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Abstract

In this paper, we present an algorithm for unconstrained

face verification based on deep convolutional features and

evaluate it on the newly released IARPA Janus Benchmark

A (IJB-A) dataset as well as on the traditional Labeled Face

in the Wild (LFW) dataset. The IJB-A dataset includes real-

world unconstrained faces from 500 subjects with full pose

and illumination variations which are much harder than the

LFW and Youtube Face (YTF) datasets. The deep convolu-

tional neural network (DCNN) is trained using the CASIA-

WebFace dataset. Results of experimental evaluations on

the IJB-A and the LFW datasets are provided.

1. Introduction

Face verification is one of the core problems in com-

puter vision and has been actively researched for over two

decades [40]. In face verification, given two videos or im-

ages, the objective is to determine whether they belong to

the same person. Many algorithms have been shown to

work well on images that are collected in controlled set-

tings. However, the performance of these algorithms often

degrades significantly on images that have large variations

in pose, illumination, expression, aging, cosmetics, and oc-

clusion.

To deal with this problem, many methods have focused

on learning invariant and discriminative representation from

face images and videos. One approach is to extract over-

complete and high-dimensional feature representation fol-

lowed by a learned metric to project the feature vector

into a low-dimensional space and to compute the similar-

ity score. For instance, the high-dimensional multi-scale

Local Binary Pattern (LBP)[5] features extracted from lo-

cal patches around facial landmarks is reasonably effective

for face recognition. Face representation based on Fisher

vector (FV) has also shown to be effective for face recog-

nition problems [26][23], [9]. However, deep convolu-

tional neural networks (DCNN) have demonstrated impres-

sive performances on different tasks such as object recog-

nition [21][31], object detection [14], and face verification

[25]. It has been shown that a DCNN model can not only

characterize large data variations but also learn a compact

and discriminative feature representation when the size of

the training data is sufficiently large. Once the model is

learned, it is possible to generalize it to other tasks by fine-

tuning the learned model on target datasets [13]. In this

work, we train a DCNN model using a relatively small face

dataset, the CASIA-WebFace [38], and compare the perfor-

mance of our method with other commercial off-the-shelf

face matchers on the challenging IJB-A dataset which con-

tains significant variations in pose, illumination, expression,

resolution and occlusion. We also evaluate the performance

of the proposed method on the LFW dataset.

The rest of the paper is organized as follows. We briefly

review some related works in Section 2. Details of the dif-

ferent components of the proposed method including the

DCNN representation and joint Bayesian metric learning

are given in Section 3. The protocol and the experimen-

tal results are presented in Section 4. Finally, we conclude

the paper in Section 5 with a brief summary and discussion.

2. Related Work

In this section, we briefly review several recent related

works on face verification.

2.1. Feature Learning

Learning invariant and discriminative feature represen-

tation is the first step for a face verification system. It can

be broadly divided into two categories: (1) hand-crafted

features, and (2) feature representation learned from data.

In the first category, Ahonen et al. [1] showed that the

Local Binary Pattern (LBP) is effective for face recogni-

tion. Gabor wavelets [39][37] have also been widely used

to encode multi-scale and multi-orientation information for

face images. Chen et al. [6] demonstrated good results

for face verification using the high-dimensional multi-scale

LBP features extracted from patches around facial land-

marks. In the second category, Patel et. al. [24] and Chen

et. al. [11][10] applied dictionary-based approaches for im-
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Figure 1. An overview of the proposed DCNN approach for face verification.

age and video-based face recognition by learning represen-

tative atoms from the data which are compact and robust to

pose and illumination variations . [26][23][7] used the FV

encoding to generate over-complete and high-dimensional

feature representation for still and video-based face recog-

nition. Lu et al.[22] proposed a dictionary learning frame-

work in which the sparse codes of local patches generated

from local patch dictionaries are pooled to generate a high-

dimensional feature vector. The high-dimensionality of fea-

ture vectors makes these methods hard to train and scale to

large datasets. However, advances in deep learning meth-

ods have shown that compact and discriminative represen-

tation can be learned using DCNN from very large datasets.

