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Abstract

In this paper, we address the problem of matching faces

across changes in pose in unconstrained videos. We pro-

pose two methods based on 3D rotation and sparse repre-

sentation that compensate for changes in pose. The first is

Sparse Representation-based Alignment (SRA) that gener-

ates pose aligned features under a sparsity constraint. The

mapping for the pose aligned features are learned from a

reference set of face images which is independent of the

videos used in the experiment. Thus, they generalize across

data sets. The second is a Dictionary Rotation (DR) method

that directly rotates video dictionary atoms in both their

harmonic basis and 3D geometry to match the poses of

the probe videos. We demonstrate the effectiveness of our

approach over several state-of-the-art algorithms through

extensive experiments on three challenging unconstrained

video datasets: the video challenge of the Face and Ocular

Challenge Series (FOCS), the Multiple Biometrics Grand

Challenge (MBGC), and the Human ID datasets.

1. Introduction

Face recognition with its wide range of commercial and

law enforcement applications has been one of the most

active areas of research in the field of computer vision.

Though face recognition research has traditionally concen-

trated on recognition from still images, video-based face

recognition has gained considerable traction in recent years.

Video is a rich source of information that can lead to poten-

tially better representations by integrating multiple views of

a face and their corresponding temporal signature.

Numerous approaches have been proposed to exploit

the extra information available in video. Arandjelovic and

Cipolla [2] represented the variations in shape and illumina-

tion by assuming that the shape-illumination manifold for

faces is generic. Turaga et al. [14], [13] proposed statis-

tical methods using subspace-based models and tools from
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Riemannian geometry of the Grassmann manifold. Hu et

al. [8] proposed a method to measure the between-set dis-

similarity defined as the distance between sparse approxi-

mated nearest points of two image sets. Cui et al. [5] pro-

posed the use of a reference image set to align the two im-

age sets. In their work, a video sequence of a person was

randomly selected from the training set as the reference im-

age set. The alignment between the reference set and an

image set was formulated as an optimization problem and

solved by quadratic programming. Chen at al. [4] parti-

tioned the video sequence and built video dictionaries that

capture changes in illumination and pose, and remove the

temporal redundancy.

Though significant efforts have gone into understanding

the different sources of variations affecting facial appear-

ance, the accuracy of video-based face recognition algo-

rithms in completely uncontrolled scenarios is still far from

satisfactory. Pose and illumination variations still remain

as one of the biggest challenges. Some of the above meth-

ods [2], [14], [13], [8], [5], [4], rely on the pose diversity

contained in the gallery videos to handle pose variations.

When there are pose differences between the videos, the ro-

bustness of these methods is limited.

Figure 1 shows two typical examples of face mismatch-

ing across pose. In Figure 1(a), the first face pair compares

frontal and non-frontal images of subject A; the second pair

compares frontal images of subjects A and B. In this case,

the distance1 shows a better match between the two frontal

images than the true match across pose. Figure 1(b) gives
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Figure 1. Illustration of common errors when matching faces

across changes in pose. (a) The first face pair compares frontal and

non-frontal images of subject A; the second pair compares frontal

images of subjects A and B. (b) The first face pair compares non-

frontal and frontal images of subject B; the second pair compares

non-frontal images of subject B and C. In both cases, the distance

shows a better match between the two in-pose images than the true

match across pose.

another example where the distance shows a better match

1Here, we take the ℓ2-norm distance between two images.
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between the two non-frontal images than the true match.

Whenever the gallery videos contain only frontal poses and

the probe videos contain only side-poses (and vice versa)2,

methods discussed above can result in recognition errors.

In this paper, we consider matching faces across very

different poses between the probe and the gallery videos.

Our reference sets are independent of the gallery and probe

sets specified by the protocol. We propose two methods

to compute pose aligned features based on 3-dimensional

(3D) rotation and sparse representation. The first method

is referred to as Sparse Representation-based Alignment

(SRA) method. The pose aligned images obtained through

this method are referred to as the SRA images. The sec-

ond method is an adaptation of the SRA method that ro-

tates the video dictionary atoms to align the pose prior to

recognition. It is referred to as the Dictionary Rotation (DR)

method.
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Figure 2. Illustration of creating reference sets and generating the

SRA images.

