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Abstract

Recent developments in deep convolutional neural networks (DCNNs) have shown impressive performance

improvements on various object detection/recognition problems. This has been made possible due to the availability

of large annotated data, a better understanding of the non-linear mapping between images and class labels as well

as the affordability of powerful GPUs. These developments in deep learning have also improved the capabilities of

machines in understanding faces and automatically executing the tasks of face detection, pose estimation, landmark

localization, and face recognition from unconstrained images and videos. In this paper, we provide an overview of

deep learning methods used for face recognition. We discuss different modules involved in designing an automatic

face recognition system and the role of deep learning for each of them. Some open issues regarding DCNNs for

face recognition problems are then discussed. The paper should prove valuable to scientists, engineers and end users

working in the fields of face recognition, security, visual surveillance, and biometrics.

I. INTRODUCTION: WHAT WE CAN LEARN FROM FACES

Facial analytics is a challenging problem in computer vision and has been actively researched for over two decades

[1]. The goal is to extract as much information as possible, such as location, pose, gender, ID, age, emotion, etc

from a face. Applications of this technology include detecting and identifying a person of interest from surveillance

videos, active authentication of users’ cell phones, payment transactions using face biometrics, smart cars, etc. In

addition, there has been a growing interest in face recognition and verification from unconstrained images and

videos which also involve subtasks, such as face detection, facial landmark localization, etc. Sample outputs of a

typical facial analysis system [2] are shown in Figure 9.

In this paper, we present an overview of recent automatic face identification and verification systems based on deep

learning. Three modules are typically needed for such an automatic system. First, a face detector is applied to localize

faces in images or videos. For a robust system, the face detector should be capable of detecting faces with varying

pose, illumination and scale. Also, the locations and sizes of face bounding boxes should be precisely determined so

that they contain minimal amount of background. Second, a fiducial point detector is used to localize the important

facial landmarks such as eye centers, nose tip, mouth corners, etc. These points are used to align the faces to

normalized canonical coordinates to mitigate the effects of in-plane rotation and scaling. Third, a feature descriptor

that encodes the identity information is extracted from the aligned face. Given the face representations, similarity
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scores are then obtained between them using a metric. If this metric is lower than a threshold, it signifies that the two

faces are from the same subject. Since the early nineties, many face identification/verification algorithms have been

shown to work well on images and videos that are collected in controlled settings. However, the performance of these

algorithms often degrades significantly on face images or videos that have large variations in pose, illumination,

resolution, expression, aging, background clutter and occlusion (see Figure 6). Moreover, for the application of

video surveillance where a subject needs to be identified from hundreds of low resolution videos, the algorithm

should be fast and robust.

To overcome these challenges, researchers have employed deep learning for computing the features required for

facial analysis. Deep convolutional neural networks (DCNNs) have been shown to be effective for image analysis

tasks from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 [3]. Over the last five years,

DCNNs have been used for solving numerous computer vision problems such as object recognition [3]–[5], object

detection [6]–[8], etc. A typical DCNN is a hierarchy of convolutional layers with Rectified Linear Unit (ReLU)

activation function, consisting of millions of trainable parameters. Owing to the learned rich and discriminative

representations, DCNNs have recently been successfully applied for face detection [2], [9], [10], fiducial point

localization [2], [10], [11] and face recognition and verification [12]. A key contributing factor to this exceptional

performance is the availability of large amount of annotated unconstrained face datasets like CASIA-WebFace [13],

MegaFace [14], [15], MS-Celeb-1M [16], and VGGFace [17] for the face recognition task, and WIDER FACE [18]

for the face detection task. The large amount of training data represents significant variations in pose, illumination,

expression and occlusion which enables the DCNNs to be robust to these variations and extract meaningful features

required for the task.

The main goal of this paper is to present an overview of recently developed DCNN-based methods for designing

an automatic face recognition system, discuss their advantages and disadvantages, and identify interesting open

problems. The rest of the paper is organized as follows. In the following sections, we will first discuss recent

developments in: (1) face detection (Section II), (2) fiducial point detection (Section III), (3) face recognition

(Section IV), (4) facial attributes for face recognition (Section V). In (Section VI), we will discuss various multi-

task learning approaches for face analytics. Finally, in Section VII, we will discuss some open issues in designing

a robust face recognition system using deep features and conclude in Section VIII.

II. FACE DETECTION IN UNCONSTRAINED IMAGES

Face detection plays a crucial role in a face recognition pipeline and forms the first step in an automatic face

recognition system. Given an input image, a face detector needs to detect all the faces in the image and return

bounding-box coordinates for each of them. The key challenge in unconstrained face detection is that traditional

features like Haar wavelets and histogram of oriented gradient (HOG) do not capture salient facial information

at different resolution, view-point, illumination, expression, skin color, occlusions, and cosmetics conditions. The

limitation is more due to the features used than the classifiers. However, with recent advances in deep learning

techniques and the availability of GPUs, it is becoming possible to use DCNNs for feature extraction. It has been

shown in [3] that a DCNN pretrained with a large generic dataset can be used as a meaningful feature extractor. The
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deep features thus obtained have been used extensively for object and face detection. The DCNN-based methods for

face detection can be divided into two sub-categories: 1) region-based approach, and 2) sliding window approach.

A. Region-based

The region-based approach generates a pool of generic object-proposals (around 2000 per image), and a DCNN

is used to classify whether a given proposal contains a face or not. Most DCNN-based approaches are proposal-

based [2], [10], [19]. A general pipeline for region-based face detectors consists of off-the-shelf object proposal

generators like Selective Search [20], followed by a DCNN that classifies these proposals as face/non-face. Hyper-

Face [10] and All-In-One Face [2] follow this pipeline for face detection.

Faster R-CNN: A more recent face detector using Faster R-CNN [19] uses a common DCNN to generate the

proposals and classify faces. It can also simultaneously regress the bounding-box coordinates for each face proposal.

Li et al. [21] proposed a multi-task face detector using the framework of faster R-CNN which integrates a DCNN

and a 3D mean face model. The 3D mean face model is used to improve the performance of fiducial detection of

region proposal network (RPN) which greatly helps face proposal pruning and refinement after face normalization.

