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Abstract

Face detection has witnessed immense progress in the
last few years, with new milestones being surpassed every
year. While many challenges such as large variations in
scale, pose, appearance are successfully addressed, there
still exist several issues which are not specifically captured
by existing methods or datasets. In this work, we identify
the next set of challenges that requires attention from the
research community and collect a new dataset of face im-
ages that involve these issues such as weather-based degra-
dations, motion blur, focus blur and several others. We
demonstrate that there is a considerable gap in the perfor-
mance of state-of-the-art detectors and real-world require-
ments. Hence, in an attempt to fuel further research in un-
constrained face detection, we present a new annotated Un-
constrained Face Detection Dataset (UFDD) with several
challenges and benchmark recent methods. Additionally,
we provide an in-depth analysis of the results and failure
cases of these methods. The UFDD dataset as well as base-
line results, evaluation code and image source are available
at: www.ufdd.info/

1. Introduction

Face detection is the most important pre-processing
step for many facial analysis tasks such as landmark
detection[20, 55], face alignment [51, 43, 32], face recog-
nition [30], face synthesis [42, 10], etc. The accuracy of
face detection systems has a direct impact on these tasks
and hence, the success of face detection is of crucial impor-
tance. Various challenges such as variations in pose, scale,
illumination changes, variety of facial expressions, occlu-
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sion, etc., have to be addressed while building face detec-
tion algorithms. The success of Viola Jones face detector
[40] enabled widespread usage of face detection in a vari-
ety of consumer devices and security systems.

Current state-of-the-art face detectors achieve impres-
sive detection rates on a variety of datasets that contain
many challenges. The success of these systems can be at-
tributed to two key steps: (i) advancements in the field of
deep learning which has had a direct impact on many fa-
cial analysis tasks including face detection, and (ii) dataset
collection efforts led by different researchers in the commu-
nity. Moreover, improvements in detection algorithms have
almost always been followed by publication of more chal-
lenging datasets and vice versa. Such synchronous advance-
ments in both steps have led to a even more rapid progress
in the field.

Various methods have been proposed in the literature that
attempt to address different aspects of the face detection
problem. Some of the initial work involved design of robust
hand-crafted representations [41, 38, 7, 22, 25, 45, 9] and
the use of powerful machine learning algorithms. This was
followed by methods [55, 44] that exploited structural de-
pendencies in the face. Benchmark datasets such as FDDB
[17], AFW [55], Multi-PIE [12] and PASCAL FACE [11]
enabled the initial progress in face detection research. How-
ever, these datasets capture limited variations in scale, pose,
occlusion and illumination.

In order to address the aforementioned issues, Yang et
al. [48] presented a large scale face dataset with rich an-
notations, called as WIDER FACE. They explicitly attempt
to capture different variations and demonstrate, through de-
tailed experiments, that a significant gap exists between
the accuracy of existing detectors and the expected per-
formance. The performance gap is especially large in
the case of tiny faces. Researchers in the community,
quickly adopted this new dataset and incorporated advances
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Figure 1: Sample annotated images from the proposed UFDD dataset. The dataset is constructed specifically to capture seven
different conditions.

in CNN-based learning for improving the detection perfor-
mance. Some of initial works involved cascaded and multi-
task CNN-based networks [51], followed by the use of ob-
ject detection approaches [54, 18] for face detection. Most
recent research on face detection has focused more on im-
proving the performance of small face detection[16, 52, 27].
Some of these approaches employ feature maps from dif-
ferent conv layers [16, 49] to build multiple detectors that
are robust to scale variations, while others [27, 52] have at-
tempted to develop new anchor design strategies to over-
come some of the issues faced by anchor design-based
methods such as Faster-RCNN [33].

Although WIDER FACE [48] attempts to capture a vari-
ety of conditions during the dataset collection process, there
still exist several practical considerations such as weather-
based degradations, different types of blur and distractor
images, which have not been explicitly captured by existing
face datasets. These conditions are particularly important
for a variety of applications such as biometric surveillance,
maritime surveillance, and long-range surveillance, where
detection accuracy is of critical importance. Based on this
observation, we explore the next set of challenges that re-
quire focused attentions from the face detection community,
and in this attempt, we present a new Unconstrained Face
Detection Dataset (UFDD) involving a richer set of chal-
lenges.