The proposed SRA method consists of three steps (see

Figure 2). In the first step, we obtain candidate reference

sets for pose alignment from independent sources. The ref-

erence set does not contain videos in the gallery or probe

sets specified in the protocol. Candidate reference sets can

be other face datasets that contain images of many subjects

in various poses, or generated from 3D face models through

synthesizing face images. The second step is to generate

the SRA images. Given a test image, we estimate its pose,

2We refer to gallery videos as enrolled videos for training, and probe

videos as videos to be recognized for testing.

compute the sparsity-constrained coefficient vector on the

reference set for the estimated pose, and map the coeffi-

cient vector back onto the frontal-pose reference set to ob-

tain the SRA image of the test image. Figure 2 illustrates

the first two steps of our method. In the third step, we

build the SRA video dictionaries and the base video dic-

tionaries (DFRV [4])3, and then effectively fuse both video

dictionaries to construct the distance matrix for recognition.

The SRA video dictionaries enable face recognition across

changes in poses. Figures 3 (a) and (b) illustrate the train-

ing and the testing stages for building video dictionaries and

constructing the distance matrix, respectively.
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Figure 3. Illustration of training and testing stages. (a) Training

stage: build the base video dictionaries [4] and SRA video dictio-

naries. (b) Testing stage: compute residuals using both the base

video dictionaries and SRA video dictionaries for recognition.

The rest of the paper is organized as follows. Section 2

details the proposed SRA and DR methods. Section 3 de-

scribe our approach to pose estimation from videos. We

present experimental results and discussions in Section 4.

Section 5 concludes the paper with a brief summary.

3We refer to the video dictionaries by DFRV [4] as “base video dictio-

naries”.



2. Sparse Representation-based Alignment

The proposed SRA method computes the pose aligned

feature as the re-projection of each face image under an ar-

bitrary pose onto a fixed pose (e.g. frontal) reference set,

and then measures the pairwise distances among these re-

projections for recognition. The underlying assumption of

our method is that whenever a face image under an arbitrary

pose θ1 is represented using a reference set under pose θ1

weighed by a set of sparse coefficients, then the face image

of the same subject under another pose θ2 can be approxi-

mately represented by the re-projection using the same set

of sparse coefficients on the reference set under pose θ2.

Without loss of generality, let yθ be a d-dimensional vec-

tor representing an input face image under a non-frontal

pose θ in its column-vectorized form, where θa, θe and θz

stand for azimuth angle (wrt the y axis), elevation angle (wrt

the x axis) and the rotation anglewrt the z axis, respectively.

The input image can be a probe image for test, or a gallery

image for training specified by the protocol.

The proposed SRA method consists of three steps. In

what follows, we present details of these steps.

2.1. Obtain Reference Sets for Alignment

In the first step, we obtain the reference sets for pose

alignment. Ideally, the reference sets are independent

datasets from the protocol with face images from various

subjects in different pose and illumination conditions. The

poses of the reference sets should cover those in the probe

and gallery videos. In practice, when these datasets are not

available, or lacking of enough pose and/or subject variabil-

ity, one alternative is to use a 3D face model (e.g. Vetter’s

database [3]) to synthesize face images in several poses with

illumination changed accordingly [16]. The reference sets

can then be built from the synthesized images. Let the re-

sulting reference set from V subjects under a particular pose

θ be denoted by

Bθ = [b
[1]
θ,0... b

[1]
θ,U−1| · · · | b

[V ]
θ,0 ... b

[V ]
θ,U−1], (1)

where b
[v]
θ,u denotes the uth synthetically created variation

of face image of the vth subject under pose θ in its column-

vectorized form. The variations include slight changes in

pose (including θa, θe and θz), illumination or spatial loca-

tions. These are created to account for variations among

images that are non-ideally cropped from unconstrained

videos, and for the pose errors due to non-ideal estimation.

In particular, there are in total only U−1 synthetic vari-
ations, appearing in the same sequence for all subjects and

all poses. In other words, the uth synthetic variation ap-

plied to yield b
[v]
θ,u is the same operation for all v and θ.

