
Video-based Face Recognition via Joint Sparse Representation

Yi-Chen Chen, Vishal M. Patel, Sumit Shekhar, Rama Chellappa and P. Jonathon Phillips

Abstract— In video-based face recognition, a key challenge is
in exploiting the extra information available in a video; e.g.,
face, body, and motion identity cues. In addition, different
video sequences of the same subject may contain variations
in resolution, illumination, pose, and facial expressions. These
variations contribute to the challenges in designing an effective
video-based face-recognition algorithm. We propose a novel
multivariate sparse representation method for video-to-video
face recognition. Our method simultaneously takes into account
correlations as well as coupling information among the video
frames. Our method jointly represents all the video data by
a sparse linear combination of training data. In addition, we
modify our model so that it is robust in the presence of noise and
occlusion. Furthermore, we kernelize the algorithm to handle
the non-linearities present in video data. Numerous experiments
using unconstrained video sequences show that our method is
effective and performs significantly better than many state-of-
the-art video-based face recognition algorithms in the literature.

I. INTRODUCTION

Though face recognition research [1] has traditionally con-
centrated on recognition from still images, recently, video-
based face recognition has also gained a lot of traction. Faces
are essentially articulating three dimensional objects. For
faces, cues from motion possesses useful information in the
form of behavioral traits such as idiosyncratic head move-
ments and gestures, which can potentially aid in recognition
tasks. Humans efficiently fuse face, body, and motion when
recognizing people in video [2]. From video sequence effec-
tive representations such as three dimensional face models
or super-resolved frames can be estimated. These techniques
have the potential to improve recognition results.

While the advantage of using motion information in face
videos has been widely recognized, computational models
for video-based face recognition have only recently gained
attention. In this paper, we consider the problem of video-to-
video face recognition where one is presented with a video
sequence and the goal is to recognize the person in the video.
A key challenge is exploiting the extra information available
in a video. In addition, different video sequences of the same
subject may contain variations in resolution, illumination,
pose, and facial expressions. These variations contribute to
the difficulties in designing an effective video-based face
recognition algorithm.
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Numerous methods have been proposed to exploit the extra
information available in video. Three proposed techniques
include frame-based recognition algorithms and fusing the
results [3], modeling the temporal correlations explicitly to
recognize the human [4], and extract joint appearance and
behavioral features from the sequences [5], [6]. A major
drawback of the frame-based fusion approach is that it does
not exploit the temporal information present in a video
sequence.

It has been shown that in a generic video-face recognition
algorithm, performance can be significantly improved by
simultaneously performing recognition and tracking [5], [7],
[8], [9], [10], [11]. A statistical method for video-based face
recognition was recently presented in [12]. These methods
use subspace-based models and tools from Riemannian ge-
ometry of the Grassmann manifold. Intrinsic and extrinsic
statistics are derived for the maximum-likelihood classi-
fication applications. An image set classification method
for the video-based face recognition problem was recently
proposed in [13]. This method is based on a measure of
between-set dissimilarity defined as the distance between
sparse approximated nearest points of two image sets and
uses a scalable accelerated proximal gradient method for
optimization. A dictionary-based face recognition method
from video was recently proposed in [14]. This method was
shown to be robust to illumination and pose variations.

The method presented in [6] represents the appearance
variations due to shape and illumination on faces by assum-
ing that the shape-illumination manifold of all possible illu-
minations and poses is generic for faces. This in turn implies
that the shape-illumination manifold can be estimated using
a set of subjects independent of the test set. It was shown that
the effects of face shape and illumination can be learnt using
PCA from a small, unlabeled set of video sequences of faces
acquired in randomly varying lighting conditions. Given a
novel sequence, the learned model is used to decompose the
face appearance manifold into albedo and shape-illumination
manifolds, producing the classification decision using robust
likelihood estimation.

In recent years, the theories of sparse representation and
dictionary learning have emerged as powerful tools for effi-
ciently processing of image and video data in non-traditional
ways. This is due in part to the fact that signals and
images of interest can be sparse in some properly designed
dictionary. This has led to a resurgence of the principles of
sparse representation and dictionary learning for biometrics
recognition [15], [16], [17]. One of the main advantages of
using sparse representations for biometrics recognition is that
they tend to be to robust to noise and occlusion [15].
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Fig. 1: Overview of the proposed approach.

