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Abstract

In this paper, we present an end-to-end system for the
unconstrained face verification problem based on deep con-
volutional neural networks (DCNN). The end-to-end sys-
tem consists of three modules for face detection, alignment
and verification and is evaluated using the newly released
IARPA Janus Benchmark A (IJB-A) dataset. The IJB-A
dataset includes real-world unconstrained faces of 500 sub-
jects with significant pose and illumination variations which
are much harder than the Labeled Faces in the Wild (LFW)
and Youtube Face (YTF) datasets. Results of experimental
evaluations for the proposed system on the IJB-A dataset
are provided.

1. Introduction

Face verification is one of the core problems in com-
puter vision and has been actively researched for over two
decades [44]. In face verification, given two videos or im-
ages, the objective is to determine whether they belong to
the same person. Many algorithms have been shown to
work well on images that are collected in controlled set-
tings. However, the performance of these algorithms of-
ten degrades significantly on images that have large vari-
ations in pose, illumination, expression, aging, and occlu-
sion. Most face verification systems assume that the faces
have already been detected and focus on designing match-
ing algorithms. However, for an automatic face verification
system to be effective, it needs to handle errors that are in-
troduced by algorithms for automatic face detection, face
association, and facial landmark detection algorithms.

Existing methods have focused on learning robust
and discriminative representation from face images and
videos. One approach is to extract over-complete and high-
dimensional feature representation followed by a learned
metric to project the feature vector into a low-dimensional

space and to compute the similarity score. For example,
high-dimensional multi-scale local binary pattern (LBP)[8]
features extracted from local patches around facial land-
marks and Fisher vector (FV) [33][10] have been shown to
be effective for face recognition. However, deep convolu-
tional neural networks (DCNN) have demonstrated impres-
sive performances on different tasks such as object recog-
nition [26][37], object detection [21][27], and face verifi-
cation [31]. It has been shown that a deep convolutional
neural network model can not only characterize large data
variations but also learn a compact and discriminative fea-
ture representation when the size of the training data is suf-
ficiently large. In addition, it can be easily generalized to
other vision tasking by fine-tuning the pretrained model on
the new task [18].

In this work, we present an end-to-end automatic face
verification system. Due to the robustness of DCNN fea-
tures, we also build the face preprocessing modules (i.e.
face detection, and facial landmark detection based on the
same DCNN model used in [26].). We demonstrate that
the face detection module performs much better than many
commercial off-the-shelf software products for the IJB-A
dataset. For face verification, we train another DCNN
model using a large-scale face dataset, the CASIA-WebFace
[42]. Finally, we compare the performance of our method
with the one using manually annotated data and other com-
mercial off-the-shelf face matchers on the challenging IJB-
A dataset which contains significant variations in pose, il-
lumination, expression, resolution and occlusion. The per-
formance of our end-to-end system degrades only a little
as compared to the one that uses manually annotated data,
(i.e. face bounding boxes and 3 facial landmark annota-
tion, including left eye, right eye, and the nose base.) thus
demonstrating the robustness of our system.

While performance evaluations of many face matchers
on the IJB-A data set are being carried out or have been
recently completed, these results are not publicly available
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yet. More importantly, to the best of our knowledge, these
matchers have been tested using manually annotated land-
mark points provided along with the IJB-A face data set.
The proposed system is fully automatic and thus presents
the performance of the end-to-end system for face verifica-
tion using the IJB-A data and protocol.

The rest of the paper is organized as follows. We briefly
review some related works in Section 2. Details of the dif-
ferent components of the our proposed end-to-end system
including face detection, face association, face alignment
and face verification based on convolutional neural network
are given in Section 3. Experimental results are presented
in Section 4. Finally, we conclude the paper in Section 5
with a brief summary and discussion.

2. Related Works
A typical automated face verification system consists of

the following blocks: (1) face detection and (2) face associ-
ation to localize the faces, (3) facial landmark detection to
align the faces, and (4) face verification to verify the subject
identity. Due to a large amount of published works in the
literature, in this section, we briefly review only the relevant
works for each component.