Similarly, Chen et al. [22] proposed a face detector by training a multi-task RPN for face and fiducial detections

to generate high quality face proposals while reducing the redundant ones to strike a balance between high recall

and precision. The face proposals are then normalized by the detected fiducial points and refined using a DCNN

face classifier for improved performance. Recently, Najibi et al. proposed the Single Stage Headless face detector

(SSH) [23] which uses RPN on VGG-16 [24] network without the fully connected layers.

A major drawback of region-based face detectors is that difficult faces are hard to be captured in any object

proposal which results in a low recall. Also, the additional proposal generation task increases the overall computation

time.

B. Sliding Window-based

The sliding window-based method computes a face detection score and bounding box co-ordinates at every

location in a feature map at a given scale. This procedure is fast compared to region-based methods and can be

implemented using just a convolution operation which works in a sliding window fashion. Detections at different

scales are typically carried out by creating an image pyramid at multiple scales. DCNN-based face detectors

built using the sliding window technique include DP2MFD [9] and DDFD [25]. Faceness [26] produces face-part

responses along with full face response, and combines them based on their spatial configuration to determine the final

face score. Li et al. [27] proposed a cascade architecture based on DCNNs which operates at multiple resolutions,

quickly rejects background objects at low-resolution stages, and only evaluates a small number of challenging

candidates at high-resolution stages.

Single Shot Detector: Liu et al. [8] proposed the SSD (Single Shot Detector) for the task of object detection. SSD

is a sliding window-based detector, but instead of creating image pyramid at different scales, it utilizes the inbuilt

pyramid structure present in DCNNs. Features are pooled from the intermediate layers of DCNN at different scales
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which are used for object classification and bounding-box regression. Since, the detections are obtained in a single

forward pass of the network, the overall computation time of SSD is lower than Faster R-CNN [19]. Few SSD-based

face detectors have been proposed recently. Yang et al. proposed ScaleFace [28] to detect faces of different scales

from multiple layers of the network and fuse them in the end. Zhang et al. proposed S3FD [29] which uses a

scale-equitable framework and scale compensation anchor matching strategy for improved detection of small faces.

Figure. 1 shows the architectures for the above-mentioned approaches.

Fig. 1. A typical DCNN-based face detector using region-proposal approach (top) and sliding window approach (bottom).

The availability of large training datasets for unconstrained face detection has also contributed significantly to the

success of DCNN-based face detectors. FDDB [30] dataset is the most widely used benchmark for unconstrained

face detection. It consists of 2, 845 images containing a total of 5, 171 faces collected from news articles on the

Yahoo website. MALF [31] dataset consists of 5, 250 high-resolution images containing a total of 11, 931 faces.

The images were collected from Flickr and image search service provided by Baidu Inc. These datasets contain

faces in unconstrained settings with large variations in occlusion, pose and illumination.

The WIDER Face [18] dataset contains a total of 32, 203 images, with 50% samples for training and 10% for

validation. This dataset contains faces with large variations in pose, illumination, occlusion and scale. Face detectors

trained on this dataset have achieved improved performance [19], [23], [28], [29], [32], [33]. The evaluation results

for this dataset reveal that finding small faces in the crowd is still challenging. A recent method proposed by Hu et

al. [33] shows that contextual information is necessary for detecting tiny faces. It captures semantics from lower

level features and context from higher level features of a DCNN to detect tiny faces (see Figure 2). Due to space

limitations, we are unable to discuss more traditional face detection methods. We refer the interested readers to [34]

for more detailed discussions of traditional cascade-based and DPM-based methods. In addition, for videos with

multiple faces, one also needs to perform face associations to extract face tracks of each subject. We also refer the

readers to [12] for a discussion on the role of face association in video-based face recognition. Fig. 3(a) provides

a comparative performance evaluation of different face detectors on the FDDB [30] dataset.
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Fig. 2. HR [33] face detector output. The algorithm is able to detect very small faces by making use of novel characterizations of scale,

resolution, and context. Detector confidence is given by the color bar on the right.

III. FINDING CRUCIAL FACIAL KEYPOINTS AND HEAD ORIENTATION

Facial keypoint detection is also an important pre-processing component for face recognition and verification

tasks. Facial keypoints such as eye centers, nose tip, mouth corners, etc. can be used to align the face into canonical

coordinates, and such face normalization helps face recognition [35] and attribute detection. Head-pose estimation

is required for pose-based face analysis. Both these problems have been researched extensively over the last few

years. Most of the existing facial keypoint localization algorithms use either a model-based approach or a cascaded

regression-based approach. Wang et al. [36] provides a comprehensive survey of traditional model-based methods,

including active appearance model (AAM), active shape model (ASM), constrained local model (CLM), and some

regression methods, such as supervised descent method (SDM). Chrysos et al. [37] also summarizes fiducial point

tracking across videos using traditional fiducial detection methods. We refer the interested readers to these works

for more details. In this paper, we summarize recently developed fiducial detection methods based on DCNNs.

(a) (b)

Fig. 3. (a) ROC curves for different face detection methods on FDDB dataset. (b) Landmarks localization evaluation on AFW dataset using

the protocol described in [38] for recently published methods such as CCL [38], HyperFace [10], All-In-One Face [2], LBF [39], SDM [40],

ERT [41] and RCPR [42]. The numbers in the legend are the fraction of faces having normalized mean error less than 5%.
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A. Model-based

Model-based approaches, such as AAM, ASM, and CLM, learn a shape model during training and use it to fit

new faces during testing. Recently, Antonakos et al. [43] proposed a method by modeling the appearance of the

object using multiple graph-based pairwise normal distributions (Gaussian Markov Random Field) between patches

extracted from the regions. However, the learned models lack the power to capture complex face image variations

in pose, expression and illumination. Also, they are sensitive to the initialization in gradient descent optimization.

Besides 2D shape, face alignment methods based on 3D models have been recently developed. PIFA [44] by

Jourabloo et al. suggested a 3D approach that employed cascaded regression to predict the coefficients of 3D to 2D

projection matrix and the base shape coefficients. Another recent work from Jourabloo et al. [45] formulated the

face alignment problem as a dense 3D model fitting problem, where the camera projection matrix and 3D shape

parameters were estimated by a cascade of DCNN-based regressors. 3DDFA [46] by Zhu et al. fitted a dense 3D

face model to the image via DCNN, where the depth data is modeled in a Z-Buffer.