Motivated by the success of sparse representation and
dictionary learning in biometrics recognition, we propose
a joint sparsity-based approach for unconstrained video-to-
video face recognition. This method is based on the well
known regularized regression method, multi-task multivariate
Lasso [18], [19]. Our method simultaneously takes into
account correlations as well as coupling information between
frames of a video while enforcing joint sparsity within each
frame’s observation. We extend our model so that it is robust
to both occlusion and noise. Furthermore, we kernelize the
algorithm to enable it to handle the non-linearities present
in video data. One of the main advantages of our method is
that it does not require face tracking and is robust to changes
in illumination and pose.

Figure 1 shows an overview of our approach. In the
training stage, from cropped face images, we partition the
pth video sequence, p = 1, 2, ..., P , so that frames with the
same pose and illumination condition are in one partition.
We then find the best representation for each member in
these partitions by learning dictionaries under strict sparsity
constraints. Each learned sub-dictionary Dk

(p) for k = 1, 2, 3,
and p = 1, 2, ..., P , represents the pth video’s kth face feature
that is under a particular pose and/or illumination condition.

In the testing stage, the same partition step is applied on
the mth query video sequence to acquire partitions, Qk

(m),
k = 1, 2, 3. Then, for each Qk

(m), sub-dictionaries from
all target videos are found and concatenated to form the
dictionary Dk. Using Dk, k = 1, 2, 3, and a query sample,
joint sparse representation Γ = [Γ1 Γ2 Γ3], is found to
make decisions for recognition under the minimum class
reconstruction error criterion.

A. Paper organization

This paper is organized as follows: Joint sparse
representation-based recognition algorithm is detailed in Sec-
tion II. This includes building partition-level sub-dictionaries
for each video and fusion among these sub-dictionaries using
joint sparse representation for identification and verifica-
tion. Experimental results are presented in Section III and
Section IV concludes the paper with a brief summary and
discussion.

II. PROPOSED APPROACH

In this section, we present our joint sparsity-based method
for video-to-video face recognition.

A. Building partition-level sub-dictionaries

For each frame in a video sequence, we first detect and
crop the face regions. We then partition all the cropped face
images into K different partitions using a variation of the
algorithm [20] so that distinct partitions capture different
pose and/or illumination conditions. To remove the temporal
redundancy while capturing variations due to changes in pose
and illumination, we construct a dictionary for each partition.
A dictionary is learned with the minimum representation
error under a strict sparseness constraint. Thus, there are K
sub-dictionaries built to represent each video sequence. Due
to changes in pose and lighting in a video sequence, the
number of face images in a partition will vary. For partitions
with very few images, before building the corresponding dic-
tionary, we augment the partition by introducing synthesized
face images. This is done by creating horizontally, vertically
or diagonally shifted face images, or by in-plane rotation of
faces.

Let Gk
(p) be the augmented gallery matrix of the kth

partition of the pth video sequence. In augmented gallery



martix Gk
(p) = [gk

(p),1g
k
(p),2...], each column is a vectorized

form of the corresponding cropped grayscale face image of
size L. Given Gk

(p), a dictionary D̂k
(p) ∈ RL×K̃ is learned

such that the columns of Gk
(p) are best represented by linear

combinations of K̃ atoms of D̂k
(p). This can be done by

minimizing the following representation error

(D̂k
(p), Λ̂

k
(p)) = argmin

D̃k
(p),Λ

k
(p)

‖Gk
(p) − D̃k

(p)Λ
k
(p)‖2F ,

s.t. ‖λl‖0 ≤ T0, ∀l, (1)

where λl is the lth column of coefficient matrix Λk
(p) and

T0 is a sparsity parameter. The `0 sparsity measure ‖ · ‖0
counts the number of nonzero elements in the representation
and ‖Y‖F is the Frobenius norm of the matrix Y defined
as ‖Y‖F =

√∑
i,j Y 2

i,j .
One of the most well-known algorithms for learning such

dictionaries is the K-SVD1 algorithm [21]. The K-SVD
algorithm alternates between sparse-coding and dictionary
update steps. In the sparse-coding step, the dictionary D̃k

(p)

is fixed and the representation vectors λl are found for each
example gk

(p),i. Then, the dictionary is updated atom-by-
atom in an efficient way [21]. Due to its simplicity and
efficiency, we adapt the K-SVD algorithm to obtain D̂k

(p)’s,
the partition-specific dictionaries of the pth video.