This constraint is required to generate final aligned images

in the frontal pose using the sparsity constraint coefficients,

as discussed in section 2.2. For simplicity of notation, we

use Bθ0
to denote the reference set from V subjects under

the frontal pose.

2.2. Generate SRA Images

In the second step, we generate SRA images using the

reference sets presented in section 2.1. We present the moti-

vation of using the sparse representation-based pose aligned

feature as follows.

Under the assumption that yθ can be approximated by a

sparse linear combination of vectors from Bθ, we compute

the sparse coefficient vector γ̂ by solving the following op-

timization problem

γ̂ = argmin
γ

‖γ‖1 such that ‖yθ −Bθγ‖
2
2 ≤ ε, (2)

where ‖ · ‖1 is the ℓ1-norm. Let yθ0
denote yθ’s frontal im-

age, and γ̂0 be the solution to (2) with yθ and Bθ replaced

by yθ0
and Bθ0

, respectively. We can relate yθ and yθ0
to

Bθ and Bθ0
by

yθ = Bθγ̂ + e, (3)

yθ0
= Bθ0

γ̂0 + e0, (4)

where e and e0 are error terms. Now, consider the two re-

projections: Bθ0
γ̂0, and Bθ0

γ̂. In the following, we show

the distance ‖Bθ0
γ̂0 − Bθ0

γ̂‖2 can be made small if Bθγ̂

and Bθ0
γ̂0 can well approximate yθ and yθ0

, respectively.

Rotating an input image yθ by δ according to the 3D

face model can be approximated through the completion of

the following two steps: (1) Perform δ-rotation on the har-

monic basis of yθ [16]. (2) Apply spatial translation and

interpolation according to the 3D δ-rotation matrix. In step

(1), the harmonic basis of yθ is changed in accordance with

the azimuth, elevation and z axis rotations [16]. We denote

the resulting intermediate image vector by ỹθ+δ. In step

(2), a spatial translation and interpolation operator Rδ(·)
determined by the 3D rotation matrix, is applied on ỹθ+δ to

obtain the output image yθ+δ. It can be shown that

yθ+δ ≈ Bθ+δγ̂ +Rδ(e), (5)

‖Bθ0
γ̂0−Bθ0

γ̂‖2≈‖R−θ(e)−e0‖2≤‖R−θ(e)‖2+‖e0‖2.
(6)

Due to the space limitations, we present more details on

the harmonic basis rotation, as well as the derivations for

(5) and (6) in the Supplementary Material.

Based on (6), ‖Bθ0
γ̂0 − Bθ0

γ̂‖2 can be made small if

the errors ‖e‖2 and ‖e0‖2 are both small. Even if ‖e‖2 and
‖e0‖2 cannot be ignored, since e0 is the reconstruction error

of yθ0
under frontal pose θ0, and e is the reconstruction

error of yθ under pose θ, e0 and R−θ(e) should stay close
to each other whenever θ is not large. In this case, ‖Bθ0

γ̂0−
Bθ0

γ̂‖2 remains close to zero, and hence in general smaller
than ‖yθ0

−yθ‖2, the distance between two original images
under different poses.



From this motivation, we define the SRA image of yθ ,

denoted by yθ,SRA, as the re-projection on the frontal refer-

ence set Bθ0
using γ̂ in (2). It is a synthesized face image

in the frontal pose:

yθ,SRA = Bθ0
γ̂. (7)

Similarly, the SRA image of yθ0
, denoted by yθ0,SRA,

is obtained by replacing γ̂ with γ̂0 in (7). The top part of

Figure 2 illustrates example reference sets in different poses

created from the Vetter’s 3D facemodel [3]. We assume that

images in the frontal pose are initially available. Using the

frontal images, we create synthetic variations and then im-

ages in different poses {θl}
L
l=1, from which reference sets

are constructed. Algorithm 1 describes the details for gen-

erating the reference sets, {Bθl
}L

l=1. The bottom part of

Figure 2 illustrates how the SRA feature of an input image

is computed. With the pose estimate of the input image,

we select the reference set whose pose is closest to the esti-

mate among the all available poses. The coefficient vector

is computed with the selected reference set using (2) and

then mapped back to Bθ0
in (7), where the projection onto

Bθ0
is computed as the output SRA image.