B. Cascaded Regression-based

Since face alignment is naturally a regression problem, a multitude of regression-based approaches has been

proposed in recent years. In general, these methods learn a model that directly maps the image appearance to the

target output. Nevertheless, the performance of these methods depends on the robustness of local descriptors. Sun

et al. [47] proposed a cascade of carefully designed DCNNs, in which at each level, outputs of multiple networks

are fused for landmark estimation and achieve good performance. Zhang et al. [48] proposed a coarse-to-fine auto-

encoder networks approach, which cascades several successive stacked auto-encoder networks (SAN). The first few

SANs predict the rough location of each facial landmark, and subsequent SANs progressively refine the landmarks

by taking as input the local features extracted around the detected landmarks at the current stage with higher

resolution. Kumar et al. [11] used a single DCNN, carefully designed to provide a unique key-point descriptor

and achieved better performance (see Fig. 4). Xiong et al. [49] suggested domain dependent descent maps. Zhu

et al. [38] observed that optimizing the base shape coefficients and projection is indirect and sub-optimal since

smaller parameter errors are not necessarily equivalent to smaller alignment errors. Therefore, they proposed cascade

compositional learning (CCL) [38] to develop head pose-based and domain selective regressors by partitioning the

optimization domain into multiple directions based on head pose and combining the results of multiple domain

regressors through composition estimator function. Trigeorgis et al. [50] proposed a combined and jointly trained

convolutional recurrent neural network architecture that enables end-to-end training of the regressors jointly used

in the cascaded regression framework. It avoids training each regressor independently and cancelling of the descent

direction of the regressors. Bulat et al. [51] proposed a DCNN architecture which first performs facial part detection

by using a score map generated from the DCNN features of the first few layers to roughly localize each facial

landmark and then followed by a regression branch to refine the detection results. Therefore, the algorithm is not

sensitive to the quality of detected face bounding boxes, and the system can be trained end-to-end. Kumar et al. [52]

also proposed an effective iterative method for keypoint estimation and pose prediction of unconstrained faces by
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learning efficient heatmap-based DCNN regressors for the face alignment problem where the heatmaps provide a

probability value, indicating the existence of a certain joint at a specific location.

On the other hand, since different datasets provide different facial landmark annotations, 300 Faces In-the-Wild

database (300W) [53] has been developed as a benchmark for enabling a fair comparison among various fiducial

detection methods, and it contains more than 12,000 images annotated with 68 landmarks including LFPW [36],

Helen [36], AFW [36], Ibug [36] and 600 test images. (i.e., 300 indoors and 300 outdoors.)
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Fig. 4. Model diagram of regression-based keypoint estimation method using DCNNs [11]

Besides using a 2D transformation for face alignment, Hassner et al. [54] proposed an effective method to

frontalize faces with the help of a generic 3D face model. However, the effectiveness of the method also highly

relies on the quality of the detected facial landmarks (i.e., the method usually introduces undesirable artifacts when

the quality of facial landmarks is poor). In addition, quite a few methods have been developed for multi-task

learning (MTL) approaches for face detection which involve simultaneous training of face detection task along with

a correlated task such as facial keypoint estimation. MTL helps the network to build a synergy and learn robust

features since the network is aided by additional supervision. For instance, information about eye centers, nose tip,

etc. obtained from the keypoints can help the network determine the structure of the face. Zhang et al. [32], Chen et

al. [22], Li et al. [21], and HyperFace [10] train the face detection network along with the keypoint estimation task,

and All-In-One Face [2] extends the MTL approach to additional tasks such as face verification, gender, smile and

age estimation. Section VI discusses recent advances in MTL for face analytics. Fig. 3(b) provides a comparative

performance evaluation of different algorithms for the task of facial keypoints estimation on the AFW [55] dataset.

IV. FACE IDENTIFICATION AND VERIFICATION

In this Section, we review the relevant works on face identification and verification. In Figure 5, we illustrate

a general pipeline for training and testing a face identification/verification system using deep convolutional neural

networks. There are two major components for face identification/verification: (1) robust face representation and (2)

discriminative classification model (face identification) or similarity measure (face verification). Since we focus on
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deep learning-based approaches, we refer the interested readers to [56] which summarizes traditional approaches,

including local binary pattern (LBP) and Fisher vector (FV), and metric learning, such as one-shot similarity kernel

(OSS), Mahalanobis metric learning, cosine metric learning, large margin nearest neighbor (LMNN), attribute-based

classifier, and joint Bayesian (JB).

A. Robust Feature Learning for Faces using Deep Learning

Learning invariant and discriminative feature representations is a critical step in a face recognition system. Deep

learning methods have shown that compact and discriminative representations can be learned using a DCNN trained

with very large datasets. We first review some important face recognition works using deep learning followed by

a brief summary of recent methods for feature representation learning.

Instead of relying on hand-crafted features such as the popular face descriptor LBP, Huang et al. [57] proposed

to learn the face representation using convolutional deep belief networks based on local convolutional restricted

Boltzmann machines which first learns useful representation in an unsupervised manner from an unlabeled natural

image dataset containing images of natural scenes and then transfers the learned representation to face identifi-

cation/verification task through classification models (e.g. SVM) and metric learning approaches (e.g. OSS). The

approach achieved satisfactory results on the LFW dataset without using large-scale annotated face datasets.

One of the earlier large scale applications of 3D model based alignment along with DCNNs for face recognition

was proposed by Taigman et al. in their DeepFace [58] approach. They derive a face representation using a nine-

layer deep neural network, that involves more than 120 million parameters and uses several locally connected layers

without weight sharing, rather than the standard convolutional layers. A proprietary face dataset that consists of

four million facial images belonging to more than 4,000 identities was used to train their system.

Since collecting a large-scale annotated dataset is costly, Sun et al. proposed DeepID frameworks [59]–[61] with

JB for face verification which utilized an ensemble of shallower and smaller deep convolutional networks (i.e. each

DCNN consists of four convolutional layers and use 39×31×1 patches as the input) than DeepFace and were trained

using 202,599 images of 10,177 subjects. The large number of distinct identities of the dataset and an ensemble

of DCNNs for different local and global face patches make DeepID learn discriminative and informative face

representation. The approach was the first to achieve results that surpass human performance for face verification

on the LFW dataset.