B. Sparse representation for video-based face recognition
(SRV)

Let Q denote the total number of query video sequences.
Given the mth query video sequence Q(m), where m =
1, ..., Q, we can write Q(m) =

⋃K
k=1 Qk

(m). Partitions Qk
(m)

are expressed by Qk
(m) = [qk

(m),1 qk
(m),2 ... qk

(m),n(m),k
],

where qk
(m),l is the vectorized form of the lth of the total

n(m),k cropped face images belonging to the kth partition.
We exploit the joint sparsity of coefficients from dif-

ferent partitions to make a joint decision. We denote
{Qk

(m)}K
k=1 as a set of K partitions of the mth query

video, with partition Qk
(m) consisting of n(m),k face images,

and Dk = [Dk
(1) Dk

(2) ... Dk
(P )] as the concatenation

of the kth sub-dictionaries from all target videos. Letting
Γ = [Γ1 Γ2 . . .ΓK ] ∈ IRd×n(m) be the matrix formed by
concatenating the coefficient matrices with d =

∑P
j=1 dj and

n(m) =
∑K

k=1 n(m),k, we seek the row-sparse matrix Γ by
solving the following `1/`q-regularized least square problem

Γ̂ = arg min
Γ

1
2

K∑

k=1

‖Qk
(m) −DkΓk‖2F + λ‖Γ‖1,q (2)

where λ is a positive parameter and q is set greater than
1 to make the optimization problem convex. Here, ‖Γ‖1,q

is a norm defined as ‖Γ‖1,q =
∑d

i=1 ‖γi‖q where γi’s
are the row vectors of Γ. Problem (2) can be solved using
the classical Alternating Direction Method of Multipliers
(ADMM) [22], [23], [24]. See [22], [23] for more details
on ADMM. For our experiments, we choose q = 2.

1Here “K” in “K-SVD” equals number of atoms K̃ in a learned dictionary,
not number of partitions K of a video sequence.

1) Identification: For identification, we use the knowledge
of the correspondence f(·) between subjects and sequences
to assign the query video sequence Q(m) to subject i∗ =
f(p∗), where p∗ is the sequence-level decision. Once Γ̂ is
obtained, p∗ is declared as the one that produces the smallest
approximation error.

p∗ = arg min
p

min
k∈{1,...,K}

min
l∈{1,...,n(m),k}

‖qk
(m),l−Dkδk

p,l(Γ̂)‖2,
(3)

where δk
p,l(·) is the indicator function defined by keeping

the coefficients corresponding to the kth partition from pth
target video for the lth query image, and setting coefficients
in all other rows and columns equal to zero.

2) Verification: For verification, given a query video
sequence and any gallery video sequence, the goal is to
correctly determine whether these two belong to the same
subject. The well-known receiver operating characteristic
(ROC) curve, which describes relations between false accep-
tance rates (FARs) and true acceptance rates (TARs), is used
to evaluate the performance of verification algorithms. As
the TAR increases, so does the FAR. Therefore, one would
expect an ideal verification framework to have all TARs equal
to 1 for any FARs. The ROC curves can be computed given
a similarity matrix. In the proposed method, the residual
between a query Q(m) and the pth target video, is used to
fill in the (m, p) entry of the similarity matrix. Denoting the
residual by R(m,p), we have

R(m,p) = min
k∈{1,2,...,K}

R(m,p)
k , (4)

where

R(m,p)
k , min

l∈{1,...,n(m),k}
‖qk

(m),l −Dkδk
p,l(Γ̂)‖2. (5)

In other words, we select the minimum residual among all
l ∈ {1, 2, ..., n(m),k}, and all k ∈ {1, 2, ...,K}, as the
similarity between the query video sequence Q(m) and the
pth target video.

The SRV algorithm is summarized in Algorithm 1.

Algorithm 1: Sparse representation for video-based face
recognition (SRV)

Input: Partition-level sub-dictionaries {Dk}K
i=k and query videos

{Qk
(m)

}K
k=1.

Procedure: Obtain Γ̂ by solving

Γ̂ = arg min
Γ

1

2

K∑

k=1

‖Qk
(m) −DkΓk‖2F + λ1‖Γ‖1,q ,

Output:
(Identification) video p∗ =

arg min
p

min
k∈{1,...,K}

min
l∈{1,...,n(m),k}

‖qk
(m),l

−Dkδk
p,l(Γ̂)‖2,

subject i∗ = f(p∗).
(Verification) Use the similarity R(m,p) computed by (4) and (5) to
construct the similarity matrix, from which the ROC curves can be
obtained.