Algorithm 1: Generate reference sets for poses {θl}
L
l=1.

Input: Properly cropped frontal face images from V subjects

{b
[v]
θ0,0}

V
v=1, a set of possible poses {θl}

L
l=1, and Vetter’s

3D face model [3].

Algorithm:

1. Apply predefined (U−1) synthetic variations on each b
[v]
θ0,0 to

obtain {b
[v]
θ0,u

}U−1
u=1 , ∀v ∈ {1, ..., V }. Form Bθ0

by

concatenating b
[v]
θ0,u

’s.

2. Estimate the basis harmonics [17]. Repeat 3 and 4

∀ v ∈ {1, ..., V }, u ∈ {1, ..., U − 1}, l ∈ {1, ..., L}:

3. Let δl = θl − θ0. Given b
[v]
θ0,u

, rotate the basis harmonics and

compute the intermediate image b̃
[v]
θl,u

, where the illumination is

changed accordingly with rotation δl [16].

4. Compute the 3D rotation matrix Rδl
. Obtain the final rotated

image b
[v]
θl,u

for each pixel using either direct mapping from the

corresponding source pixel, or interpolation from neighboring

pixels.

5. Collect {b
[v]
θl,u

}L
l=1’s and obtain {Bθl

}L
l=1.

Output: Bθ0
and {Bθl

}L
l=1

2.3. Building video dictionaries andComputingDis-
tances

In this section, we describe how the video dictionaries

are built and used to compute distances. We refer to the

video dictionaries proposed in [4] as the base video dictio-

naries, and the video dictionaries built using our SRA im-

ages as the SRA video dictionaries. Our approach extends

the DFRV method [4] to effectively combine both base and

SRA video dictionaries in such a way that the base video

dictionaries are used only when there is small difference in

pose across the the probe and gallery videos, otherwise, the

SRA video dictionaries are used to account for the large

pose difference across the the probe and gallery videos.

In the DFRV method [4], given the gth video sequence

in the training stage, cropped face images extracted from all

frames form a set denoted by S(g), and uses the video par-

tition algorithm [4] to separate S(p) into K partitions. Let

G
(g)
k denote the resulting gallery matrix from the kth par-

tition, ∀k = 1, ..., K . In our method, to further obtain the

SRA images of G
(g)
k , we assume that all images belonging

to partition G
(g)
k are in close poses. Let θ̂ be the estimated

pose of G
(g)
k . Among all available Bθ’s, we choose Bθ̄

such that θ̄ is the closest pose to θ̂ among the other poses in

the reference sets. For each column in G
(g)
k , we use (2) and

(7) (with Bθ replaced by Bθ̄ accordingly) to compute its

SRA image, and concatenate the columns of SRA images

to form G
(g)
k,SRA. Next, from G

(g)
k and G

(g)
k,SRA, we use

the K-SVD algorithm [1] to learn the partition-level sub-

dictionaries D(g),k, D(g),k,SRA, ∀k = 1, ..., K . Then the

base video dictionaries D(g) [4], and SRA video dictionar-

ies D(g),SRA are constructed by concatenating the corre-

sponding sub-dictionaries.

In the testing stage, we partition the pth probe video

sequence denoted by Q(p) =
⋃K

k=1 Q
(p)
k , where Q

(p)
k =

[q
(p)
k,1 ... q

(p)
k,nk

] as in [4], and then use (2) and (7) to compute

the SRA partition Q
(p)
k,SRA, ∀k = 1, ..., K . These partitions

are collected as Q
(p)
SRA.

Let R be the distance matrix with entry R(p,g) denot-

ing the residual between the pth probe video and the gth

gallery video. Our method to compute R(p,g) requires us-

ing SRA images and SRA video dictionaries only when a

gallery video dictionary and partitions of a probe video ap-

pear in very different poses. In particular, when poses of

Q
(p)
k and D(g) are close, the correspondingR(p,g) remains

computed fromQ
(p)
k and base D(g) [4]. On the other hand,

when their poses are very different, R(p,g) is computed us-

ing their Q
(p)
SRA and D(g),SRA. Therefore,

R(p,g) = min
k∈{1,...,K}

R
(p,g)
k , (8)

whereR
(p,g)
k =







min
l
‖q

(p)
k,l −D(g)D

†
(g)q

(p)
k,l ‖2, if η(Q

(p)
k ,D(g))=1,

min
l
‖q

(p)
k,l,SRA −D(g),SRAD

†
(g),SRAq

(p)
k,l,SRA‖2, else.