2.1. Face Preprocessing

Face Detection: The face detection method introduced by
Viola and Jones [40] uses the cascaded classifiers with the
Haar wavelet features to detect faces. Due to its simplicity,
this method can work in real-time. Zhu et al. [45] improved
the performance using the deformable part model (DPM)
framework which treats each facial landmark as a part and
using the HOG features to simultaneously perform face de-
tection, pose estimation and landmark localization. How-
ever, the key challenge in unconstrained face detection is
that features like Haar wavelets and HOG do not capture the
salient facial information at different poses and illumination
conditions. It has been shown in [18] that a deep CNN pre-
trained with the Imagenet dataset can be used as a meaning-
ful feature extractor for various vision tasks. Regions with
CNN (R-CNN) [29] computes regions-based deep features
and attains state-of-art face detection performance. In ad-
dition, since the deep pyramid [22] removes the fixed-scale
input dependency in deep CNNs, it makes it attractive to be
integrated with the DPM and further improves the detection
accuracy across scale [27].

Face Association: The video-based face verification
system [11] requires consistently-tracked faces to capture
the diverse pose and spatial-temporal information for anal-
ysis. In addition, there is usually more than one person
shown in the videos, and thus multiple face images from
different individuals should be correctly associated between
video frames. Several recent techniques achieve multiple
object tracking by modeling the motion context [43], track

management [20], and guided tracking using the confidence
map of the detector [4]. Roth et al. [30] proposed to adapt
the framework of multiple object tracking to multiple face
tracking based on tracklet linking, and several face-specific
metrics and constraints have been introduced to enhance the
reliability of face tracking. A recent work in [13] proposed
to manage the track from the continuous face detection out-
put without relying on long-term observations. In uncon-
strained scenarios, the camera can be affected by abrupt
movements, which makes consistent tracking challenging.
Du et al. proposed a conditional random field (CRF) frame-
work to associate faces in two consecutive frames by uti-
lizing the affinity of facial features, location, motion, and
clothing appearance [19].

Facial Landmark Detection: Facial landmark detection
is an important component for a face verification system to
align the faces into canonical coordinates and to improve
the performance of the verification algorithms. Pioneering
works such as Active Appearance Models (AAM) [14] and
Active Shape Models (ASM) [15] are built using PCA con-
straints on appearance and shape. In [16], Cristinacce et al.
generalized the ASM model to a Constrained Local Model
(CLM), in which every landmark has a shape constrained
descriptor to capture the appearance. Zhu et al. [45] used
a part-based model for face detection, pose estimation and
landmark localization assuming the face shape to be a tree
structure. Asthana et al. [2] combined the discriminative
response map fitting with CLM. In general, these meth-
ods learn a model that directly maps image appearance to
the target output. Nevertheless, the performances of these
methods depend on the robustness of local descriptors. As
in [26], the deep features are shown to be robust to different
challenging variations. Sun et al. [35] proposed a cascade
of carefully designed CNNs in which at each level outputs
of multiple networks are fused for landmark estimation and
achieve good performance. Unlike [35], we use a single
CNN carefully designed to provide a unique key-point de-
scriptor and achieve better performance.

2.2. Face Verification

Feature Learning: Learning invariant and discriminative
feature representation is the first step for a face verification
system. Ahonen et al. [1] showed that the Local Binary
Pattern (LBP) is effective for face recognition. Chen et al.
[8] demonstrated good results for face verification using the
high-dimensional multi-scale LBP features extracted from
patches around facial landmarks. However, recent advances
in deep learning methods have shown that compact and
discriminative representation can be learned using DCNN
from very large datasets. Taigman et al. [39] learned a
DCNN model on the frontalized faces generated with a gen-
eral 3D shape model from a large-scale face dataset and
achieved better performance than many traditional meth-
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Figure 1. An overview of the proposed end-to-end DCNN-based face verification system.

ods. Sun et al. [36] achieved results that surpass human
performance for face verification on the LFW dataset using
an ensemble of 25 simple DCNN with fewer layers trained
on weakly aligned face images from a much smaller dataset
than [39]. Schroff et al. [31] adapted the state-of-the-art
deep architecture in object recognition to face recognition
and trained on a large-scale unaligned private face dataset
with the triplet loss. These works essentially demonstrate
the effectiveness of the DCNN model for feature learning
and detection/recognition/verification problems.

Metric Learning: Learning a similarity measure from
data is the other key component to improve the performance
of a face verification system. Many approaches have been
proposed in the literature that essentially exploit the label
information from face images or face pairs. Taigman et al.
[38] learned the Mahalanobis distance using the Informa-
tion Theoretic Metric Learning (ITML) method [17]. Chen
et al. [7] proposed a joint Bayesian approach for face veri-
fication which models the joint distribution of a pair of face
images and uses the ratio of between-class and within-class
probabilities as the similarity measure.

