white, distributed as ns ∼ CN (0, σ2

nI), where 0
is R-dimensional zero vector, and I ∈ RR×R is the identity
matrix.

Let Rs = [r0,s, r1,s, · · · rN−1,s] represent the data
collected by all antennas. The data collected over T pulses, i.e.,
Rs, s ∈ [T ], will be used to detect the targets and estimate
their range and DOA. The conventional processing schemes
for slow-time and fast-time coded waveforms are presented in
Fig. 2 (a) and Fig. 3 (a), where WD and PC are implemented
sequentially and simultaneously, respectively. Conceptually,
WD separates each au,s(tk)ejuπ sin θk component in ri,s,
while PC convolves au,s(tk) with su,s to achieve high range
resolution. After that, the transmit and receive beamforming
are implemented along the transmit and receive channel,



respectively. Subsequently, after a non-coherent accumulation,
a detection procedure on each resolution cell is applied.

The FFT and inverse FFT (IFFT) can be employed in
various stages of the processing, however, the complexity is
still high due to high dimensional data. In what follows, we
explain how one can use the RSFT in both slow-time and
fast-time coding schemes to save computation.

III. SLOW-TIME AND FAST-TIME CODED WAVEFORMS
PROCESSING

Let us consider the transmit waveforms to be unimodal [3],
i.e., |[su,s]i| = 1, i ∈ [M ]. First, we discuss the orthogonality
and PC requirements for such waveforms. Based on that, we
compare the processing schemes for slow-time and fast-time
coded waveforms and derive their computational complexities.

The correlation between su,s and sv,s at lag n, n ∈ [M ]

equals to cu,v,s(n) = c∗v,u,s(−n) =
∑M
i=n+1[su,s]i[sv,s]

∗
i−n.

The slow-time orthogonality requires that the pulses emitted
from different transmitters be uncorrelated within L consecu-
tive PRIs, i.e.,∑

s∈[L]

cu,v,s(0) = 0, u, v ∈ [N ], u 6= v, (2)

while the fast-time orthogonality requires that L = 1 in (2).
Note that (2) guarantees that: 1) the transmit beam-pattern is
omni-directional within L PRIs; and 2) the WD can be applied
upon reception.

PC requires the auto-correlation of each pulse at different
non-zero lags be below certain level, i.e., |cu,u,s(n)| < ε, n ∈
[M ] \ 0, where 0 ≤ ε << |cu,u,s(0)| = M .

A. Slow-time Coding

The slow-time coding scheme [4] can employ any pulse
waveform s that supports PC (e.g., the Barker code waveform)
as its base waveform. To achieve (2), the antennas transmit
T/L bursts, assuming that T is divisible by L; a burst is
composed of L consecutive pulses, i.e., su,s, u ∈ [N ], s ∈ [L],
whose initial phases are coded by N mutually orthogonal
unimodal sequences (e.g., the Hadamard sequences), which
is denoted as hu ∈ CL, u ∈ [N ]. Hence su,s = [hu]ss.
Upon reception, WD is applied for each receiving channel on
the burst basis by correlating ri,s, s ∈ [L] with hu, yielding
wi,u ∈ CR, u ∈ [N ], i.e.,

wi,u = [ri,0 ri,1 · · · ri,L−1]hu

= L
∑
k∈[K]

bke
j(i+u)π sin θka(tk) + ñ, (3)

where a(tk) is tk-delayed version of s; ñ is the noise part. The
WD process for each burst has a complexity of O(N2LR).
Subsequently, PC is applied by matched filtering wi,u with s.
With the matched filtering being implemented in the frequency
domain for efficiency, PC for each burst has a complexity of
O(N2R logR). The subsequent transmit and receive beam-
forming for each burst, when implemented with FFT, has a
complexity of O(RN2 logN2). Therefore, the complexity of
processing each burst is O(UL+U logU), where U = RN2.
Clearly, for T PRIs (T/L bursts), the processing scheme in
Fig. 2 (a) gives a complexity of O(T (U + U

L logU) + U).