Taigman et al. [33] learned a DCNN model on the frontal-

ized faces generated with a general 3D shape model from

a large-scale face dataset and achieved better performance

than many traditional face verification methods. Sun et al.

[28][30] achieved results that surpass human performance

for face verification on the LFW dataset using an ensemble

of 25 simple DCNN with fewer layers trained on weakly

aligned face images from a much smaller dataset than the

former. Schroff et al. [25] adapted the state-of-the-art deep

architecture for object recognition to face recognition and

trained it on a large-scale unaligned private face dataset

with the triplet loss. This method also achieved top per-

formances on face verification problems. These works es-

sentially demonstrate the effectiveness of the DCNN model

for feature learning and detection/recognition/verification

problems.

2.2. Metric Learning

Learning a similarity measure from data is the other key

component that can boost the performance of a face veri-

fication system. Many approaches have been proposed in

the literature that essentially exploit the label information

from face images or face pairs. For instance, Weinberger et

al. [36] proposed Large Margin Nearest Neighbor(LMNN)

metric which enforces the large margin constraint among all

triplets of labeled training data. Taigman et al. [32] learned

the Mahalanobis distance using the Information Theoretic

Metric Learning (ITML) method [12]. Chen et al. [5] pro-

posed a joint Bayesian approach for face verification which

models the joint distribution of a pair of face images instead

of the difference between them, and the ratio of between-

class and within-class probabilities is used as the similarity

measure. Hu et al. [17] learned a discriminative metric

within the deep neural network framework. Huang et al.

[18] learned a projection metric over a set of labeled im-

ages which preserves the underlying manifold structure.

3. Method

Our approach consists of both training and testing stages.

For training, we first perform face and landmark detection

on the CASIA-WebFace, and the IJB-A datasets to local-

ize and align each face. Next, we train our DCNN on the

CASIA-WebFace and derive the joint Bayesian metric us-

ing the training sets of the IJB-A dataset and the DCNN

features. Then, given a pair of test image sets, we compute

the similarity score based on their DCNN features and the

learned metric. Figure 1 gives an overview of our method.

The details of each component of our approach are pre-

sented in the following subsections.

3.1. Preprocessing

Before training the convolutional network, we perform

landmark detection using the method presented in [2][3] be-

cause of its ability to be effective on unconstrained faces.

Then, each face is aligned into the canonical coordinate



with similarity transform using the 7 landmark points (i.e.

two left eye corners, two right eye corners, nose tip, and two

mouth corners). After alignment, the face image resolution

is 100 × 100 pixels, and the distance between the centers of

two eyes is about 36 pixels.

3.2. Deep Face Feature Representation

A DCNN with small filters and very deep architecture

(i.e. 19 layers in [27] and 22 layers in [31]) has shown to

produce state-of-the-art results on many datasets including

ImageNet 2014, LFW, and Youtube Face dataset. Stacking

small filters to approximate large filters and to build very

deep convolution networks not only reduces the number of

parameters but also increases the nonlinearity of the net-

work. In addition, the resulting feature representation is

compact and discriminative.

Our approach is motivated by [38]. However, we only

consider the identity information per face without modeling

the pair-wise cost. The dimensionality of the input layer is

100× 100× 1 for gray-scale images. The network includes

10 convolutional layers, 5 pooling layers and 1 fully con-

nected layer. The detailed architecture is shown in Table

1. Each convolutional layer is followed by a rectified linear

unit (ReLU) except the last one, Conv52. Instead of sup-

pressing all the negative responses to zero using ReLU, we

use parametric ReLU (PReLU)[16] which allows negative

responses that in turn improves the network performance.

Thus, we use PReLU as an alternative to ReLU in our work.

Moreover, two local normalization layers are added after

Conv12 and Conv22, respectively to mitigate the effect of

illumination variations. The kernel size of all filters is 3×3.

The first four pooling layers use the max operator. To gen-

erate a compact and discriminative feature representation,

we use average pooling for the last layer, pool5. The fea-

ture dimensionality of pool5 is thus equal to the number of

channel of Conv52 which is 320. Dropout ratio is set as 0.4

to regularize Fc6 due to the large number of parameters (i.e.