In (8), D† denotes the pseudo-inverse of D, and

η(Q
(p)
k ,D(g)) is an indicator function such that η = 1 if

Q
(p)
k and D(g) are in close poses, and η=0 otherwise. Fig-



ures 3(a) and (b) are illustrations of building base video dic-

tionaries and SRA video dictionaries, and constructing the

distance matrix, respectively. Algorithm 2 summarizes our

SRA method.

Algorithm 2: The SRA algorithm.

Training:

1. Given a sequence - the gth video, extract all the frames from it.

Detect and crop face regions to form a set S(g).

2. Separate S(g) into K partitions. Augment each partition by

adding synthetic images and obtain the resulting augmented

gallery matrix from the kth partition, G
(g)
k

,∀k = 1, ...,K .

3. For each column in G
(g)
k

, use (2) and (7) to compute its SRA

image. The resulting G
(g)
k,SRA is formed by concatenating

columns of the corresponding SRA images.

4. From G
(g)
k

and G
(g)
k,SRA, use the K-SVD algorithm to learn

the corresponding partition-level sub-dictionaries D(p),k ,

D(p),k,SRA, ∀k = 1, ...,K , and video dictionaries D(g),

D(g),SRA.

Testing:

1. Partition the pth probe video sequence Q(p) =
⋃K

k=1 Q
(p)
k

,

where Q
(p)
k

= [q
(p)
k,1 q

(p)
k,2 ... q

(p)
k,nk

] as in [4].

2. Use (2) and (7) to compute the SRA images of Q
(m)
k

, denoted

by Q
(p)
k,SRA. Then obtain the corresponding Q

(p)
SRA.

3. Using D(g) , D(g),SRA, Q
(p) and Q

(p)
SRA, construct the

distance matrix R(p,g) by (8).

2.4. Dictionary Rotation

The second method for pose alignment is an extension

of the SRA algorithm, designed by rotating the video dic-

tionary atoms in both their harmonic basis and 3D geom-

etry. In other words, it performs 3D rotation on atoms of

video dictionaries to match the pose prior to recognition.

We refer to this method as Dictionary Rotation (DR). We

first obtain the pose estimate for the kth partition of the pth

probe video Q
(p)
k , and then use steps 2 ∼ 4 of Algorithm

1 to rotate each column of D(g) to the pose estimate
4. Let

the resulting video dictionary be denoted by D
(p),k
(g),DR

. The

same steps are repeated for all K partitions of Q(p). Next,

we use (8) to find R(p,g), with R
(p,g)
k replaced by

R
(p,g)
k = min

l
‖q

(p)
k,l −D

(p),k
(g),DR

(

D
(p),k
(g),DR

)†

q
(p)
k,l ‖2. (9)

Prior to computing the distance, the pose alignment is

done by directly rotating dictionary atoms to the estimated

pose from each partition of a given probe video. The under-

lying motivation of this method is based on the fact that if

a probe image qθ is represented as a linear combination of

video dictionary atoms plus an error term

qθ = D(g)β + ǫ, (10)

4Here, the frontal pose θ0 in steps 2∼4 of Algorithm 1 is replaced by

a general pose θ.

then from (3) and (5), the δ-rotated copy of qθ is

qθ+δ ≈ Rδ(Ď(g))β +Rδ(ǫ), (11)

where Ď(g) is D(g) with δ-rotated harmonic basis, and

Rδ(Ď(g)) is the δ-rotated D(g). Each column ofRδ(Ď(g))
is δ-rotated version of the corresponding column of D(g).

Therefore, δ-rotating an image can be approximated by a

linear combination of the corresponding δ-rotated dictio-

nary atoms weighed by the same coefficient vector.

3. Pose Estimation

Various geometric-based approaches have been pro-

posed in the literature for pose estimation using facial land-

marks, such as the location of the eyes, nose, and mouth [6],

[7], [15], [9], [16]. Unlike constrained still images, face im-

ages extracted from unconstrained videos may suffer from

low resolution or bad illumination. This makes automatic

detection of landmarks much more difficult. We present

a semi-automatic method for estimating poses in videos.