B. Fast-time Coding
As opposed to slow-time coding that applies orthogonal

coding on the inter-pulse basis, the fast-time coding imple-
ments the coding on the intra-pulse basis. However, since the
ideal cross- and auto-correlation properties cannot be achieved
at the same time [3], the orthogonality and the non-zero
lag cross-correlation for the fast-time coded waveforms are
approximate, i.e., |cu,v,s(n)| < γ << M for n ∈ [M ], u 6= v.
Upon reception, WD and PC can be simultaneously achieved
by matched filtering ri,s with su,s, u ∈ [N ], which yields

yi,u = su,s ∗ ri,s
≈
∑
k∈[K]

bke
j(i+u)π sin θk(su,s ∗ au,s(tk)) + n̄, (4)

where n̄ is the noise component. When the matched filtering
is implemented in the frequency domain (see Fig. 3 (b)),
the complexity is O(U logR). The subsequent transmit and
receive beamforming has a complexity of O(U logN2), there-
fore, the complexity of fast-time coding processing for T PRIs
(Fig. 3 (a)) is O(T (U logU) + U).

IV. RSFT BASED MIMO RADAR SIGNAL PROCESSING

A. The RSFT Algorithm
We briefly summarize the RSFT algorithm in the following.

First, a pre-permutation windowing is applied to the data to
confine leakage from off-grid frequencies. Then, the permuta-
tion procedure reorders the input data in the time domain,
causing the frequencies to also reorder. The permutation
causes closely spaced frequencies to appear in well separated
locations with high probability. Then, a frequency-domain flat-
window [7] is applied on the permuted signal for the purpose
of extending a single frequency into a (nearly) boxcar, for a
reason that will become apparent in the following. The win-
dowed data are aliased, and the frequency domain equivalent
of this aliasing is undersampling by U/V , where U, V denote
for the original and aliased data length, respectively. The
flat-window used at the previous step ensures that no peaks
are lost due to the effective undersampling in the frequency
domain. After this stage, a FFT of length V is employed. The
permutation and the aliasing procedure effectively map the
signal frequencies from U -dimensional space into a reduced
V -dimensional space, where the first stage detection procedure
locates the significant frequencies, and then the corresponding
indices are reverse mapped into the original U -dimensional
frequency space. However, the reverse mapping yields not
only the true location of the significant frequencies, but also
U/V ambiguous locations for each frequency. To remove the
ambiguity, multiple iterations of processing with randomized
permutation are performed. Finally, the second stage detection
procedure locates the significant frequencies from the accumu-
lated data for each iteration. The NP criterion are used for both
stages of detection. For detailed explanation of the algorithm
please refer to [9].

B. RSFT-based MIMO Radar
The conventional processing for slow-time and fast-time

coding schemes (see Fig. 2 (a) and Fig. 3 (a)) share a



similar structure, except that their WD and PC processing
are different. By packing some of the operations in WD and
PC into a so called range pre-processing procedure, we are
able to present a uniform RSFT-based processing structure for
both coding schemes as shown in Fig. 4, which simplifies our
discussion on MIMO-RSFT radar for both coding schemes.

1) Range pre-processing: For slow-time coded waveforms,
the range pre-processing includes WD and the front-end of
PC, which contains the FFTs on the decoded waveform wi,u

and the multiplications between ŵi,u and â∗, as shown in
Fig. 2 (b). For fast-time coded waveforms, the range pre-
preprocessing contains the front-end of the frequency domain
implementation of matched filtering, i.e., the FFTs on ri,s and
the multiplications between r̂i,s and â∗u,s, as shown in Fig. 3
(b).