320 × 10548.). To classify a large number of subjects in

the training data (i.e. 10548), this low-dimensional feature

should contain strong discriminative information from all

the face images. Consequently, the pool5 feature is used for

face representation. The extracted features are further L2-

normalized into unit length before the metric learning stage.

If there are multiple frames available for the subject, we use

the average of the pool5 features as the overall feature repre-

sentation. Figure 2 illustrates some of the extracted feature

maps.

3.3. Joint Bayesian Metric Learning

To utilize the positive and negative label information

available from the training dataset, we learn a joint Bayesian

metric which has achieved good performances on face ver-

ification problems [5][4]. Instead of modeling the differ-

ence vector between two faces, this approach directly mod-

els the joint distribution of feature vectors of both ith and

jth images, {xi,xj}, as a Gaussian. Let P (xi,xj |HI) ∼
N(0,ΣI) when xi and xj belong to the same class, and

P (xi,xj |HE) ∼ N(0,ΣE) when they are from different

classes. In addition, each face vector can be modeled as,

x = µ + ǫ, where µ stands for the identity and ǫ for pose,

illumination, and other variations. Both µ and ǫ are as-

sumed to be independent zero-mean Gaussian distributions,

N(0,Sµ) and N(0,Sǫ), respectively.

The log likelihood ratio of intra- and inter-classes,
r(xi,xj), can be computed as follows:

r(xi,xj) = log
P (xi,xj |HI)

P (xi,xj |HE)
= x

T
i Mxi+x

T
j Mxj−2xT

i Rxj ,

(1)

where M and R are both negative semi-definite matrices.
Equation (1) can be rewritten as (xi − xj)

T
M(xi − xj)−

2xT
i Bxj where B = R−M. More details can be found in

[5]. Instead of using the EM algorithm to estimate Sµ and
Sǫ, we optimize the distance in a large-margin framework
as follows:

argmin
M,B,b

∑

i,j

max[1−yij(b−(xi−xj)
T
M(xi−xj)+2xT

i Bxj), 0],

(2)

where b ∈ R is the threshold, and yij is the label of a pair:
yij = 1 if person i and j are the same and yij = −1,

otherwise. For simplicity, we denote (xi − xj)
T
M(xi −

xj)− 2xT
i Bxj as dM,B(xi,xj). M and B are updated us-

ing stochastic gradient descent as follows and are equally
trained on positive and negative pairs in turn:

Mt+1 =

{

Mt, if yij(bt − dM,B(xi,xj)) > 1
Mt − γyijΓij , otherwise,

Bt+1 =

{

Bt, if yij(bt − dM,B(xi,xj)) > 1
Bt + 2γyijxix

T
j , otherwise,

bt+1 =

{

bt, if yij(bt − dM,B(xi,xj)) > 1
bt + γbyij , otherwise,

(3)

where Γij = (xi − xj)(xi − xj)
T and γ is the learning

rate for M and B, and γb for the bias b. We use random

semi-definite matrices to initialize both M = VV
T and

B = WW
T where both V and W ∈ R

d×d, and vij and

wij ∼ N(0, 1). Note that M and B are updated only when

the constraints are violated. In our implementation, the ratio

of the positive and negative pairs that we generate based

on the identity information of the training set is 1:20. In

addition, the other reason to train the metric instead of using

traditional EM is that for IJB-A training and test data, some

templates only contain a single image. More details about

the IJB-A dataset are given in Section 4.
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Figure 2. An illustration of some feature maps of Conv11, Conv21, and Conv31 layers. At the upper layers, the feature maps capture more

global shape features which are also more robust to illumination changes than Conv11.