First, we select face images of V1 out of V subjects from

the reference set with various poses. For each face image,

we manually locate T landmarks. Let lvt,θ be the resulting

two dimensional vector representing the spatial location the

tth landmark of subject v under pose θ. Let s∗k be the exem-

plar of the kth partition obtained through the video sequence

partition algorithm presented in [4], with the corresponding

vector of the tth landmark denoted by lt(s
∗
k). For the given

test video, we assume that all the images in a partition have

approximately the same pose. Due to the fact that a video

usually contains a large quantity of images, instead of locat-

ing landmarks for all images, we manually locate landmarks

on the K exemplar images only. The pose estimate of each

exemplar is used to represent the pose of the correspond-

ing partition. Using nearest neighbor criterion, we select

the pose with landmark vectors {lvt,θ}
V1,T
v=1,t=1 that gives the

minimum average distance to {lt(s
∗
k)}T

t=1 as the pose esti-

mate θ̂ of the partition. In other words,

θ̂ = argmin
θ

∑V1

v=1

∑T
t=1 ‖l

v
t,θ − lt(s

∗
k)‖2

V1T
. (12)

For images from unconstrained videos, however, some-

times even manually locating the landmarks is impossible

due to the image’s extremely poor resolution and illumina-

tion. In this case, we simply examine the face image and

roughly estimate the pose directly.

4. Experimental results

We evaluate our methods on three challenging datasets:

the video challenge of the Face and Ocular Challenge Se-

ries (FOCS) [10], the Multiple Biometrics Grand Challenge

(MBGC) [12], and the Human ID [11] datasets. For FOCS



and MBGC datasets, we created the reference sets using

the 3D face model [3] from 100 subjects in the Vetter’s

database. For the Human ID dataset, as it contains facial

moving mug shot videos with face poses in θa ranging from

−90◦∼90◦, we collected frames directly from these videos

as reference sets. There is no overlap between subjects

whose videos are used as reference sets and subjects whose

videos are used as probe and gallery videos for testing.

(a)

(b)
Figure 4. Examples of UT-Dallas and MBGC video sequences. (a)

UT-Dallas walking (top row) and activity (bottom row) sequences.

(b) MBGCwalking (top row) and activity (bottom row) sequences.

4.1. FOCS UT-Dallas Video

The video challenge of Face and Ocular Challenge Series

(FOCS) [10] contains an experiment on data collected at

the University of Texas at Dallas (UT-Dallas). This dataset

consists of 510 walking (frontal face) and 506 activity (non-

frontal face) video sequences recorded from 295 subjects

with frame size 720 × 480 pixels. This dataset allows for

the design of experiments that match “frontal vs. frontal”,

“frontal vs. non-frontal”, and “non-frontal vs. non-frontal”

video sequences. The top row of Figure 4(a) shows key

frames from four different walking sequences of one sub-

ject. The videos were recorded on different days. In the

walking sequences shown on the top row, the subject is orig-

inally positioned far away from the video camera, walks to-

wards it with a frontal pose, and finally turns away from

the video camera showing a profile face. The bottom row

of figure 4(a) shows key frames of four different activity se-

quences of the same subject. In these sequences, the subject

stands and talks with another person whose back is to the

video camera. The sequences contain normal head motions

turning up to θa = ±90◦ during a conversation.
We resized the faces to 20 × 20 pixels and conducted

leave-one-out tests on 3 subsets: S2 (294 subjects, 1014

videos), S4 (183 subjects, 782 videos), and S6 (19 sub-

jects, 126 videos)5. Unlike DFRV [4] where only walking

5We refer to Sn as subjects that have at least n video sequences.

videos were chosen for identification tests, we conduct ex-

periments across both walking and activity videos6. Table I

shows identification rates. Table I shows our SRA and DR

methods performed better than state-of-the-art algorithms

including SANP [8] and DFRV [4]. The SRA approach

was better than the DR method on 2 of 3 cases, and tied on

1 case. Statistics-based approaches including PM, KD and

WG [14], [13], no longer give satisfactory results. The ‘no

DL’ is a baseline method that represents each video partition

directly as a set of basis atoms without dictionary learning.