Schroff et al. proposed a CNN-based approach for face recognition called FaceNet [62] which directly optimizes

the embedding itself, rather than an intermediate bottleneck layer as in other deep learning approaches. In order to

train, they use triplets of roughly aligned matching / non-matching face patches generated using an online triplet

mining method. Their approach was trained on a large proprietary face dataset consisting of 100M-200M face

thumbnails consisting of about 8M different identities.

Yang et al. [13] collected a public large-scale annotated face dataset, CASIA-WebFace, which consists of 494,414

face images for 10,575 subjects collected from the IMDB website. They trained a DCNN with 5 million parameters.

The model followed with JB achieved satisfactory results on the LFW dataset. CASIA-WebFace is widely used to

train various DCNN models in the face recognition community.
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Parkhi et al. [17] also collected a public large-scale annotated face dataset, VGGFace, which consists of 2.6

million face images for 2.6 thousand subjects, and trained a DCNN based on the well-known VGGNet [24] for

object recognition, followed by triplet embedding for face verification. The trained DCNN model using VGGFace

achieves comparable results on both still-face (i.e. LFW) and video-face (i.e. YTF) datasets with other state-of-the-

art approaches using only a single model and a publicly available dataset. This demonstrates the usefulness of the

VGGFace dataset to face recognition community.

In a recent work, AbdAlmageed et al. [63] handle pose variations by training separate DCNN models for frontal,

half-profile and full-profile poses in order to improve face recognition performance in the wild. Furthermore, Masi

et al. [64] utilized 3D morphable models to augment the CASIA-WebFace dataset with large amounts of synthetic

faces to improve the recognition performance instead of collecting more data through crowdsourcing the annotation

tasks. Ding et. al. [65] proposed to fuse the deep features around facial landmarks from different layers followed

by a new triplet loss function which achieves state-of-the-art performance for video-based face recognition. Wen

et. al. [66] proposed a new loss function which takes the centroid for each class into consideration and uses it as a

regularization constraint to the softmax loss in addition to a residual neural network for learning more discriminative

face representation. Liu et al. [67] proposed a novel angular loss based on the modified softmax loss. It results in a

discriminative angular feature representation for faces which is optimized to the commonly used similarity metric,

cosine distance, and the model achieves recognition performance comparable to state-of-the-art methods that use

much smaller training dataset. Ranjan et al. [68] also trained with softmax loss regularized with scaled L2-norm

constraint on a subset of recently released MS-Celeb-1M face dataset. They show that the regularized loss optimizes

the angular margin between classes. The method achieves state-of-the-art results on the IJB-A dataset [69]. Besides

the commonly-used average aggregation for per-frame video face representation, Yang et al. proposed a neural

aggregated network (NAN) [70] to perform dynamically weighted aggregation on the features from multiple face

images or face frames of a face video to yield a succinct and robust representation for video face recognition.

The approach demonstrated state-of-the-art results on multiple image-set and video face datasets. Bodla et al. [71]

proposed a fusion network to combine face representations from two different DCNN models to improve the

recognition performance.

B. Discriminative Metric Learning for Faces

Learning a classifier or a similarity measure from data is another key component for improving the performance

of a face recognition system. Many approaches have been proposed in the literature that essentially exploit the

label information from face images or face pairs. Hu et al. [72] learned a discriminative metric within the deep

neural network framework. Schroff et al. [62] and Parkhi et al. [17] optimized the DCNN parameters based on

the triplet loss which directly embeds the DCNN features into a discriminative subspace and presented promising

results for face verification. In [73], a discriminant low-rank embedding is learned using a probabilistic model for

face verification and clustering. Song et al. [74] proposed a method to fully utilize the training data in a batch by

considering the full pairwise distances between samples.
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Besides supervised learning of DCNN for face recognition, Yang et al. [75] proposed learning deep representations

and image clusters jointly in a recurrent framework. Each image is treated as separate clusters at the beginning,

and a deep network is trained using this initial grouping. Deep representation and cluster members are then

iteratively refined until the number of clusters reached the predefined value. The unsupervised learned representation

has demonstrated promising results on various tasks, including face recognition, digit classification, etc. Zhang

et al. [76] proposed to cluster face images in videos by alternating between deep representation adaption and

clustering. Trigeorgis et al. [77] proposed a deep semi-supervised non-negative matrix factorization to learn hidden

representations that allow themselves to an interpretation of clustering according to different, unknown attributes

of a given face dataset, such as pose, emotion, and identity. Their method also demonstrates promising results

on challenging face datasets. On the other hand, Lin et al. [78] proposed an unsupervised clustering algorithm

that exploits the neighborhood structure between samples and implicitly performs domain adaptation to achieve

improved clustering performance. They also demonstrated an application of the clustering algorithm to curate a

large-scale noisy face dataset, such as MS-Celeb-1M [79].

C. Implementation

Face Recognition can be sub-divided into two tasks: 1) Face Verification, and 2) Face Identification. For the task

of face verification, given a pair of face images, the system needs to predict whether they belong to the same person

or not. For the task of face identification, given a face image with unknown identity, the system should determine

the subject’s identity by matching the features from the database.

For both these tasks, obtaining discriminative and robust identity features are important. For the task of face

verification, the faces are first localized by the face detector and normalized to the canonical coordinate through

similarity transform using the detected fiducial points. Then, each of the face images is passed through a DCNN to

obtain a feature representation. Once the features are obtained, a score measure is computed based on a similarity

metric. Most commonly used similarity metrics are: a) L2 distance between the face features, b) CosineSimilarity

which provides a measure of how close the features are in the angular space. One can also use multiple DCNNs for

improved performance by fusing the network features or the similarity scores such as DeepID framework [59]–[61]

or the fusion network [71] approach. For the task of face identification, the face images in the gallery are passed

through DCNN and the features for each identity are stored in the database. When a new face image is provided

to the system, it computes its feature representation, and a similarity score is obtained for each of the identities in

the gallery.