Name Type Filter Size/Stride Output Size Depth #Params

Conv11 convolution 3×3×1 / 1 100×100×32 1 0.28K

Conv12 convolution 3×3×32 / 1 100×100×64 1 18K

Pool1 max pooling 2×2 / 2 50×50×64 0

Conv21 convolution 3×3×64 / 1 50×50×64 1 36K

Conv22 convolution 3×3×64 / 1 50×50×128 1 72K

Pool2 max pooling 2×2 / 2 25×25×128 0

Conv31 convolution 3×3×128 / 1 25×25×96 1 108K

Conv32 convolution 3×3×96 / 1 25×25×192 1 162K

Pool3 max pooling 2×2 / 2 13×13×192 0

Conv41 convolution 3×3×192 / 1 13×13×128 1 216K

Conv42 convolution 3×3×128 / 1 13×13×256 1 288K

Pool4 max pooling 2×2 / 2 7×7×256 0

Conv51 convolution 3×3×256 / 1 7×7×160 1 360K

Conv52 convolution 3×3×160 / 1 7×7×320 1 450K

Pool5 avg pooling 7×7 / 1 1×1×320 0

Dropout dropout (40%) 1×1×320 0

Fc6 fully connection 10548 1 3296K

Cost softmax 10548 0

total 11 5006K

Table 1. The architecture of DCNN used in this paper.

3.4. DCNN Training Details

The DCNN is implemented using caffe[19] and trained

on the CASIA-WebFace dataset. The CASIA-WebFace

dataset contains 494,414 face images of 10,575 subjects

downloaded from the IMDB website. After removing the

27 overlapping subjects with the IJB-A dataset, there are

10548 subjects 1 and 490,356 face images. For each subject,

there still exists several false images with wrong identity la-

bels and few duplicate images. All images are scaled into

[0, 1] and subtracted from the mean. The data is augmented

with horizontal flipped face images. We use the standard

batch size 128 for the training phase. Because it only con-

tains sparse positive and negative pairs per batch in addition

to the false image problems, we do not take the verification

1The list of overlapping subjects is available at http://www.

umiacs.umd.edu/˜pullpull/janus_overlap.xlsx

cost into consideration as is done in [30]. The initial nega-

tive slope for PReLU is set to 0.25 as suggested in [16]. The

weight decay of all convolutional layers are set to 0, and the

weight decay of the final fully connected layer to 5e-4. In

addition, the learning rate is set to 1e-2 initially and reduced

by half every 100,000 iterations. The momentum is set to

0.9. Finally, we use the snapshot of 1,000,000th iteration

for all our experiments.

4. Experiments

In this section, we present the results of the proposed

approach on the challenging IARPA Janus Benchmark A

(IJB-A) [20], its extended version Janus Challenging set 2

(JANUS CS2) dataset and the LFW dataset. The JANUS

CS2 dataset contains not only the sampled frames and im-

ages in the IJB-A but also the original videos. The JANUS



CS2 dataset2 includes much more test data for identifi-

cation and verification problems in the defined protocols

than the IJB-A dataset. The receiver operating character-

istic curves (ROC) and the cumulative match characteris-

tic (CMC) scores are used to evaluate the performance of

different algorithms. The ROC curve measures the per-

formance in the verification scenarios, and the CMC score

measures the accuracy in a closed set identification scenar-

ios.

4.1. JANUS-CS2 and IJB-A

Both the IJB-A and JANUS CS2 contain 500 subjects

with 5,397 images and 2,042 videos split into 20,412

frames, 11.4 images and 4.2 videos per subject. Sample im-

ages and video frames from the datasets are shown in Fig. 3.

The videos are only released for the JANUS CS2 dataset.

The IJB-A evaluation protocol consists of verification (1:1

matching) over 10 splits. Each split contains around 11,748

pairs of templates (1,756 positive and 9,992 negative pairs)

on average. Similarly, the identification (1:N search) proto-

col also consists of 10 splits which evaluates the search per-

formance. In each search split, there are about 112 gallery

templates and 1763 probe templates (i.e. 1,187 genuine

probe templates and 576 impostor probe templates). On the

other hand, for the JANUS CS2, there are about 167 gallery

templates and 1763 probe templates and all of them are used

for both identification and verification. The training set for

both dataset contains 333 subjects, and the test set contains

167 subjects. Ten random splits of training and testing are

provided by each benchmark, respectively. The main differ-

ences between IJB-A and JANUS CS2 evaluation protocol

are (1) IJB-A considers the open-set identification problem

and the JANUS CS2 considers the closed-set identification

and (2) IJB-A considers the more difficult pairs which are

the subsets from the JANUS CS2 dataset.

Figure 3. Sample images and frames from the IJB-A and JANUS

CS2 datasets. A variety of challenging variations on pose, illu-

mination, resolution, occlusion, and image quality are present in

these images.