2) An uniform processing structure for MIMO-RSFT radar:
Since the baseband signal is not sparse in the time domain nor
in the frequency domain, the RSFT cannot be directly applied
on the range domain. However, after PC, the signal becomes
sparse in the time domain, which suggests that the backend
of PC, i.e., the IFFT can be replaced by the RSFT. Moreover,
since the signal is sparse in the DOA domain, both transmit
and receive beamforming can be implemented with the RSFT.
Hence, after the range pre-processing, we apply a 3-D RSFT
on the signal to implement the detection and estimation. The
processing scheme for the MIMO-RSFT radar is shown in
Fig. 4. Note that, since we summarize the difference of the
slow-time and fast-time coding processing in the range pre-
processing, the processing structure of Fig. 4 can be applied
to both coding schemes.
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Fig. 2. Conventional MIMO Radar Signal Processing for Slow-time
Coded Waveforms. The red arrows indicate the dimension of related process-
ing. (a) Overview of MIMO radar processing for slow-time coded waveforms.
WD, PC, transmit and receive beamforming are processed on the burst basis.
For better detection performance, a non-coherent accumulation over T/L
bursts is applied. (b) Range pre-processing for slow-time coded waveforms.

3) Complexity analysis for MIMO-RSFT radar: As dis-
cussed in [9], the complexity of the RSFT is O (Tφ+ U),
where φ = U +V +V log V + KηmU

ηpV
, and ηm, ηp are the pre-

permutation window parameter and the calibration parameter
for the probability of detection of the co-existing signals,
respectively. Thus, based on the processing scheme of Fig. 4,
the complexity of RSFT-based processing for slow-time and

fast-time coding schemes are O
(
T
L (UL+ U logR+ φ) + U

)
and O (T (NR logR+ φ) + U), respectively.
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Fig. 3. Conventional MIMO Radar Signal Processing for Fast-time
Coded Waveforms. (a) Overview of MIMO radar processing for fast-time
coded waveforms. The matched filtering, transmit and receive beamforming
are applied in each pulse. A non-coherent accumulation over T pulses is
applied. (b) Matched filtering and range pre-processing for fast-time coded
waveforms.

Remark 1. The computational savings of the slow-time coding
scheme are not significant, mainly due to its WD, whose
most computational intensive part cannot take advantage of the
RSFT. On the other hand, since the fast-time coding scheme
can use the RSFT in all stages, the corresponding reduction
of complexity can be significant.
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C. The Asymptotically Optimal Detection Thresholds for
MIMO-RSFT Radar

The derivation of the optimal thresholds for the two de-
tection stages for the RSFT in the one-dimensional case can
be found in [9]. Here, we derive the optimal thresholds for
the MIMO-RSFT radar with fast-time coded waveforms by
providing the key steps, which are unique for our problem.
The derivation is based on hypothesis test on each resolution
cell in the two detection stages of the RSFT, and the optimal
thresholds are sought to minimize the worst case signal SNR
for a given detection specification.

Let us consider the received signal from the ith element with
the model of (1). After the range pre-processing, the signal



output from the uth matched filter is
mi,u = HuDri

≈ ejiπ sin θk
∑
k∈[K]

(
bkAuv(ωtk)ejuπ sin θk

)
+ HuDn,

(5)
where Hu = diag(â∗u); D is the DFT matrix; Au =
diag(|âu|2); v(ωtk) is a complex sinusoid whose frequency
is ωtk , which is related to the time delay (range) of the
kth target. Specifically, ωtk = tk∆ωR,∆ωR = 2π/R, and
v(ωtk) = [1, e−jωtk , · · · , e−j(R−1)ωtk ]T .

Remark 2. After the range pre-processing, the signal part along
the range dimension becomes a superposition of K sinusoids,
whose frequencies are determined by the time delay of each
target, and their amplitudes are modulated by the baseband
signals’ power spectrum. Moreover, (5) is similar to the signal
model in [9], and Au can be viewed as the pre-permutation
window that is applied on the signal in the range dimension.