3. Proposed Approach
The proposed system is a complete pipeline for an auto-

matic face verification system. We first perform face detec-
tion to localize faces in each image and video frame. Then,
we associate the detected faces with the common identity
across the videos and align the faces into canonical coor-
dinates using the detected landmarks. We finally perform

face verification to compute the similarity between a pair of
images/videos. The system is illustrated in Figure 1. The
details of each component are presented in the following
sections.

3.1. Face Detection

All the faces in the images/video frames are detected
with a DCNN-based face detector, called Deep Pyramid De-
formable Parts Model for Face Detection (DP2MFD) [27],
which consists of two modules. The first one generates a
seven level normalized deep feature pyramid for any in-
put image of arbitrary size as illustrated in the first part of
Figure 1 (i.e. the same CNN architecture as Alexnet[26]
is adopted to extract the deep features). This image pyra-
mid network generates a pyramid of 256 feature maps at
the fifth convolution layer (conv5). A 3× 3 max filter is ap-
plied to the feature pyramid at a stride of one to obtain the
max5 layer. The activations at each level are further normal-
ized in the (norm5) layer to remove the bias from face size.
Fixed-length features from each location in the pyramid are
extracted using the sliding window approach. The second
module is a linear SVM which takes these features as in-
put to classify each location as face or non-face, based on
their scores. In addition, the deep pyramid features are ro-
bust to not only pose and illumination variations but also to
different scales. As shown in Figure 2, the DP2MFD algo-
rithm works well in unconstrained settings. We present the
face detection performance results under the face detection
protocol of the IJB-A dataset in Section 4.



Figure 2. Sample detection results on an IJB-A image using the
deep pyramid method.

3.2. Face Association

Since there are multiple subjects appearing in the frames
of each video of the IJB-A dataset, to perform face asso-
ciation to assign each face to its corresponding subject is
an important step for us to pick the right subject for face
verification. Thus, once the faces in the images and video
frames are detected, we perform multiple face tracking by
integrating results from the face detector, face tracker, and
tracklet linking. The second part of the Figure 1 shows the
block diagram of the multiple face tracking system. We ap-
ply the face detection algorithm in every fifth frame using
the face detection method presented in Section 3.1. A de-
tected bounding box is considered as a novel detection if
it does not have an overlap ratio with any bounding box in
the previous frames larger than γ. The overlap ratio of a
detected bounding box bd and a bounding box btr in the
previous frames is defined as

s(bd,btr) =
area(bd ∩ btr)

area(btr)
. (1)

We empirically set the overlap threshold γ to 0.2. A face
tracker is created from a detection bounding box that is
treated as novel detection. For face tracking, we use the
Kanade-Lucas-Tomasi (KLT) feature tracker [32] to track
the faces between two consecutive frames. To avoid the po-
tential drifting of trackers, we update the bounding boxes of
tracker by those provided by the face detector in every five
frames. The detection bounding box bd replaces the track-
ing bounding boxes btr of a tracklet in the previous frame
if s(bd,btr) ≤ γ. A face tracker is terminated if there is no
corresponding face detection overlapping with it for more
than t frames, and we empirically set t to 4.

In order to handle the fragmented face tracks resulting
from occlusions or unreliable face detection, we use the
tracklet linking method proposed by [3] to associate the
bounding boxes in the current frames with tracklets in the
previous frames. The tracklet linking method consists of
two stages. The first stage is to associate the bounding
boxes provided by tracking or detection in current frames
with the existing tracklet in previous frames. This stage
consists of local and global associations. The local asso-
ciation step associates the bounding boxes with the set of

Figure 3. Sample results of our face association method for videos.

tracklets, which have high confidence. The global associa-
tion step associates the remaining bounding boxes with the
set of tracklets of low confidence. The second stage is to
update the confidence of the tracklets, which will be used
for determining the tracklets for local or global association
in the first stage. We show sample face association results
for videos in Figure 3.