D. Training Datasets for Face Recognition

In Table I, we summarize the public datasets used for testing the algorithm performance and for training the

DCNN models on face recognition tasks. MS-Celeb-1M [79] is the current largest public face recognition dataset,

which contains over 10 million labeled face images of top 100,000 distinct identities from the 1 million celebrity

list with significant pose, illumination, occlusion, and other variations. Since this dataset also contains large amount



11

DCNN model

W, b

Metric  Learning

pos

neg

Compute 

Similarity

Training

DCNN model

Testing

Fig. 5. A general pipeline for training and testing a face verification system using DCNN.

of label noise, interested readers are referred to [78] for an example of dataset curation by applying subject

clustering. For other datasets, the CelebA dataset [80] is annotated with forty face attributes and five key points by

a professional labeling company for 202,599 face images of 10,000 subjects. The dataset can be used for training

face recognition, face attribute classification, and fiducial prediction models. The CASIA-WebFace [13] is also one

of popular public large-scale annotated datasets for face recognition which consists of 494,414 face images for

10,575 subjects collected from the IMDB website. The VGGFace [17] is another public dataset for training face

recognition algorithms and consists of 2.6 million face images for 2.6 thousand subjects. The MegaFace [14],

[15] is the dataset used to test the robustness of face recognition algorithms in the open-set setting with 1 million

distractors. There are two parts for the dataset where the first one allows to use any external training datasets, and

the other provides 4.7 million face images of 672 thousand subjects. The LFW [81] dataset contains 13,233 face

images of 5,749 subjects from the Internet where 1,680 subjects have two or more images. The dataset is mainly

used to evaluate the performance of the still face recognition algorithms and most of the faces are frontal. The

IJB-A [69] dataset contains 500 subjects with 5,397 images and 2,042 videos splitting into 20,412 frames. The

dataset is designed to test the robustness of the algorithms under large pose, illumination, and image/video frame

quality variations in the mixed-media setting (i.e. each gallery and probe set consists of one or more images and

video frames). The YTF [82] dataset contains 3,425 videos of 1,595 different subject and is the standard dataset

used to evaluate video-face recognition algorithms. The PaSC [83] dataset consists of 2,802 videos of 293 subjects

and is used to test the performances of video-face algorithms under large pose, illumination, blur variations where

the videos are captured in controlled and point-and-shoot manners. The Celebrities in Frontal-Profile (CFP) dataset

[84] contains 7,000 images of 500 subjects, and is used for evaluating face verification approaches on extreme

pose variations. The UMDFaces [85] and UMDFace Video [35] are the datasets which contain 367,888 still images

of 8,277 subjects and 22,075 videos of 3,107 subjects. The datasets can be used to training still and video face

recognition algorithms. The subjects in UMDFace Video are also in UMDFaces, and this is useful to adapt the
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models trained in still-image face datasets to the video domain.

TABLE I

RECENT DATASETS FOR FACE RECOGNITION.

Face Recognition

Name #faces #subjects

MS-Celeb-1M [16] 10M 100K

CelebA [80] 202,599 10,177

CASIA-WebFace [13] 494,414 10,575

VGGFace [17] 2.6M 2,622

Megaface [14], [15] 4.7M 672K

LFW [81] 13,233 5749

IJB-A [69] 25,809 500

YTF [82] 3,425 videos 1,595

PaSC [83] 2,802 videos 293

CFP [84] 7,000 500

UMDFaces [85] 367,888 8,277

UMDFace Video [35] 22,075 videos 3,107

Recently, Bansal et al. [35] studied various features of a good large-scale dataset for face recognition, including

(1) Can we train on still images and expect the systems to work on videos? (2) Are deeper datasets better than

wider datasets where given a set of images deeper datasets mean more images per subject, and wider datasets

mean more subjects? (3) Does adding label noise always leads to improvement in performance of deep networks?

(4) Is alignment needed for face recognition? They used CASIA-WebFace [13], UMDFaces [85] and its video

extension [35], Youtube Face [82], and the IJB-A dataset [69]. They [35] found that DCNN models trained on a

combination of still images and video frames perform better than those trained on only still images or on only

video frames. Based on the experiments, it appears that for smaller models, training using wider datasets is better

than training using deeper datasets, while for deeper models, training using wider datasets is better. The authors

showed that label noise usually hurts the performance of face recognition. It was also found that good alignment

can greatly help the face recognition performance.

E. Performance Summary

To sum up, we summarize the performance results of recent face identification and verification algorithms for

the well-known Labeled Faces in the Wild (LFW) [81] and IARPA Benchmark A (IJB-A) [69] datasets.

1) Labeled Faces in the Wild: The LFW dataset contains 13,233 face images of 5,749 subjects where 1,680

subjects have two or more images. We show the performance comparisons using the standard protocol of face

verification which defines 3,000 positive pairs and 3,000 negative pairs in total and further splits them into 10

disjoint subsets for cross validation. Each subset contains 300 positive and 300 negative pairs. It contains 7,701

images of 4,281 subjects. We show the mean accuracy of state-of-the-art deep learning-based methods: DeepFace
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[58], DeepID2 [61], DeepID3 [86], FaceNet [62], Yi et al. [13], Wang et al. [87], Ding et al. [88], Parkhi et al.

[17], Wen et al. [66], Liu et al. [67], Ranjan et al. [68] and human performance on the “funneled” LFW images.

Method #Net Training Set Metric Mean Accuracy ± Std

DeepFace [58] 1 4.4 million images of 4,030 subjects, private cosine 95.92% ± 0.29%

DeepFace 7 4.4 million images of 4,030 subjects, private unrestricted, SVM 97.35% ± 0.25%

DeepID2 [61] 1 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 95.43%

DeepID2 25 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.15% ± 0.15%

DeepID3 [86] 50 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.53% ± 0.10%

FaceNet [62] 1 260 million images of 8 million subjects, private L2 99.63% ± 0.09%

Yi et al. [13] 1 494,414 images of 10,575 subjects, public cosine 96.13% ± 0.30%

Yi et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.73% ± 0.31%

Wang et al. [87] 1 494,414 images of 10,575 subjects, public cosine 96.95% ± 1.02%

Wang et al. 7 494,414 images of 10,575 subjects, public cosine 97.52% ± 0.76%

Wang et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.45% ± 0.99%

Wang et al. 7 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.23% ± 0.68%

Ding et al. [88] 8 471,592 images of 9,000 subjects, public unrestricted, Joint-Bayes 99.02% ± 0.19%

Parkhi et al. [17] 1 2.6 million images of 2,622 subjects, public unrestricted, TDE 98.95%

Wen et al. [66] 1 0.7 million images of 17,189 subjects, public cosine 99.28%

Liu et al. [67] 1 494,414 images of 10,575 subjects, public cosine 99.42%

Ranjan et al. [68] 1 3.7 million images of 58,207 subjects, public cosine 99.78%

Human, funneled [87] N/A N/A N/A 99.20%

TABLE II

ACCURACY OF DIFFERENT VERIFICATION METHODS ON THE LFW DATASET.