Both the IJB-A and the JANUS CS2 datasets are divided

into training and test sets. For the test sets of both bench-

marks, the image and video frames of each subject are ran-

domly split into gallery and probe sets without any over-

lapping subjects between them. Unlike the LFW and YTF

2The JANUS CS2 dataset is not publicly available yet.

datasets which only use a sparse set of negative pairs to eval-

uate the verification performance, the IJB-A and JANUS

CS2 both divide the images/video frames into gallery and

probe sets so that it uses all the available positive and neg-

ative pairs for the evaluation. Also, each gallery and probe

set consist of multiple templates. Each template contains

a combination of images or frames sampled from multiple

image sets or videos of a subject. For example, the size of

the similarity matrix for JANUS CS2 split1 is 167 × 1806

where 167 are for the gallery set and 1806 for the probe set

(i.e. the same subject reappears multiple times in different

probe templates). Moreover, some templates contain only

one profile face with challenging pose with low quality im-

age. In contrast to the LFW and YTF datasets which only

include faces detected by the Viola Jones face detector [34],

the images in the IJB-A and JANUS CS2 contain extreme

pose, illumination and expression variations. These factors

essentially make the IJB-A and JANUS CS2 challenging

face recognition datasets [20].

4.2. Evaluation on JANUS-CS2 and IJB-A

For the JANUS CS2 dataset, we compare the results of

our DCNN method with the FV approach proposed in [26]

and two other commercial off-the-shelf matchers, COTS1

and GOTS [20]. The COTS1 and GOTS baselines provided

by JANUS CS2 are the top performers from the most recent

NIST FRVT study [15]. The FV method is trained on the

LFW dataset which contains few faces with extreme pose.

Therefore, we use the pose information estimated from

the landmark detector and select face images/video frames

whose yaw angle are less than or equal to ±25 degrees for

each gallery and probe set. If there are no images/frames

satisfying the constraint, we choose the one closest to the

frontal one. However, for the DCNN method, we use all

the frames without applying the same selection strategy. 3

Figures 4 and 5 show the ROC curves and the CMC curves,

respectively for the verification results using the previously

described protocol where DCNN means using DCNN fea-

ture with cosine distance, “ft” means finetuning on the

training data, “metric” means applying Joint Bayesian met-

ric learning, and “color” means to use all of the RGB

images instead of gray-scale images. For the results of

DCNNft+metric, besides finetuning and metric learning,

we also replace ReLU with PReLU and apply data augmen-

tation (i.e. randomly cropping 100 × 100-pixel subregions

from a 125 × 125 region). For DCNNft+metric+color
4,

we further use RGB images and larger face regions. (i.e.

we use 125 × 125-pixel face regions and resize them into

100 × 100-pixel ones.) Then, we show the fusion results,

3We fix the typos in [8] that the selection strategy is only applied to

FV-based method, not for DCNN.
4DCNNft+metric+color and DCNNfusion are our improved results

for JANUS CS2 and IJB-A datasets obtained after the paper was accepted.



Probe Template Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

#Image: 22 #Image: 14 #Image: 3 #Image: 34 #Image: 32 #Image: 50

Template ID: 2047 Template ID: 2030 Template ID: 5794 Template ID: 226 Template ID: 187 Template ID: 4726

Subject ID: 543 Subject ID: 543 Subject ID:: 791 Subject ID: 102 Subject ID: 101 Subject ID: 404

#Image: 1 #Image: 22 #Image: 9 #Image: 6 #Image: 4 #Image: 4

Template ID: 2993 Template ID: 2992 Template ID: 948 Template ID: 1312 Template ID: 3779 Template ID: 5812

Subject ID: 1559 Subject ID: 1559 Subject ID:: 1558 Subject ID:: 1704 Subject ID: 1876 Subject ID: 2166

#Image: 1 #Image: 25 #Image: 7 #Image: 3 #Image: 32 #Image: 6

Template ID: 2062 Template ID: 986 Template ID: 5295 Template ID: 3729 Template ID: 187 Template ID: 5494

Subject ID: 158 Subject ID: 347 Subject ID:: 2058 Subject ID: 606 Subject ID: 101 Subject ID: 2102

Table 2. Query results. The first column shows the query images from probe templates. The remaining 5 columns show the corresponding

top-5 queried gallery templates.