3.3. Facial Landmark Detection

Once the faces are detected, we perform facial landmark
detection for face alignment. The proposed facial landmark
detection algorithm works in two stages. We model the task
as a regression problem, where beginning with the initial
mean shape, the target shape is reached through regression.
The first step is to perform feature extraction of a patch
around a point of the shape followed by linear regression
as described in [28][5]. Given a bounding box detected by
the face detection method described in Section 3.1, we first
initialize a mean shape over the face. The CNN features
carefully designed with the proper number of strides and
pooling are used as the features to perform regression. We
use the same CNN architecture as Alexnet [26] with the pre-
trained weights for the ImageNet dataset. In addition, we
finetune the CNN with the face detection task. This helps
the network to learn features specific to faces. Furthermore,
we adopt the cascade regression, in which the output gener-
ated by the first stage is used as an input for the next stage.
We use 5 stages for our system. The patches selected for
feature extraction are reduced subsequently in later stages
to improve the localization of facial landmarks. After the
facial landmark detection is completed, each face is aligned
into the canonical coordinate with similarity transform us-
ing the 7 landmark points (i.e. two left eye corners, two
right eye corners, nose tip, and two mouth corners). After
alignment, the face image resolution is 100 × 100 pixels.
Sample detected landmarks results are shown in Figure 4.

3.4. Face Verification
Deep Face Feature Representation: Stacking small fil-

ters to approximate large filters and building very deep con-
volutional networks reduces the number of parameters but
also increase the nonlinearity of the network in [34][37].
In addition, the resulting feature representation is compact



Figure 4. Sample facial landmark detection results.

and discriminative. Therefore, we use the same network
architecture presented in [9] and train it using the CASIA-
WebFace dataset [42]. The dimensionality of the input layer
is 100 × 100 × 1 for gray-scale images. The network in-
cludes 10 convolutional layers, 5 pooling layers and 1 fully
connected layer. Each convolutional layer is followed by a
parametric rectified linear unit (PReLU)[24] except the last
one, Conv52. Moreover, two local normalization layers are
added after Conv12 and Conv22, respectively to mitigate
the effect of illumination variations. The kernel size of all
filters are 3×3. The first four pooling layers use the max op-
erator, and the average pooling for the last layer, pool5. The
feature dimensionality of pool5 is thus equal to the num-
ber of channel of Conv52 which is 320. The dropout ratio
is set as 0.4 to regularize Fc6 due to the large number of
parameters (i.e. 320 × 10548.). The pool5 feature is used
for face representation. The extracted features are further
L2-normalized into unit length before the metric learning
stage. If there are multiple images and frames available for
the subject template, we use the average of the pool5 fea-
tures as the overall feature representation.

Joint Bayesian Metric Learning: To leverage the posi-
tive and negative label information available from the train-
ing dataset, we learn a joint Bayesian metric which has
demonstrated good performances on face verification prob-
lems [7][6]. It models the joint distribution of feature vec-
tors of both ith and jth images, {xi,xj}, as a Gaussian.
Let P (xi,xj |HI) ∼ N(0,ΣI) when xi and xj belong to
the same class, and P (xi,xj |HE) ∼ N(0,ΣE) when they
are from different classes. Moreover, each face vector is
modeled as, x = µ + ε, where µ is for the identity and
ε for pose, illumination, and other variations. Both µ and
ε are assumed to be independent zero-mean Gaussian dis-
tributions, N(0,Sµ) and N(0,Sε), respectively. The log
likelihood ratio of intra- and inter-classes, r(xi,xj), can be
computed as follows:

r(xi,xj) = log
P (xi,xj |HI)

P (xi,xj |HE)
= xT

i Mxi+xT
j Mxj−2xT

i Rxj ,

(2)
where M and R are both negative semi-definite matrices.
Equation (2) can be rewritten as (xi − xj)

TM(xi − xj)−
2xTi Bxj where B = R −M. More details can be found
in [7]. Instead of using the EM algorithm to estimate Sµ
and Sε, we use a large-margin framework to optimize the
distance as follows:

argmin
M,B,b

∑
i,j

max[1−yij(b−(xi−xj)
TM(xi−xj)+2xT

i Bxj), 0],

(3)

where b ∈ R is the threshold, and yij is the label of a pair:
yij = 1 if person i and j are the same and yij = −1,
otherwise. For simplicity, we denote (xi − xj)

TM(xi −
xj)− 2xTi Bxj as dM,B(xi,xj). M and B are updated us-
ing stochastic gradient descent as follows and are equally
trained on positive and negative pairs in turn:

Mt+1 =

{
Mt, if yij(bt − dM,B(xi,xj)) > 1
Mt − γyijΓij , otherwise,

Bt+1 =

{
Bt, if yij(bt − dM,B(xi,xj)) > 1
Bt + 2γyijxix

T
j , otherwise,

bt+1 =

{
bt, if yij(bt − dM,B(xi,xj)) > 1
bt + γbyij , otherwise,

(4)
where Γij = (xi − xj)(xi − xj)

T and γ is the learning
rate for M and B, and γb for the bias b. We use random
semi-definite matrices to initialize both M = VVT and
B = WWT where both V and W ∈ Rd×d, and vij and
wij ∼ N(0, 1). In addition, M and B are updated only
when the constraints are violated. In our implementation,
the ratio of the positive and negative pairs that we generate
based on the identity information of the training set is 1:20.
Furthermore, the other reason to train the metric instead of
using traditional EM is that for IJB-A training and test data,
some templates only contain a single image. More details
about the IJB-A dataset are given in Section 4.