Based on Remark 2, the following derivation follows the
same steps as in [9]. More specifically, let us denote the data
cube after the 3-D FFT in the reduced space by F̂ ∈ CB×C×D,
where B,C,D are the data lengths in each reduced dimension;
each entry in F̂ is a circularly symmetric Gaussian variable,
i.e., [F̂]p,w,v ∼ CN (0, σ2

p,w,v), p ∈ [B], w ∈ [C], v ∈ [D].
The variance σ2

p,w,v depends on whether the (p, w, v)th cell
contains (at least) a significant frequency. Under the alternative
hypothesis in the first stage of detection, [F̂]p,w,v contains at
least the significant frequency corresponding to the weakest
target, i.e., the mth target. Then, under the assumption that the
side-lobes (leakage) in all dimensions are far below the noise
level, we have σ2

p,w,v ≈ σ2
bmα+σ2

nβ. On the other hand, under
the null hypothesis, there is no significant frequency mapping
to the (p, w, v)th cell, then, σ2

p,w,v ≈ σ2
nβ, and

α = αrαTαR, β = βrβTβR,

αr = | 1
R
vT (ωp)Vrv(ωtm)|2, αT = |vH(ωw)VTv(ωθm)|2,

αR = |vH(ωv)VRv(ωθm)|2, βr = ‖ 1

R
WrPr(σs)â

∗‖2,

βT = ‖WTPT (πs)wT ‖2, βR = ‖WRPR(δs)wR‖2,
(6)

where ωp = p 2π
R , ωw = w 2π

N , ωv = v 2π
N , are the frequencies

related to the pth, wth, vth row of each DFT matrix of the
3-D FFT, respectively; ωtm = tm∆ωR, ωθm = π sin θm are
the frequencies produced by the time delay and the DOA
of the mth target. Vr =

∑
i∈[R/B] WriPr(σs)Wr;

VT =
∑
i∈[N/C] WTiPT (πs)WT ; VR =∑

i∈[N/D] WRiPR(δs)WR, where Wr = diag(â∗),
WT = diag(wT ), WR = diag(wR), Wr = diag(wr),
WT = diag(wT ), WR = diag(wR), and â∗ is the
conjugate of the averaged DFT of ai, i ∈ [N ]; wT ,wR are
the pre-permutation windows of the transmit and receive
DOA dimension, respectively, while wr,wT ,wR are the
flat windows for each dimension. Wri,WTi,WRi is the
ith sub-matrix of Wr,WT ,WR, which are comprised of
the iBth to the ((i + 1)B − 1)th rows of Wr, iCth to the

((i+ 1)C − 1)th rows of WT , iDth to the ((i+ 1)D − 1)th
rows of WR, respectively. Pr(σs),PT (πs),PR(δs) are
permutation matrices, which are parametrized by the
permutation parameters σs, πs, δs for each dimension during
the sth PRI.

Remark 3. For the 3D-RSFT in MIMO-RSFT radar with sig-
nal model (1), the distributions of the signal in each resolution
cell in the first stage of detection for both hypotheses have
the same structure as in the 1-D case (see [9]), i.e., they are
all zero-mean circularly symmetric Gaussian distributions. In
the alternative hypothesis, the variance of the distribution is
a weighted sum of the variance of the signal and noise. The
weights, i.e., the α and β are the products of the weights from
each dimension (see Eq. (6)).

Based on Remark 3, the following steps, which involve
deriving the distributions in the second stage of detection and
solving the optimization problem to find optimal thresholds,
are the same as described in [9]. We omit the rest of the
derivations due to lack of space.

D. Doppler Processing for the Fast-time Coded Waveform

The Doppler frequency adds an additional dimensionality
in the processing. For fast-time coded waveform processing,
The received signal Rs, s ∈ [T ] are partitioned into T/P
coherent processing intervals (CPIs), with each CPI contains P
consecutive received data matrices. The Doppler processing,
for example, the moving target detector (MTD) are applied
on the same range, transmit DOA, receive DOA resolution
cell within a CPI. In conventional processing, the MTD can
be effectively implemented via FFT, hence including of MTD
in the fast-time coded MIMO-RSFT radar is straightforward,
i.e., the range pre-processing for each CPI generates a 4-D
tensor of size R×N ×N ×P , then the following 4-D RSFT
procedures are carried out on such tensor.