2) IARPA Benchmark A dataset: Besides the LFW dataset, we also present the performance comparisons for the

challenging IJB-A dataset. The IJB-A dataset contains 500 subjects with 5,397 images and 2,042 videos splitting

into 20,412 frames. Sample images and video frames from the datasets are shown in Figure 6. The ROC curve

measures the performance in the verification scenarios, and the CMC score measures the accuracy in closed set

identification scenarios. In addition, the IJB-A evaluation protocol consists of face verification (1:1 matching) over

10 splits. Each split contains around 11,748 pairs of templates (1,756 positive and 9,992 negative pairs) on average.

Similarly, the face identification (1:N search) protocol also consists of 10 splits, which are used to evaluate the

search performance. In each search split, there are about 112 gallery templates and 1,763 probe templates (i.e.

1,187 genuine probe templates and 576 impostor probe templates). The training set contains 333 subjects, and

the test set contains 167 subjects without any overlapping subjects. Ten random splits of training and testing are

provided. Unlike LFW [81] and YTF [89] datasets, which only use a sparse set of negative pairs to evaluate the

verification performance, the IJB-A dataset divides the images/video frames into gallery and probe sets so that all

the available positive and negative pairs are used for the evaluation. Also, each gallery and probe set consist of

multiple templates. Each template contains a combination of images or frames sampled from multiple image sets

or videos of a subject. In contrast to LFW and YTF datasets, which only include faces detected by the Viola Jones

face detector [90], the images in the IJB-A contain extreme pose, illumination, and expression variations. These

factors essentially make the IJB-A a challenging face recognition dataset.

The cumulative match characteristic (CMC) scores and the receiver operating characteristic curves (ROC) are used
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Fig. 6. The IJB-A dataset contains faces in large variations of pose, illumination, image quality, occlusion, etc.

to evaluate the performance of different algorithms for face identification/verification. The identification/verification

results for the IJB-A dataset are shown in Table III. In addition to using the average feature representation, we

also perform media averaging which is to first average the features from the same media (image or video) and

then further average the media average features to generate the final feature representation followed by Triplet

Probabilistic Embedding proposed in [73].

TABLE III

RESULTS ON THE IJB-A DATASET. THE TAR OF ALL THE APPROACHES AT FAR=0.1, 0.01, AND 0.001 FOR THE ROC CURVES (IJB-A 1:1

VERIFICATION). THE RANK-1 AND RANK-10 RETRIEVAL ACCURACIES OF THE CMC CURVES (IJB-A 1:N IDENTFICATION). WE REPORT

AVERAGE AND STANDARD DEVIATION OF THE 10 SPLITS FOR ALL-IN-ONE FACE [2], DCNNall , AND AFTER TRIPLET PROBABILISTIC

EMBEDDING, DCNNall+tpe . ALL THE PERFORMANCE RESULTS REPORTED IN [91], DCNNcasia [87], JANUS B (JANUSB-092015),

DCNNbl [92], DCNNfusion [12], DCNN3d [64], NAN [70], DCNNpose [63], DCNNtpe [73], TP [93], AND DCNNl2+tpe [68] WHERE

RX101 MEANS RESNEXT-101 [94]

IJB-A-Verif DCNNcasia [87] JanusB [91] DCNNpose [63] DCNNbl [92] NAN [70] DCNN3d [64]

FAR=1e-3 0.514 0.65 - - 0.881 0.725

FAR=1e-2 0.732 0.826 0.787 - 0.941 0.886

FAR=1e-1 0.895 0.932 0.911 - 0.978 -

IJB-A-Ident DCNNcasia [87] JanusB [91] DCNNpose [63] DCNNbl [92] NAN [70] DCNN3d [64]

Rank-1 0.820 0.87 0.846 0.895 0.958 0.906

Rank-10 - 0.95 0.947 - 0.986 0.977

IJB-A-Verif DCNNfusion [12] DCNNtpe [73] DCNNall [2] DCNNall+tpe [2] TP [93] DCNNl2+tpe(RX101) [68]

FAR=1e-3 0.76 0.813 0.787 0.823 - 0.943

FAR=1e-2 0.889 0.9 0.893 0.922 0.939 0.970

FAR=1e-1 0.968 0.964 0.968 0.976 - 0.984

IJB-A-Ident DCNNfusion [12] DCNNtpe [73] DCNNall [2] DCNNall+tpe [2] TP [93] DCNNl2+tpe(RX101) [68]

Rank-1 0.942 0.932 0.941 0.947 0.928 0.973

Rank-10 0.988 0.977 0.988 0.988 0.986 0.988

Table III summarizes the scores (i.e., both ROC and CMC numbers) produced by different face identifica-

tion/verification methods on the IJB-A dataset. We compare the results with DCNNcasia [87], DCNNbl (bilinear CNN

[92]), DCNNpose (multi-pose DCNN models [63]), [70], DCNN3d [64], template adaptation (TP) [93], DCNNtpe

[73], DCNNall [2](All-in-One Face), DCNNl2+tpe [68], and the one [91] reported recently by NIST. We also
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summarize the details of each method in Table IV.

TABLE IV

COMPARISON OF FACE RECOGNITION ALGORITHMS ON THE IJB-A DATASET WHERE OSS-SVM [93] MEANS SVM WITH ONE-SHOT

SIMILARITY FRAMEWORK, TSE [12] MEANS TRIPLET SIMILARITY EMBEDDING, TPE [73] MEANS TRIPLET PROBABILISTIC EMBEDDING,

OSS-SVM [93] MEANS SVM USING ONE-SHOT SIMILARITY FRAMEWORK, AND ATTENTIONNET MEANS THE ATTENTION NETWORK

WHICH IS USED TO COMPUTE THE WEIGHTS OF EACH FACE FOR FEATURE AGGREGATION AND TO SUBSTITUTE THE AVERAGE

REPRESENTATION IN ALL THE OTHER COMPARED METHODS.