4. Experimental Results

In this section, we present the results of the proposed
automatic system for both face detection and face verifica-
tion tasks on the challenging IARPA Janus Benchmark A
(IJB-A) [25], and its extended version Janus Challenging
set 2 (JANUS CS2) dataset. The JANUS CS2 dataset con-
tains not only the sampled frames and images in the IJB-
A but also the original videos. In addition, the JANUS
CS2 dataset1 includes much more test data for identifi-
cation and verification problems in the defined protocols
than the IJB-A dataset. The receiver operating character-
istic curves (ROC) and the cumulative match characteris-
tic (CMC) scores are used to evaluate the performance of
different algorithms for face verification. The ROC curve
measures the performance in the verification scenarios, and
the CMC score measures the accuracy in a closed set iden-
tification scenarios.

4.1. Face Detection on IJB-A

The IJB-A dataset contains images and sampled video
frames from 500 subjects collected from online media [25],
[12]. For the face detection task, there are 67,183 faces of
which 13,741 are from images and the remaining are from

1The JANUS CS2 dataset is not publicly available yet.
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Figure 5. Face detection performance evaluation on the IJB-A dataset. (a) Precision vs. recall curves. (b) ROC curves.

videos. The locations of all faces in the IJB-A dataset were
manually annotated. The subjects were captured so that the
dataset contains wide geographic distribution. Nine differ-
ent face detection algorithms were evaluated on the IJB-A
dataset [12], and the algorithms compared in [12] include
one commercial off the shelf (COTS) algorithm, three gov-
ernment off the shelf (GOTS) algorithms, two open source
face detection algorithms (OpenCVs Viola Jones and the
detector provided in the Dlib library), and PittPat ver 4 and
5. In Figure 5, we show the precision-recall (PR) curves and
the ROC curves, respectively corresponding to the method
used in our work and one of the best reported methods in
[12]. From the results, the face detection algorithm used
in our system outperforms the best performing method re-
ported in [12] by a large margin.

4.2. Face verification on IJB-A and JANUS CS2

For the face verification task, both IJB-A and JANUS
CS2 datasets contain 500 subjects with 5,397 images and
2,042 videos split into 20,412 frames, 11.4 images and 4.2
videos per subject. Sample images and video frames from
the datasets are shown in Figure 6. The videos are only
released for the JANUS CS2 dataset. The IJB-A evalua-
tion protocol consists of verification (1:1 matching) over
10 splits. Each split contains around 11,748 pairs of tem-
plates (1,756 positive and 9,992 negative pairs) on average.
Similarly, the identification (1:N search) protocol also con-
sists of 10 splits which evaluates the search performance.
In each search split, there are about 112 gallery templates
and 1763 probe templates (i.e. 1,187 genuine probe tem-
plates and 576 impostor probe templates). On the other
hand, for the JANUS CS2, there are about 167 gallery tem-
plates and 1763 probe templates and all of them are used
for both identification and verification. The training set for
both dataset contains 333 subjects, and the test set contains
167 subjects. Ten random splits of training and testing are
provided by each benchmark, respectively. The main differ-
ences between IJB-A and JANUS CS2 evaluation protocols

are (1) IJB-A considers the open-set identification problem
and the JANUS CS2 considers the closed-set identification
and (2) IJB-A considers the more difficult pairs which are
the subsets from the JANUS CS2 dataset.

Figure 6. Sample images and frames from the IJB-A and JANUS
CS2 datasets. A variety of challenging variations on pose, illu-
mination, resolution, occlusion, and image quality are present in
these images.