Figure 5 compares ROC curves of DFRV [4] and our

SRA method. As shown, while there is no difference be-

tween both methods under “W vs W” (walking vs walk-

ing7) and “A vs A” (activity vs activity) verification proto-

cols, the proposed SRA method outperforms DFRV under

“A vs W” (activity vs walking) and “W vs A” (walking vs

activity) protocols8. This is explained by the fact that the

SRA method takes the same distances as DFRV [4] when

matching in-pose videos (“W vs W” and “A vs A”), while it

uses pose aligned feature (i.e. SRA image) to measure the

distance between videos across different poses (“A vs W”

and “W vs A”). Based on Table I and Figure 5, the pro-

posed SRA outperforms other methods through the use of

pose aligned feature in matching out-of-pose videos.

4.2. MBGC Video version 1

The MBGC Video version 1 dataset contains 399 walk-

ing (frontal-face) and 371 activity (profile-face) video se-

quences recorded of 146 subjects. Both types of sequences

were collected in standard definition (SD) format (720×480
pixels) and high definition (HD) format (1440× 1080 pix-
els). The top row of Figure 4(b) shows example frames from

four different walking sequences, where each subject walks

toward the video camera with a frontal pose for most of the

time and turns to the left or right showing the profile face

at the end. The bottom row of Figure 4(b) shows example

frames from four different activity sequences, where each

subject reads from a paper. The activity sequences consists

of non-frontal views of the subject.

Each cropped face image was resized to 20 × 20 pixels

for the experiment. We conducted leave-one-out tests on 3

subsets: S2 (145 subjects, 769 videos), S5 (55 subjects, 426
videos), and S8 (48 subjects, 384 videos). Similar to sec-

tion 4.1, the identification experiments are performed across

both walking and activity videos. Table II shows identifica-

tion results. As shown, the proposed SRA and DR obtained

6According to (8)(9), the proposed methods can achieve the same per-

formance as DFRV [4] when matching in-pose (walking) videos. We chose

not to repeat identification experiments on only walking videos, because

in-pose video matching is not the focus of this paper.
7This means walking videos as probe, and walking videos as gallery.

“A vs A”, “A vs W” and “W vs A” can be explained in the same manner.
8This is true when the false acceptance rate (FAR) is less than 0.5,

which covers the upper limit of FAR for most applications.



UT-Dallas all

(W & A) videos

PM

[14],[13]

KD

[14],[13]

WGCP

[14]

SANP

[8]

baseline

(no DL)

DFRV

[4]

DR SRA

S2 17.46 14.89 8.48 25.54 22.98 23.67 28.40 28.40

S4 24.30 20.33 11.64 33.38 29.80 31.59 36.70 38.36

S6 47.62 43.65 30.16 51.59 50.79 55.56 59.52 62.70

Average 29.79 26.29 16.76 36.84 34.52 36.94 41.54 43.15

Table I. Identification rates of leave-one-out testing experiments on the FOCS UT-Dallas (both walking and activity) videos.
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Figure 5. ROC curves of the DFRV [4] and our SRA methods on

the FOCS UT-Dallas videos. Our SRA method takes the same dis-

tances as DFRV [4] when matching in-pose videos (“W vs W” and

“A vs A”), and uses the pose aligned feature to measure distances

between out-of-pose videos (“A vs W” and “W vs A”). As shown,

it outperforms DFRV in out-of-pose scenarios.

improved identification rates over comparable algorithms.

In addition, the MBGC dataset contains videos in both HD

and SD formats for the same subject recorded in the same

day, while videos of each subject in the FOCS dataset were

recorded on different days, during which the subjects may

have changed style in their hair, facial hair, expression, pose

and illumination. This explains the overall much higher

recognition rates on the MBGC dataset than those on the

FOCS dataset.