C. Finding aligned sub-dictionaries for unconstrained
videos

The formulation presented above is made under the as-
sumption that Dk is a concatenation of sub-dictionaries that
are aligned with Qk

(m). In other words, if Qk
(m) collects a

subject’s left side face images from the mth video, then Dk

must also collect sub-dictionaries of left side faces from
all target videos. In practical situations, unlike constrained
videos, illumination and pose conditions in an unconstrained
video vary. For example, some query videos contain left
side face images only, while some target videos contain
frontal face images only. In addition, no information among
the partitions is given on which partition represents which
specific pose and illumination condition. To overcome these
difficulties before finding joint sparse representation, we find
approximately aligned dictionaries Dk such that Dk

(p), p =
1, 2, ..., P are obtained by:

Dk
(p) = arg max

D̂u
(p),u∈{1,2,...,K}

Cu, (6)

where Cu is the number of votes for the uth sub-dictionary
of the pth target video (i.e., D̂u

(p) in (1)) collected from
each qk

(m),l in Qk
(m). In other words, the aligned sub-

dictionaries are determined by the majority vote criterion.
Each query image qk

(m),l in the kth partition of the mth query
video Qk

(m) votes for D̂u
(p) such that it has the minimum

reconstruction error from its projection on D̂v
(p):

u = arg min
v
‖qk

(m),l − D̂v
(p)D̂

v†
(p)q

k
(m),l‖2, (7)

where D̂v†
(p) is the pseudo-inverse of D̂v

(p).

D. Kernel sparse representation for video-based face recog-
nition (KSRV)

The class identities in different partitions may not be
linearly separable. Hence, we also extend the joint sparse
representation framework to the non-linear kernel space. The
kernel function, κ : Rn×Rn, is defined as the inner product

κ(di,dj) = 〈φ(di), φ(dj)〉
where, φ is an implicit mapping projecting the vector d into
a higher dimensional space.

Considering the general case of K partitions of the mth
query video with {Qk

(m)}K
k=1 as a set of n(m),k observations,

the feature space representation can be written as:

Φ(Qk
(m)) = [φ(qk

(m),1) φ(qk
(m),2) ... φ(qk

(m),n(m),k
)]

Similarly, the dictionary of training samples for the kth
partition can be represented in feature space as

Φ(Dk) = [φ(Dk
1), φ(Dk

2), · · · , φ(Dk
P )]

As in joint linear space representation, we have:

Φ(Qk
(m)) = Φ(Dk)Γk

where, Γk is the coefficient matrix associated with partition
k. Incorporating information from all the partitions, we solve
the following optimization problem similar to the linear case:

Γ̂ = arg min
Γ

1
2

K∑

k=1

‖Φ(Qk
(m))−Φ(Dk)Γk‖2F + λ‖Γ‖1,q

(8)
where, Γ = [Γ1,Γ2, · · · ,ΓK ]. It is clear that the information
from all the partitions of a video are integrated via the
shared sparsity pattern of the matrices {Γk}K

k=1. This can
be reformulated in terms of kernel matrices as:

Γ̂ = arg min
Γ

1
2

K∑

k=1

(
trace(ΓkT

KDk,DkΓk)

−2trace(KDk,Qk
(m)

Γk)
)

+ λ‖Γ‖1,q (9)

where, the kernel matrix KX,Y is defined as:

KX,Y(i, j) = κ(xi,yj) = 〈φ(xi), φ(yj)〉, (10)

with xi and yj being ith and jth columns of X and Y
respectively. Similar to the linear case, problem (8) can be
solved using the ADMM type of algorithm.

1) Identification: Once Γ̂ is obtained, we assign Q(m) to
subject i∗ = f(p∗), where p∗ is obtained as follows.

p∗ = arg min
p

min
k

min
l∈{1,...,n(m),k}

‖φ(qk
(m),l)−Φ(Dk

(p))δ
k
p,l(Γ̂)‖2

= arg min
p

min
k

min
l∈{1,...,n(m),k}

{
trace(KQk

(m)Q
k
(m)

)

−2 trace(δk
p,l(Γ̂)T KDk

(p)
KQk

(m)
δk

p,l(Γ̂))

+trace(δk
p,l(Γ̂)T KDk

(p)D
k
(p)

δk
p,l(Γ̂))

}
. (11)

2) Verification: Similar to the linear case in II-B.1, we
use (4) to construct the similarity R(m,p), with R(m,p)

k in
(5) replaced with

R(m,p)
k , min

l∈{1,...,n(m),k}
‖φ(qk

(m),l)−Φ(Dk
(p))δ

k
p,l(Γ̂)‖2.