DCNNfusion, by directly summing the similarity scores of

two models, DCNNft+metric and DCNNft+metric+color,

where DCNNft+metric is trained on gray-scale images with

smaller face regions and DCNNft+metric+color is trained

on RGB images with larger face regions. From these fig-

ures, we can clearly see the impact of each component to the

improvement of final identification and verification results.

From the ROC and CMC curves, we see that the DCNN

method performs better than other competitive methods.

This can be attributed to the fact that the DCNN model does

capture face variations over a large dataset and generalizes

well to a new small dataset.

We illustrate the query samples in Table 2. The first

column shows the query images from the probe templates.

The remaining five columns show the corresponding top-5

queried gallery templates (i.e. rank-1 means the most sim-

ilar one, rank-2 the second most similar, etc.). For the first

two rows, our approach can successfully find the subjects in

rank 1. For the third, the query template only contains one

image with extreme pose. However, in the corresponding

gallery template for the same subject, it happens to contain

only near-frontal faces. Thus, it failed to find the subject

within the top-5 matches. To solve the pose generalization

problem of CNN features, one possible solution is to aug-

ment the templates by synthesizing faces in various poses

with the help of a generic 3D model. We plan to pursue this

approach in the near future, and we leave it for the future

work.

While this paper was under preparation, the authors be-

came aware of [35], which also proposes a CNN-based ap-

proach for face verification/identification and evaluates it on

the IJB-A dataset. The method proposed in [35] combines

the features from seven independent DCNN models. With

finetuning on the JANUS training data and metric learning,

our approach works comparable to [35] as shown in Fig-

ure 5. Furthermore, with the replacement of ReLU with

PReLU and data augmentation, our approach significantly

outperforms [35] with only a single model.

4.3. Labeled Face in the Wild

We also evaluate our approach on the well-known LFW

dataset using the standard protocol which defines 3,000 pos-

itive pairs and 3,000 negative pairs in total and further splits

them into 10 disjoint subsets for cross validation. Each sub-

set contains 300 positive and 300 negative pairs. It contains

7,701 images of 4,281 subjects. We compare the mean ac-

curacy of the proposed deep model with other state-of-the-

5We correct the number reported in [8] previously for the IJB-A iden-

tification task because one split of the identification task was performed

partially due to the corrupted metadata. (i.e. Some images were missing at

that time. The current metadata of IJB-A has fixed those errors already.)
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Figure 4. Results on the JANUS CS2 dataset. (a) the average ROC curves and (b) the average CMC curves.
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Figure 5. Results on the IJB-A dataset. (a) the average ROC curves for the IJB-A verification protocol and (b) the average CMC curves for

IJB-A identification protocol over 10 splits.

IJB-A-Verif [35] DCNN DCNNft DCNNft+m DCNNft+m+c DCNNfusion

FAR=1e-2 0.732±0.033 0.573±0.024 0.64±0.045 0.787±0.043 0.818±0.037 0.838±0.042

FAR=1e-1 0.895±0.013 0.8±0.012 0.883±0.012 0.947±0.011 0.961±0.01 0.967±0.009

IJB-A-Ident [35] DCNN DCNNft DCNNft+m
5 DCNNft+m+c DCNNfusion

Rank-1 0.820±0.024 0.726±0.034 0.799±0.036 0.852±0.018 0.882±0.01 0.903 ±0.012

Rank-5 0.929±0.013 0.84±0.023 0.901±0.025 0.937±0.01 0.957±0.07 0.965±0.008

Rank-10 N/A 0.884±0.025 0.934±0.016 0.954±0.007 0.974±0.005 0.977±0.007

Table 3. Results on the IJB-A dataset. The TAR of all the approaches at FAR=0.1 and 0.01 for the ROC curves. The Rank-1, Rank-5, and

Rank-10 retrieval accuracies of the CMC curves where subscripts ft, m and c stand for finetuning, metric, and color respectively.