V. SIMULATIONS

A. Targets Reconstruction

We verify the feasibility of MIMO-RSFT radar and compare
to the FFT-based and SFT-based processing via simulation.
The main parameters of the system are listed in Table I.
We generate a signal from 4 targets according to (1). The
parameters of targets can be arbitrarily chosen within the pa-
rameter space, which implies that the corresponding frequency
components do not necessarily lie on the grid points. The
targets’ parameters used in the simulation are listed in Table
II. Note that we set targets 3 and 4 being close to each other
in range and DOA to test the resolution of the MIMO-RSFT
radar.

In the 3-D RSFT and SFT processing, we choose B =
128, C = 32, D = 32, respectively. To apply the SFT for
high dimensional data, we extend the SFT into high dimension
with the techniques in [8]. The results are shown in Fig. 5.
Comparing to the FFT-based processing, the 4 targets are
reconstructed exactly via the RSFT-based processing, while
the SFT-based method results in many false alarms due to the



TABLE I
SRUR PARAMETERS

Parameter Symbol Value
Number of range bins R 1024

Number of antenna elements N 128
Length of CDMA Code M 256

Number of PRI T 32
Wave length λ 0.03m

Wave propagation speed c 3× 108m/s
PRI Tp 25.6ms

Maximum range Rmax 156.6km
Sampling frequency (IQ) fs 1MHz

TABLE II
TARGET PARAMETERS

Target Range (km) DOA (◦) SNR (dB)
1 14.8 20 0
2 90 −28 −5
3 44.8 5 −10
4 45 8 −10

ineffective detection and the high side-lobes from the strongest
target (Target 1) in the range and transmit DOA plane. Fur-
thermore, compared to the conventional FFT-based processing,
the resolution of the MIMO-RSFT does not degrade.

(a) (b)
Fig. 5. Target Reconstruction via 3-D FFT, RSFT and SFT. Comparing
to the 3D-FFT, 3D-RSFT can recover the targets exactly, while the recovery
via the 3D-SFT results into many false alarms due to the leakage from Target
1. (a) FFT vs RSFT. (b) FFT vs SFT.

B. Computational Savings

We compare the computational savings obtained by the
MIMO-RSFT with that of the FFT-based processing both for
slow-time and fast-time coded waveforms. The complexity of
both slow-time and fast-time coding schemes is affected by the
number of samples in the reduced space, i.e., V = BCD and
the signal sparsity K. A smaller V and K will lead to more
computational savings of the MIMO-RSFT radar. For the slow-
time coding scheme, Fig. 6 (a) shows that the RSFT-based
processing does not save much even when V is small, and
when V becomes larger, its complexity is even higher than that
of the FFT-based processing. On the other hand, for the fast-
time coding scheme, Fig. 6 (b) shows that the computational
savings of the RSFT-based method is significant. We shall
point out that since the RSFT trades off complexity and
sensitivity, more savings in computation will result in a larger
degradation of sensitivity [9], and the MIMO-RSFT radar

offers an extra degree of freedom for designing a MIMO radar
by trading off complexity with sensitivity.
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Fig. 6. Complexity Ration, FFT over RSFT. U = 224, V =
{210, 214, 218, 222}, ηm = 4, ηp = 1. Other parameters are the same as
in Table I. (a) slow-time coding. L = N,T = 4L. (b) fast-time coding.

VI. CONCLUSION

In this paper, we have addressed the problem of reducing
the implementation complexity of MIMO radars. To this end,
we have proposed the MIMO-RSFT radar, which utilizes the
RSFT to reduce the cost of the DSP based on a MIMO
radar that works in a pulse mode. The complexity reduction
for both slow-time and fast-time coded waveforms have been
investigated, from which we have pointed out that the fast-
time coded waveforms result in higher savings. Finally, the
key steps of deriving the optimal detection thresholds for the
MIMO-RSFT radar with fast-time coded waveforms have been
demonstrated.
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