(12)
The KSRV algorithm is summarized in Algorithm 2.

Algorithm 2: Kernel sparse representation for video-based
face recognition (KSRV)

Input: Partition-level sub-dictionaries {Dk}K
i=k and query videos

{Q(m),k}K
k=1.

Procedure: Obtain Γ̂ by solving

Γ̂ = arg min
Γ

1

2

K∑

k=1

‖Φ(Qk
(m))−Φ(Dk)Γk‖2F + λ‖Γ‖1,q (13)

Output:
(Identification) video p∗ =

arg min
p

min
k

min
l∈{1,...,n(m),k}

‖φ(qk
(m),l)−Φ(Dk

(p))δ
k
p,l(Γ̂)‖2,

subject i∗ = f(p∗).
(Verification) Use the similarity R(m,p) computed by (4) and (12) to
construct the similarity matrix, from which the ROC curves can be
obtained.



III. EXPERIMENTAL RESULTS

To illustrate the effectiveness of our method, we present
experimental results on three datasets for video-based face
recognition: the UMD dataset [25], the Multiple Biomer-
tic Grand Challenge (MBGC) dataset [26],[27], and the
Honda/UCSD dataset [5].

A. UMD video

The UMD dataset contains 12 videos recorded of a group
of 16 subjects. The videos were collected in a high definition
format (1920 × 1088 pixels). They contain sequences of
subjects standing without walking toward the camera, which
we refer to as standing sequences, and sequence of each
subject walking toward the camera, which we refer to as
walking sequences. After segmenting the videos according
to subjects and sequence types, we obtained 93 sequences
in total: 70 standing sequences and 23 walking sequences.
Figure 2(a) shows example frames from four different stand-
ing sequences, where most subjects are standing in a group.
As some subjects were having conversations and others were
looking elsewhere, their faces were sometimes non-frontal or
partially occluded. Figure 2(b) shows example frames from
four different walking sequences, in each of which a single
subject was walking toward the camera, with a frontal face
for most of the time. However, the walking subject’s head
sometimes turned to the right or left showing a profile face.
Furthermore, for both types of sequences, the camera was
not always static. Figure 2(c) shows example frames with
blurred subjects due to the camera motion.

(a)

(b)

(c)

Fig. 2: Example frames from the UMD dataset. (a) Standing
sequences. (b) Walking sequences. (c) Frames with blurred
subjects due to the camera motion. Faces in standing se-
quences were sometimes non-frontal or partially occluded,
while faces in walking sequences were frontal most of the
time. Camera movements raise the additional difficulty for
face tracking and recognition.

Figure 3 shows an example of output from the video
partitioning stage. For results in Figure 3, the number of
partitions is K = 3. Results are presented for 8 subjects for
walking sequences2. Each row shows up to 30 partitioned

2For the illustration purpose only, here we show results of 8 subjects
only.

cropped face images from the same video sequence. We use
blue lines to distinguish among different subjects. It can be
seen that each partition from a video sequence encodes a
particular pose, illumination or blur condition, and different
partitions represent different conditions. We can see the
partition results are not ideal for all frames, as some frames
suffer from misalignment or camera movements.

Following the experimental setup of [12], we conducted
a leave-one-out identification experiment on 3 subsets of
cropped face images from the walking videos. These 3
subsets are S2 (subjects which have at least two video
sequences: 16 subjects, 93 sequences), S3 (subjects which
have at least three sequences: 15 subjects, 91 sequences)
and S6 (subjects which have at least six sequences: 7
subjects, 51 sequences)3. Table I lists the percentages of
correct identifications for this experiment. The proposed
sparsity-based methods, SRV and KSRV obtained average
identification rates better than other compared methods. The
methods compared in Table I include the wrapped Gaussian
common pole (WGCP) method and other statistical methods
reported in [12],[28], as well as the sparse approximated
nearest points (SANP) method [13].