CS2-Verif COTS1 GOTS FV[26] DCNN DCNNft DCNNft+m DCNNft+m+c DCNNfusion

FAR=1e-2 0.581±0.054 0.467±0.066 0.411±0.081 0.649±0.015 0.765±0.014 0.876±0.013 0.904±0.011 0.921±0.013

FAR=1e-1 0.767±0.015 0.675±0.015 0.704±0.028 0.855±0.01 0.902±0.011 0.973±0.005 0.983±0.004 0.985±0.004

CS2-Ident COTS1 GOTS FV [26] DCNN DCNNft DCNNft+m DCNNft+m+c DCNNfusion

Rank-1 0.551±0.03 0.413±0.022 0.381±0.018 0.694±0.012 0.768±0.013 0.838±0.012 0.867±0.01 0.891±0.01

Rank-5 0.694±0.017 0.571±0.017 0.559±0.021 0.809±0.011 0.874±0.01 0.924±0.009 0.949±0.005 0.957±0.007

Rank-10 0.741±0.017 0.624±0.018 0.637±0.025 0.85±0.009 0.91±0.008 0.949±0.006 0.966±0.005 0.972±0.005

Table 4. Results on the JANUS CS2 dataset. The TAR of all the approaches at FAR=0.1 and 0.01 for the ROC curves. The Rank-1, Rank-5,

and Rank-10 retrieval accuracies of the CMC curves where subscripts ft, m and c stand for finetuning, metric, and color respectively.

art deep learning-based methods: DeepFace [33], DeepID2

[30], DeepID3 [29], FaceNet [25], Yi et al. [38], Wang et

al. [35], and human performance on the “funneled” LFW

images. The results are summarized in Table 5. It can be

seen from this table that our approach performs comparably

to other deep learning-based methods. Note that some of the

deep learning-based methods compared in Table 5 use mil-

lions of data samples for training the model. Whereas we

use only the CASIA dataset for training our model which

has less than 500K images.



Method #Net Training Set Metric Mean Accuracy ± Std

DeepFace [33] 1 4.4 million images of 4,030 subjects, private cosine 95.92% ± 0.29%

DeepFace 7 4.4 million images of 4,030 subjects, private unrestricted, SVM 97.35% ± 0.25%

DeepID2 [30] 1 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 95.43%

DeepID2 25 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.15% ± 0.15%

DeepID3 [29] 50 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.53% ± 0.10%

FaceNet [25] 1 260 million images of 8 million subjects, private L2 99.63% ± 0.09%

Yi et al. [38] 1 494,414 images of 10,575 subjects, public cosine 96.13% ± 0.30%

Yi et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.73% ± 0.31%

Wang et al. [35] 1 494,414 images of 10,575 subjects, public cosine 96.95% ± 1.02%

Wang et al. 7 494,414 images of 10,575 subjects, public cosine 97.52% ± 0.76%

Wang et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.45% ± 0.99%

Wang et al. 7 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.23% ± 0.68%

Human, funneled [35] N/A N/A N/A 99.20%

Ours 1 490,356 images of 10,548 subjects, public cosine 97.15% ± 0.7%

Ours 1 490,356 images of 10,548 subjects, public unrestricted, Joint-Bayes 97.45% ± 0.7%

Table 5. Accuracy of different methods on the LFW dataset.

4.4. Run Time

The DCNN model is trained for about 9 days using

NVidia Tesla K40. The feature extraction time takes about

0.006 second per face image. In future, the supervised in-

formation will be fed into the intermediate layers to make

the model more discriminative and also to converge faster.

5. Conclusion

In this paper, we study the performance of a DCNN

method on a newly released challenging face verification

dataset, IARPA Benchmark A, which contains faces with

full pose, illumination, and other difficult conditions. It was

shown that the DCNN approach can learn a robust model

from a large dataset characterized by face variations and

generalizes well to another dataset. Experimental results

demonstrate that the performance of the proposed DCNN

on the IJB-A dataset is much better than the FV-based

method and other commercial off-the-shelf matchers and is

competitive for the LFW dataset.

For future work, we plan to directly train a Siamese net-

work using all the available positive and negative pairs from

CASIA-Webface and IJB-A training datasets to fully utilize

the discriminative information for realizing better perfor-

mance.
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