4.3. Human ID database

The Human ID database [11] contains videos of human

faces and people, which is useful for testing algorithms for

face and person recognition. For each selected subject, there

are videos of moving facial mug shots, facial speech, dy-

namic facial expressions, walking on the same day, and

walking on a different day. A complete set of videos is

available for 284 subjects. We selected videos of 30 out

of 284 subjects from the Human ID database for our ex-

periments. The face region was properly cropped and re-

sized to 30 × 24 pixels. The first three rows of Figures 6

show cropped face images of one subject from its moving

facial mug shot, facial speech and dynamic facial expres-

sion videos, respectively. The last row of Figures 6 shows

the walking video frames of the same subject recorded on

the same day (left) as the first three videos, and on a differ-

ent day (right). The facial mug shot video contains poses

from the left side pose to the right side pose (θa from

−90◦∼90◦ wrt the y axis), incremented in a step of 22.5◦.
Each gallery video is a trimmed facial moving mug shot

video that contains face images with poses in θa ranging

from about 0◦∼90◦, while probe videos of the same subject
contains facial speech, expression, walking (on the same

day) and walking (on a different day) videos. Cropped face

images from the probe videos are almost always frontal.

Figure 6. Example frames from the Human ID database. Videos

include: moving facial mug shots (1st row), facial speech (2nd

row), dynamic facial expression (3rd row), walking on the same

day (4th row left), and walking on a different day (4th row right).

Table III shows recognition rates on the four types of

probe videos. The proposed SRA obtained the best aver-

age results. The SRA∗ column in Table III gives recogni-

tion rates when the reference set is constructed using frames

of facial moving mug shot videos from another set of 30

subjects (i.e. other than gallery/probe videos). We observe

SRA∗, however, did not improve the performance compared

to SRA. This can be explained by the fact that images used

to construct the reference sets were chosen from a fix set of

indices for all 30 selected subjects. When recorded, how-

ever, the timing of head turning may vary among the differ-

ent subjects. Therefore, unlike Vetter’s face reference sets,

poses and their variations were in fact not aligned across

different subjects. The resulting projection error may make

the SRA∗ distances even greater than the original out-of-

pose distances for the same subject. Hence, this experiment

highlights the importance of the choice of reference sets.



MBGC v1 all

(W & A) videos

PM

[14],[13]

KD

[14],[13]

WGCP

[14]

SANP

[8]

baseline

(no DL)

DFRV

[4]

DR SRA

S2 41.48 31.86 14.17 68.79 62.55 69.70 80.88 82.18

S5 43.90 35.68 17.84 69.25 63.38 70.66 80.28 81.22

S8 44.53 35.94 18.49 71.09 64.32 71.35 81.51 82.55

Average 43.30 34.49 16.83 69.71 63.42 70.57 80.89 81.98

Table II. Identification rates of leave-one-out testing experiments on the MBGC v1 (both walking and activity) videos.

Human ID video types PM

[14],[13]

KD

[14],[13]

WGCP

[14]

SANP

[8]

baseline

(no DL)

DFRV

[4]

DR SRA∗ SRA

Facial speech 40.00 33.33 20.00 43.33 36.67 63.33 73.33 63.33 63.33

Facial expression 33.33 13.33 10.00 36.67 26.67 56.67 53.33 53.33 56.67

Walking (same day) 3.33 3.33 6.67 20.00 16.67 20.00 13.33 20.00 30.00

Walking (different day) 10.00 6.67 6.67 6.67 10.00 13.33 13.33 10.00 23.33

Average 21.67 14.17 10.84 26.67 22.50 38.33 38.33 36.67 43.33

Table III. Identification rates of matching 4 types of probe videos with the moving facial mug shot gallery videos on the Human ID database.

5. Conclusions

We have extended the existing unconstrained video-to-

video face recognition frameworks to the one that explic-

itly addresses the challenge of matching probe and gallery

videos in different poses. Our approaches include a sparse

representation-based alignment method that generates pose

aligned features through pre-designed reference sets under

a sparsity constraint, and a dictionary rotation method that

directly rotates gallery video dictionary atoms in both their

harmonic basis and 3D geometry to match the poses of the

probe videos. Through extensive experiments on three chal-

lenging unconstrained video datasets across poses, illumi-

nations and facial changes, the proposed SRA and DR have

been shown to achieve better recognition performances than

several state-of-the-art methods. Our future research direc-

tions include applying effective fusion methods and extract-

ing class discriminative feature from pose aligned features.
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