UMD
videos

PM
[12],[28]

KD
[12],[28]

WGCP
[12]

SANP
[13]

SRV KSRV

S2 82.80 81.72 82.97 92.47 92.47 93.55
S3, S4, S5 84.62 83.52 83.52 93.41 94.51 94.51

S6 98.04 96.08 88.23 98.04 98.04 98.04
Average 88.49 87.11 84.91 94.64 95.01 95.37

TABLE I: Identification rates of leave-one-out testing exper-
iments on UMD videos. Both SRV and KSRV outperform
the other compared methods.

In the next set of experiments with the UMD dataset, we
conduct “S vs. W” (i.e., “Standing vs. Walking” - standing
sequences as probe and walking sequences as gallery) and
“W vs. S” (i.e., “Walking vs. Standing” - walking sequences
as probe and standing sequences as gallery) experiments.
Correct identification rates are shown in Table II. Our
sparsity-based methods tied with each other and they are
comparable with other methods.

UMD
videos

PM
[12],[28]

KD
[12],[28]

WGCP
[12]

SANP
[13]

SRV KSRV

S vs. W 65.71 51.43 30.00 87.14 84.29 84.29
W vs. S 73.91 65.22 43.48 91.30 91.30 91.30
Average 69.81 58.33 36.74 89.22 87.80 87.80

TABLE II: Identification rates of “Standing vs. Walking” and
“Walking vs. Standing” experiments on the UMD videos.

Figure 4(a) shows the ROCs for the verification experi-
ments using S2, S3 and S6 on the UMD dataset. Figure 4(b)
shows the ROC curves for “Walking vs. Standing” and
“Standing vs. Walking” experiments. The proposed sparsity-

3For the UMD video sequences, the three sets S3, S4 and S5 are
identical.



Fig. 3: Partition results of the UMD walking videos. Blue lines separate different subjects. Face images from a video
sequence are shown in a row, and are further divided into three partitions. Each partition shows up to 10 face images. A
partition represents a particular pose, illumination or blur condition.

based methods obtained better ROC curves than the WGCP
method.
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Fig. 4: (a) The ROC curves of the S2, S3, and S6 leave-one-
out verification experiments on UMD videos. (b) The ROC
curves of standing vs. walking, and walking vs. standing
verification experiments on UMD videos. The sparsity-based
methods obtained better ROC curves than the WGCP method
for most FARs.

B. MBGC Video version 1

The MBGC Video version 1 dataset (Notre Dame dataset)
contains 399 walking (frontal-face) and 371 activity (profile-
face) video sequences recorded of 146 subjects. Both types
of sequences were collected in standard definition (SD)
format (720 × 480 pixels) and high definition (HD) format
(1440 × 1080 pixels). The 399 walking sequences consist
of 201 sequences in SD and 198 in HD. For the 371
walking video sequences, 185 are in SD and 186 are in
HD. Figure 5 shows four example frames from four different
walking sequences, where each subject walks toward the
video camera with a frontal pose for most of the time and
turns to the left or right showing the profile face at the end.
The challenging conditions in these videos include frontal
and non-frontal faces in shadow.

We conducted leave-one-out identification experiments on
3 subsets of the cropped face images from the walking
videos. These 3 subsets are S2 (144 subjects, 397 videos), S3
(55 subjects, 219 videos) and S4 (54 subjects, 216 videos).
Table III lists the percentages of correct identifications for
this experiment. Our sparsity-based methods outperform the
other compared methods.

MBGC
walking

PM
[12],[28]

KD
[12],[28]

WGCP
[12]

SANP
[13]

SRV KSRV

S2 43.79 39.74 63.79 83.88 86.65 86.65
S3 53.88 50.22 74.88 84.02 87.67 88.58
S4 53.70 50.46 75 84.26 87.96 88.89

Average 50.46 46.81 71.22 84.05 87.43 88.04

TABLE III: Identification rates of leave-one-out testing ex-
periments on the MBGC walking videos. Our sparsity-based
methods obtained the best results.

In the second set of experiments, we selected videos of
subjects that are in at least two videos (i.e., S2). We divide all
these videos into SD and HD videos, to conduct “SD vs. HD”



Fig. 5: Examples of MBGC walking video sequences.