Method Base Network Loss Training Set Metric Rank-1 Rank-10

DCNNcasia [87] CASIANet Softmax 494,414 images of 10,575 subjects, public [13] JB 82 -

DCNNpose [63] VGGNet Softmax 494,414 images of 10,575 subjects, public [13] cosine 84.6 94.7

DCNNbl [92] VGGNet Softmax 494,414 images of 10,575 subjects, public [13] SVM 89.5 -

NAN [70] GoogLeNet(BN) + Contrastive 3 million images of 50,000 subjects, private [70] cosine 95.8 98.6

AttentionNet

DCNN3d [64] VGGNet Softmax 2,472,070 synthesized images of 10,575 subjects using cosine 90.6 97.7

3D morphable model (494,414 images out of them are

natural face images), public [13]

DCNNfusion [12] AlexNet+CASIANet Softmax 494,414 images of 10,575 subjects, public [13] TSE 94.2 98.8

DCNNtpe [73] AlexNet Softmax 494,414 images of 10,575 subjects, public [13] TPE 93.2 97.7

DCNNall+tpe [2] AlexNet Multi-task 993,153 images from multiple datasets, (only TPE 94.7 98.8

494,414 images out of them contain identity labels

from 10,575 subjects), public [2]

TP [93] VGGNet Softmax 2.6 million images of 2,622 subjects, public [17] OSS-SVM 92.8 98.6

DCNNl2+tpe [68] ResNet L2-Softmax 3.7 million images of 58,207 subjects, public [79] TPE 97.3 98.8

V. FACIAL ATTRIBUTES

From a single face, we are able to identify facial attributes such as gender, expression, age, skin-tone, etc. Those

attributes are very useful for applications like image retrieval, emotion detection, and mobile security. In biometrics

literature, facial attributes are also referred to as “soft biometrics” [95]. Kumar et al. [56] introduced the concept of

attributes as image descriptors for face verification. They used a collection of 65 binary attributes to describe each

face image. Berg et al. created classfiers for each pair of people in a dataset and then used these classifiers to create

features for a face verification classifier [56]. Here, rather than manually identifying attributes, each person was

described by their likeness to other people. This is a way of automatically creating a set of attributes without having

to exhaustively hand-label attributes on a large dataset. Recently, DCNNs have been used for attribute classification,

demonstrating impressive results. Pose Aligned Networks for Deep Attributes (PANDA) achieved state-of-the-art

performance by combining part-based models with deep learning to train pose-normalized DCNNs for attribute

classification [96]. Focusing on age and gender, [97] applied DCNNs to the Adience dataset. Liu et al. used two

DCNNs - one for face localization and the other for attribute recognition - and achieved impressive results on the

CelebA and LFWA datasets, outperforming PANDA on many attributes [80].

Instead of treating each attribute to be independent, [99] exploits the correlation amongst attributes to improve

image ranking and retrieval by using independently trained attribute classifiers and then learning pairwise correlations

based on the outputs of these classifiers. Hand et al. [100] train a single attribute network which classifies 40
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Fig. 7. A sample pipeline of a face attribute detection algorithm for mobile authentication [98].

attributes, sharing information throughout the network, and by learning the relationships among all the 40 attributes,

not just attribute pairs. Ranjan et al. [2] train a single deep network with multi-task learning which can simultaneously

perform face detection, facial landmark detection, face recognition, 3D head pose estimation, gender classification,

age estimation, and smile detection. Recently, Gunther et al. proposed the AFFACT [101] algorithm that performs

alignment-free facial attribute classification. It uses a data augmentation technique that allows a network to classify

facial attributes without requiring alignment beyond detected face bounding boxes. The algorithm achieves state-

of-the-art results on CelebA [80] dataset with an ensemble of three networks.

In addition, some of the facial attributes can be used [17] to boost the mobile authentication performance. The

recent method of Attribute-based Continuous Authentication (ACA) [102], [103] shows that large number of

attributes by themselves can give good authentication results on mobile phones. They are semantic features which

are easier to learn than facial identities. Also, if they are learned on facial parts, they become less complex. By

leveraging these two qualities, Samangouei et. al. [98] designed efficient DCNN architectures suitable for mobile

devices. The pipeline in Figure 7 illustrates how facial attributes are used for mobile authentication.

VI. MULTI-TASK LEARNING FOR FACIAL ANALYSIS

In this section, we present the design details of various Multi-Task Learning (MTL) methods for different facial

analysis tasks. The MTL framework for machine learning was first analyzed by Caruana [104] in detail. Since then,

it has been used for solving multiple problems in Computer Vision. One of the earlier works of MTL-based facial

analysis was proposed by Zhu et al. [55]. The algorithm was used for solving the tasks of face detection, landmarks

localization and head-pose estimation. It used a mixture of trees model with shared pool of parts, where a part

represents a landmark location. Another method called JointCascade [105] improved the face detection algorithm by

combining the training with the landmarks localization task. Both these methods used hand-crafted features which

made it difficult to extend the MTL approach to a wide variety of tasks.

Before the advent of deep learning methods, MTL was restricted to a few sets of tasks because the feature

representations required for solving each of the tasks were different. For instance, the task of face detection typically

used Histogram of Oriented Gradients (HOG), whereas the task of face recognition used Local Binary Patterns
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(LBP). Similarly, for the tasks of landmarks localization, age and gender estimation and attributes classification,

different hand-crafted features were derived. However, with the rise of deep learning, the hand-crafted features were

replaced by DCNN features for solving the above mentioned facial analysis tasks. This made it possible to train a

single DCNN model for multiple tasks such as face detection, landmarks localization, facial attributes prediction

and face recognition.

In general, when a human looks at a face in an image, he/she can detect where the face is, determine the

gender, rough pose, age, expressions, etc. When machines are designed to perform these tasks, one often constructs

independent algorithms for solving each of these tasks. However, one can design a deep network that can simul-

taneously accomplish all of these tasks by sharing the deep features and exploiting the relationships among these

tasks. Goodfellow et al. [106] interprets MTL as a regularization method for DCNNs. With the MTL approach, the

learned parameters of network are in consensus with all the tasks in hand, which reduces overfitting and converges

to a robust solution.