Specifically, this new dataset contains a total of 6,425
images with 10,897 face-annotations and it involves fol-
lowing key degradations or conditions: (1) Rain, (2) Snow,
(3) Haze, (4) Lens impediments1, (5) Blur, (6) Illumination

1By lens impediments, we mean obscurants that appear between the
object and camera lens. A few examples are water droplets on the lens,
lens dirt, window panes, etc.

variations, and (7) Distractors. Fig. 1 shows sample im-
ages from the dataset with different variations and its corre-
sponding annotations. For benchmarking existing face de-
tectors, we define two protocols: (1) Internal and (2) Ex-
ternal. In the “internal” protocol, the dataset is divided
into 10-splits and a 10-fold cross-validation is performed.
In the “external” protocol, the face detectors are trained on
another face dataset or a synthetically created face dataset
and tested on the real-world dataset. For creating the syn-
thetic dataset, the above listed degradations and conditions
are artificially simulated on images from the WIDER FACE
dataset. Details of the dataset collection/annotation process
and synthetic dataset creation are explained in Section 3.

Through various experiments, we demonstrate that ex-
isting algorithms are far from optimal in terms of their de-
tection performance. A detailed analysis is performed by
studying the performance of recent face detectors on this
newly proposed dataset. The analysis includes separate
study of the effect of different conditions on the perfor-
mance. In particular, we benchmark four representative al-
gorithms such as Faster R-CNN [33], SSH [27], HR-ER
[16] and S3FD [52] using the external protocol and ana-
lyze the failure cases of these algorithms. We hope that this
detailed analysis will provide deep insights for the design
of new algorithms to address these newly identified chal-
lenges.

2. Related Work

Face detection approaches. Initial research [41, 38, 7,
22, 25, 45, 9] on face detection was based on robust hand-
crafted representations and involved training of powerful
machine learning classifiers. Later approaches such as



Table 1: Comparison of different datasets. (’X’: Contained in DB. ’-’: Not contained or mentioned in the paper.)
#Images #Annotations Properties

Source Rain Snow Haze Illumination Blur Lens impediments Distractors
AFW [55] 205 473 Flickr - - - - - - -
PASCAL FACE [11] 851 1341 PASCAL-VOC - - - - - - -
FDDB [17] 2,845 5,171 Yahoo - - - - X - -
MALF [46] 5,250 11,900 Flickr, www - - - - - - -
IJB-C [26] 130K 300K www - - - X - - X
WIDER FACE [48] 32,303 393,703 www X - - X X - -
UCCS [13] - 75,738 camera - X - X X - -
UFDD (Proposed) 6,424 10,895 www X X X X X X X

[55, 44] utilized structural dependencies present in faces
and modeled them using elastic deformation structures.

Recently, the success of CNN-based methods in different
computer vision tasks such as object recognition [36, 15]
and detection [31, 33, 24] has inspired several face detec-
tion approaches. Early work on CNN-based face detection
involved cascaded architectures [51, 23, 28, 47] and multi-
task training of correlated tasks [29, 30, 37].

Although these approaches were able to obtain impres-
sive detection rates on datasets like Pascal-Faces [44] and
FDDB [17], the introduction of the WIDER dataset [48]
demonstrated the lack of robustness of these methods to
different factors such as large variations in scales, pose
and occlusion. Significant performance gap was observed
especially in the case of smaller faces. Hence, most of the
recent work involves design of novel strategies to build
detectors that are especially robust to scale variations.
Some methods employ feature maps from multiple layers
similar to [54, 16], while other methods develop new
anchor design strategies [53, 27]. Zhu et al. [54] employed
the Faster-RCNN framework and fused features from
multiple conv layers to build robustness in scale variations.
Additionally, they encoded context to provide additional
information to the classifier. Hu et al. [16] trained multiple
detectors to cater to different scale and employed image
pyramids for performing the inference. Najibi et al. [27]
and Zhang et al. [53] proposed single shot detectors that
provided significant improvements while maintaining good
computational efficiency. While, Najibi et al. [27] is based
on the region proposal network of Faster-RCNN [33],
Zhang et al. [53] is based on the SSD [24] detector, where
they used additional conv layers converted from VGG-16’s
fully connected layers. To address the overlap issue of
anchor-based techniques, they also introduced new anchor
design strategies to ensure increased overlap between
anchor boxes and ground-truth faces of smaller sizes during
training process.

Face detection datasets. As discussed, face detection is an
extensively studied problem. Several datasets such as AFW
[55], FDDB [17], PASCAL FACE [11], etc., have been con-
structed specifically for face detection. The AFW dataset

[55] consists of 205 images collected from Flickr and has
473 face annotations. Additionally, the authors provide fa-
cial landmark and pose labels for each face. The PASCAL
FACE dataset [11] has a total of 851 images which are a
subset of the PASCAL VOC and has a total of 1,341 an-
notations. These datasets contain only a few hundreds of
images and have limited variations in face appearance.