Both the IJB-A and the JANUS CS2 datasets are divided
into training and test sets. For the test sets of both bench-
marks, the image and video frames of each subject are ran-
domly split into gallery and probe sets without any over-
lapping subjects between them. Unlike the LFW and YTF
datasets which only use a sparse set of negative pairs to eval-
uate the verification performance, the IJB-A and JANUS
CS2 both divide the images/video frames into gallery and
probe sets so that it uses all the available positive and neg-
ative pairs for the evaluation. Also, each gallery and probe
set consist of multiple templates. Each template contains
a combination of images or frames sampled from multiple
image sets or videos of a subject. For example, the size of
the similarity matrix for JANUS CS2 split1 is 167 × 1806
where 167 are for the gallery set and 1806 for the probe set
(i.e. the same subject reappears multiple times in different
probe templates). Moreover, some templates contain only
one profile face with challenging pose with low quality im-
age. In contrast to the LFW and YTF datasets which only
include faces detected by the Viola Jones face detector [40],
the images in the IJB-A and JANUS CS2 contain extreme
pose, illumination and expression variations. These factors
essentially make the IJB-A and JANUS CS2 challenging



face recognition datasets [25].

4.3. Evaluation on JANUS-CS2 and IJB-A

We compares the results generated by the proposed auto-
matic system to those generated by the same DCNN model
trained and tested using the manual annotated bounding
boxes and facial landmarks of the dataset. We replace the
video frames defined in the protocols for both JANUS CS2
and IJB-A of each template with our associated faces and
use only one bounding box in the metadata to select the
subject. For the images, we use our face detection boxes
which have the largest overlapping boxes with the ones de-
fined in the metadata for the images. We have made the
best efforts using as few metadata as possible for a fair com-
parison. In addition, we also compare the results with the
FV approach proposed in [33] and two other commercial
off-the-shelf matchers, COTS1 and GOTS [25] which are
tested with the manual annotated data as well. The COTS1
and GOTS baselines provided by JANUS CS2 are the top
performers from the most recent NIST FRVT study [23].
The FV method is trained on the LFW dataset which con-
tains few faces with the extreme pose. Therefore, we use the
pose information estimated from the landmark detector and
select face images/video frames whose yaw angle are less
than or equal to±25 degrees for each gallery and probe set.
If there are no images/frames satisfying the constraint, we
choose the one closest to the frontal one. However, for the
DCNN method, we use all the frames without applying the
same selection strategy.

We show the ROC and CMC scores generated by the
proposed end-to-end system for the IJB-A dataset in Ta-
ble 1 and compare with a recent work [41] that uses the
fused features from a 7-DCNN model. Figure 7 shows
the ROC curves and the CMC curves for the JANUS CS2
dataset, respectively for verification and identification pro-
tocols. Their corresponding scores are summarized in Ta-
ble 2. DCNNmanual computes the similarity scores using
cosine distance on the DCNN features which is finetuned
and tested on the IJB-A and JANUS CS2 training and test
data with manual annotation. Metric stands for applying
the learned metric to compute the similarity. DCNNauto
means performing all the finetuning, metric learning, and
testing steps using the data processed with our own face pre-
processing components. From the ROC and CMC curves,
we see that the DCNN method performs better than other
competitive methods. This can be attributed to the fact that
the DCNN model does capture face variations over a large
dataset and generalizes well to a new small dataset. In ad-
dition, the performance of the proposed automatic system
only degrades a little as compared to the one using the man-
ual annotations. This demonstrates the robustness of each
component of our system. After metric learning, we can
see a slight performance degradation for the retrieval rate

of the identification experiments. This may be due to the
fact that the positive and negative pairs are uniformly and
randomly selected. A quick solution would be to perform
hard negative mining to make the learned metric ensure the
similarity scores for all the hard imposters to be small. We
will consider this in the near future.

4.4. Run Time

The DCNN model for face verification is pretrained on
the CASIA-Webface dataset for about 7 days using NVidia
Titan X. The running time for face detection is around 0.7
second per image. The facial landmark detection and fea-
ture extraction steps take about 1 second and 0.006 second
per face, respectively. The face association module for a
video takes around 5 fps on average.

5. Conclusion
We presented the performance of our automatic face ver-

ification system which automatically locates faces and per-
forms verification/recognition on newly released challeng-
ing face verification datasets, IARPA Benchmark A (IJB-
A) and its extended version, JANUS CS2. It was shown
that our proposed DCNN-based system can not only accu-
rately locate the faces across images and videos but also
learn a robust model for face verification. Experimental re-
sults demonstrate that the performance of the proposed sys-
tem on the IJB-A dataset is much better than a FV-based
method and some COTS and GOTS matchers.

We plan to integrate the components of our face verifi-
cation system into one which performs all the tasks simul-
taneously with a multi-task formulation and train the deep
convolutional neural network once instead of training each
task separately.
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