(SD as probe; HD as gallery) and “HD vs. SD” (HD as probe;
SD as gallery) experiments. In this setting, we examine the
effect of varying the number video sequences per person in
the gallery. We divide the videos into two groups: gallery and
probe. For most subjects (89 out of 144), this setting allows
only one video per subject for training, unlike the previous
leave-one-out test in which there are always at least two
training video sequences per subject (the subject whose video
is currently used as probe is excluded). Correct identification
rates are shown in Table IV. Our fusion methods significantly
outperformed other methods. The WGCP [12] method finds
projections of training samples on a Grassmann manifold
on its tangent plane and uses them to learn a pre-assumed
Gaussian model. While the geodesic distance of any point
on the manifold to the pole (i.e., the tangent point of the
manifold and the corresponding tangent plane) is maintained,
this property does not always apply to the geodesic distance
between any pair of points on the manifold. Also, the pre-
assumed Gaussian model may not be appropriate to model
the training samples. The SANP [13] method is based on
image set classification. The major limitation of this method
is that it relies on the unseen appearances of a set to be
modeled by affine combinations of samples. While this may
be true for some variations in facial illumination, it does not
hold for the extreme variations especially in the presence
of shadows, pose and expression variations. Our method
overcomes this limitation by learning and fusing across
different partition specific dictionaries.

MBGC
walking

PM
[12],[28]

KD
[12],[28]

WGCP
[12]

SANP
[13]

SRV KSRV

SD vs. HD 61.31 55.78 30.15 41.71 91.96 91.46
HD vs. SD 68.69 56.06 30.30 45.96 90.40 91.41

Average 65 55.92 30.23 43.84 91.18 91.44

TABLE IV: Identification rates of “SD vs. HD” and “HD
vs. SD” experiments on the MBGC walking video subset
S2 (the subset that contains subjects who have at least two
video sequences). In this experiment, most subjects (89 out
of 144) have only one video per subject available for training.
Our sparsity-based fusion methods, SRV and KSRV achieve
the best identification rates.

Figures 6(a) and (b) show the corresponding ROC curves
for the verification experiments. The SRV and KSRV meth-
ods have similar performances in both figures. They give
better ROC curves than the WGCP method in Figure 6(a)
for all FARs, and in Figure 6(b) for low FARs.
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Fig. 6: (a) The ROC curves for S2, S3 and S4 verification
experiments on the MBGC walking videos. (b) The ROC
curves of “SD vs. HD” and “HD vs. SD” experiments on
the MBGC walking video subset S2. The proposed sparsity-
based methods give better ROC curves than the WGCP
method shown in (a), and in (b) for low FARs.

C. Honda/UCSD Dataset

For the final set of experiments, we use the Honda/UCSD
Dataset [5]. The Honda Dataset consists of 59 video se-
quences from 20 distinct subjects. We follow the same
experimental procedure presented in [13]. The experiments
are done in three cases of the maximum set length (available
number of cropped-face images per video sequence) as
defined in [13]: 50, 100 and full length frames. Image
resolution is 20×20 pixels. Table V shows the identification
rates of the proposed sparsity-based methods and other six
state-of-the-art methods [29],[30],[31],[32],[13]. We observe
that both fusion methods obtained the highest average iden-
tification rates, tieing with each other.



Set length DCC [29] MMD [30] MDA [31] AHISD [32]
50 frames 76.92 69.23 74.36 87.18
100 frames 84.62 87.18 94.87 84.62
full length 94.87 94.87 97.44 89.74
Average 85.47 83.76 88.89 87.18

Set length CHISD [32] SANP [13] SRV KSRV
50 frames 82.05 84.62 94.87 94.87
100 frames 84.62 92.31 97.44 97.44
full length 92.31 100 97.44 97.44
Average 86.33 92.31 96.58 96.58

TABLE V: Identification rates on the Honda/UCSD Dataset.
The proposed sparsity-based methods obtained the highest
average identification rates.

IV. CONCLUSIONS

We proposed an effective joint sparsity-based approach for
unconstrained video-based face recognition. In the training
stage, we partition the face images extracted from a given
video. Each partition captures different pose and illumination
conditions and is encoded in different video sub-dictionaries.
Each sub-dictionary encodes a face in a particular viewing
condition. In the testing stage, the same partition is found
for the query video. Then joint sparse representation is
found to make decisions for recognition under the minimum
class reconstruction error criterion. Various experiments on
publicly available data sets show that our method is efficient
and can perform significantly better than many state-of-the-
art face recognition algorithms in the literature.
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