Jain and Miller in [17] collected a relatively larger
dataset that consists of 2,845 images with 5,171 annota-
tions. Although the authors explicitly attempt to capture
a wide range of difficulties including occlusions, the im-
ages are collected from Yahoo! website and mostly belong
to celebrities, due to which the dataset has some inherent
bias. The AFLW dataset [20] presented a large-scale col-
lection of face images collected from the web, consisting of
large variations in appearance, pose, expression, ethnicity,
age, gender, etc. The dataset consists of a total of 25,000
face annotations. However, the AFLW dataset does not
have occlusion and pose labels. The IJB-A dataset [19] is
constructed for face detection and recognition. It contains
24,327 images with 49,759 face annotations. The recently
introduced IJB-C dataset [26] is an extension of IJB-A with
about 138,000 face images, 11,000 face videos, and 10,000
non-face images. The MALF dataset [46] is a large dataset
with 5,250 images annotated with multiple facial attributes
and it is specifically constructed for fine grained evaluation.

More recently, Yang et al. [48] presented a very large
scale dataset called the WIDER FACE with large variations
in scale, pose and occlusion. While this dataset demon-
strated that existing face detectors performed poorly espe-
cially on smaller scale faces, recent CNN-based face de-
tectors [27, 53] have incorporated robustness to scale vari-
ations and have achieved impressive performances. Addi-
tionally, these datasets do not focus on specifically captur-
ing weather-based degradations such as snow, rain, haze,
etc. Gunther et al. [13] recently presented an unconstrained
dataset for face detection and recognition, where the authors
do attempt to capture weather-based degradations, however,
these are limited to a smaller set of conditions such as sunny
day and snowy day. Several conditions such as haze and
rain are not captured. In contrast, the proposed dataset in
this work captures a much larger set of variations with large



set of images in each condition. Additionally, we also in-
clude a large set of distractor images which is largely ig-
nored by the existing datasets. Table 1 gives a summary of
different datasets in comparison with the proposed dataset.

3. Dataset
To the best of our knowledge, UFDD is among the

first datasets that explicitly captures variations in different
weather conditions and other degradations such as lens im-
pediments, motion blur and focus blur. Additionally, the
dataset also consists of a large set of distractor images which
is largely ignored by the existing datasets where every im-
age almost necessarily has at least one face annotation.
These images either contain non-human faces such as an-
imal faces or no faces at all. The presence of distractor im-
ages is especially important to measure the performance of
a face detector in rejecting non-face images and to study the
false positive rate of an algorithm.

Some existing datasets capture a few of these conditions
separately. For instance, the UCCS dataset [13] contains
sunny, snow and blur images, however, other degradations
such as haze and rain are missing. Moreover, these im-
ages are collected from a single location using a surveil-
lance camera. In contrast, the proposed dataset is collected
from the Internet and hence, it is more diverse. As a result,
this dataset can be used to evaluate the generalization ability
of different face detectors on a diverse set of conditions.

Similar to FDDB [17], we define two separate proto-
cols to evaluate face detection performance on the proposed
dataset: (1) Internal and (2) External. In the “internal”
protocol, the dataset is divided into 10-splits and a 10-fold
cross-validation is performed. In the “external” protocol,
the face detectors are trained on another face dataset or on
a synthetically created face dataset and tested on the real-
world dataset. In this work, we use the WIDER FACE
dataset as another training dataset to create the synthetic
dataset.

3.1. Data Collection and Annotation

Collection and Annotation. Images in the proposed
dataset are collected from different sources on the web
such as Google, Bing, Yahoo, Creative commons search,
Pixabay, Pixels, Wikimedia commons, Flickr, Unsplash,
Vimeo and Baidu. Images are searched using various key-
words such as “rain + faces”, “snow + faces”, “rain +
crowd”, “dark + crowd” etc. Images are collected in such a
way that the dataset captures a total of seven conditions and
degradations. These conditions are chosen based on the ob-
servation that they are entirely plausible in a variety of ap-
plications such as video surveillance and maritime surveil-
lance. In section 4, we present a detailed analysis of the
effect of these conditions separately on face detection per-
formance.

Table 2: Distribution of images in the UFDD dataset.
Condition Rain Snow Haze Blur Illumination

Lens
impediments

Distractors

#Images 628 680 442 517 612 95 3450

Wherever possible, we ensured a uniform distribution of
different conditions so that the dataset has minimal bias to-
wards any particular condition. Table 2 shows the distribu-
tion of number of images per condition.