HyperFace [10] and TCDCN [107] are some of the earliest methods to use DCNNs in the MTL framework.

HyperFace [10] was proposed for solving the tasks of face detection, landmarks localization, head-pose estimation

and gender classification. It fused the intermediate layers of a DCNN such that the tasks could leverage semantically

rich features from the deeper layers as well as location-specific features from the lower layers. The synergy developed

by the MTL approched improved the performance of individual tasks. Zhang et al. [107] proposed the TCDCN

algorithm that used MTL-based DCNN for facial landmark detection, along with the tasks of discrete head yaw

estimation, gender recognition, smile and glass detection. In their method, the predictions for all theses tasks were

pooled from the same feature space. They showed that using auxiliary tasks such as glass detection and smile

prediction improved the landmarks localization for specific parts of the face.

Ranjan et al. recently proposed All-In-One Face [2], which is a single DCNN model for simultaneous face

detection, landmark localization, face recognition, 3D head pose estimation, smile detection, facial age estimation,

and gender classification. The All-In-One Face architecture (illustrated in Figure 8(a)) starts with the pre-trained

face identification network from Sankaranarayanan et al. [73]. The network consists of seven convolutional layers

followed by three fully connected layers, and it is used as a backbone network for training the face identification

task and for sharing the parameters of its first six convolution layers with other face-related tasks. The central tenet

is that a CNN pre-trained on face identification task provides better initialization for a generic face analysis task,

since the filters retain discriminative face information.

To leverage multiple datasets with all the annotations for face bounding box, fiducial points, pose, gender, age,

smile and identity information, multiple sub-networks are trained with respect to task-related datasets, and share

the parameters among them since no single dataset contains annotations for all the facial analysis tasks at the same

time. In this way, the shared parameters adapt to the complete set of domains instead of fitting to a task-specific

domain. At test time, these sub-networks are fused together into a single All-In-One Face. Table V lists the different

datasets used for training the All-In-One Face. Task-specific loss functions are used to train the complete network

end-to-end. Some sample outputs for All-In-One Face are shown in Figure 9.

MTL-based DCNNs have also been used for determining multiple facial attributes. Dehghan et al. proposed
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Fig. 8. (a) The All-In-One Face network architecture and (b) the overview of the All-In-One Face system for face recognition and facial

analysis.

TABLE V

DATASETS USED FOR TRAINING ALL-IN-ONE FACE.

Dataset Facial Analysis Task # training samples

CASIA [13] Identification, Gender 490,356

MORPH [108] Age, Gender 55,608

IMDB+WIKI [109] Age, Gender 224,840

Adience [97] Age 19,370

CelebA [80] Smile, Gender 182,637

AFLW [110] Detection, Pose, Fiducials 20,342

Total 993,153

DAGER [111] for recognizing age, gender and emotion using DCNN. Similar to All-In-One Face [2], it uses

different training sources labeled for different tasks for training the DCNN. He et al. [112] jointly learn a deep

architecture for face detection and facial attribute analysis. Unlike other MTL-based methods, they use full image

as an input to the network instead of a face region. A Faster R-CNN based approach is used to obtain the detections

along with the attributes for the faces. Table VI summaries the facial analysis tasks performed by some of the recent

MTL-based methods.

VII. OPEN ISSUES

Given sufficient number of annotated data and GPUs, DCNNs have been shown to yield impressive performance

improvements. Still many issues remain to be addressed to make the DCNN-based face recognition systems robust

and practical. Below, we briefly discuss several design considerations for each component of an automated face

identification/verification system, including
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Sample results of the All-In-One Face [2] for the IJB-A dataset [69] with detected face bounding boxes, fiducial points, identity along

with 3D head pose, gender, smile, and facial age estimation. Although the algorithm predicts identity, age, gender and smile attributes for all

the faces, we show them only for subjects that are present in the IJB-A dataset for better image clarity.

• Face detection: In contrast to generic object detection task, face detection is more challenging due to the wide

range of variations in the appearance of faces. The variability is caused mainly by changes in illumination,

facial expression, viewpoints, occlusions, etc. Other factors such as blur and low-resolution challenge the face

detection task.

• Fiducial detection: Most datasets only contain few thousands images. A large scale annotated and uncon-

strained dataset will make the face alignment system more robust to the challenges, including extreme pose,

low illumination, small and blurry face images. Researchers have hypothesized that deeper layers of CNNs can

encode more abstract information such as identity, pose, and attributes; however, it has not yet been thoroughly
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TABLE VI

LIST OF VARIOUS MTL-BASED FACIAL ANALYSIS ALGORITHMS ALONG WITH THE TYPES OF FACE TASKS THEY CAN PERFORM

Method Face Detection Fiducials Head-Pose Gender Age Expression Other Attributes Face Recognition

Zhu et al. [55] X X X

JointCascade [105] X X

Zhang et al. [32] X X

TCDCN [107] X X X X X

HyperFace [10] X X X X

He et al. [112] X X X X X

DAGER [111] X X X

All-In-One Face [2] X X X X X X X

studied which layers exactly correspond to local features for fiducial detection.

• Face identification/verification: For face identification/verification, the performance can be improved by

learning a discriminative distance measure. However, due to memory constraints limited by graphics cards, how

to choose informative pairs or triplets and train the network end-to-end using online methods (e.g., stochastic

gradient descent) on large-scale datasets is still an open problem. Another challenging problem to address is

to incorporate full motion video processing in deep networks for enabling video-based face anaytics.

VIII. CONCLUSION

In this paper, we presented an overview of recent developments in designing an automatic face recognition system.

We also discussed about various multi-task CNN-based approaches for face analytics. The examples shown in the

paper demonstrate that subject-independent tasks benefit from multi-task learning, network initialization from face

recognition task, and how these tasks also help to improve face recognition performance.

Given sufficient amount of annotated data and GPUs, DCNNs have been shown to yield impressive performance

improvements. Still many issues remain to be addressed to make the DCNN-based systems robust and practical, such

as reducing reliance on large training data sets, handling data bias and degradation in training data, incorporating

domain knowledge, reducing the training time when the network goes deeper and wider, and building the theoretical

foundations to understand the characteristics and behaviors of DCNN models. We refer the interested readers to [12]

for more details about other challenges for DCNN models.
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