After collection, the dataset is cleaned to remove near-
duplicate images using [2]. After dataset cleaning, the im-
ages are resized to have a width of 1024 while preserving its
original aspect ratio. These resized images are used for an-
notation and evaluation. For annotations, these images are
uploaded to Amazon mechanical turk (AMT) and each im-
age is assigned to around 5 to 9 AMT workers. The work-
ers are asked to annotate all recognizable faces in the im-
age. Once the annotation is complete, the labels are then
cleaned and consolidated using the procedure outlined by
Taborsky et al. in [39]. The consolidation process is viewed
as a clustering problem. For each image, annotations from
all workers are converted to a list of sets, where each set
represents annotations of a particular face in the image by
different workers. For instance, if there are n faces in an
image, then there would be n sets in the final list. First, sets
in the list are initialized by annotations created by the first
worker. Annotations from other workers are then added to
those sets if the overlap between them is greater than 0.3,
otherwise a new set is created. After processing all anno-
tations, the list consist of sets of overlapping annotations,
ideally corresponding to each face in the image. Final, a
pruning step is carried out to remove erroneous annotations,
where sets from the final list are removed if they do not con-
tain at least 2 boxes. For each remaining set in the list, the
average bounding box is computed and used as the ground-
truth for the image.

4. Evaluation, Benchmarking and Analysis
4.1. Methods used for evaluation

We evaluate the following recent face detection ap-
proaches on the proposed UFDD dataset.
Faster-RCNN. Faster-RCNN [33] is among the first end-
to-end CNN-based object detection methods and it consists
of a region proposal network (RPN) and a region classi-
fication network (RCN). RPN is based on VGG-16 [36]
architecture and produces candidate regions which are ag-
nostic to object class. These candidate regions are fur-
ther processed by RCN which pools features from the fi-
nal conv layer of VGG-16 and forwards them through a set
of fully connected layers to produce the final object class
and bounding box. Since most face detectors are based on
anchor boxes and Faster-RCNN was the first method to pro-
pose anchor boxes, this method was chosen to be the base-



line approach. For the purpose of evaluation, we used an
open-source implementation [1] specifically implemented
for face detection which is based on the original Faster-
RCNN source code.
HR-ER. Hu et al. [16] specifically addressed the problem of
large variations in scale found in the WIDER FACE dataset
by designing scale-specific detectors based on ResNet-101
[15]. Each scale-specific detector is a conv layer which pro-
cesses features extracted from earlier layers and produces
a spatial heat map that indicates the detection confidence
at every location. Image pyramids are used during training
and inference. Additionally, balanced-sampling and hard
negative mining are employed during training to effectively
learn difficult samples. For the purpose of evaluation, we
used the implementation provided by the authors.
SSH. Najibi et al. [27] presented a single stage headless
(SSH) face detector, which is primarily based on the RPN of
Faster-RCNN. In contrast to Faster-RCNN, SSH consists of
multiple detectors placed on top of different conv layers of
VGG-16 to explicitly address scale variations. Each detec-
tor is designed with an additional context processing mod-
ule that incorporates surrounding context by increasing the
receptive filed of the network. In contrast to earlier multi-
scale detection work [8], the authors fuse features from dif-
ferent layer before using them for detection. Also, similar
to [35], they use online hard example mining to boost the
detection performance. For the purpose of evaluation, we
used the implementation provided by the authors.
S3FD. Similar to [27], Zhang et al. [53] proposed single
shot scale invariant face detector (S3FD) where they pre-
sented new anchor design strategies to overcome issues of
anchor-based techniques for small object detection. The au-
thors propose a max-out background technique to address
the issue of high false positive rate of small faces. S3FD is
based on the popular object detection framework called sin-
gle shot detector (SSD) [24], where they use VGG-16 as the
base network. Similar to earlier approaches on face detec-
tion and object detection, S3FD uses hard negative mining
to improve the detection accuracy. For the purpose of evalu-
ation, we used the implementation provided by the authors.

4.2. Evaluation and Analysis

For the purpose of analysis, the aforementioned methods
are evaluated in two different scenarios:
(i) Using pre-trained models: As argued by Yang et al. in
[48], most of the recent methods (including the ones de-
scribed above) use WIDER FACE as a source dataset as
it is a significantly large dataset that captures large scale
variations in different factors and conditions. Based on this
argument, we evaluate these recent methods which are pre-
trained on WIDER FACE directly on the proposed UFDD
dataset. Fig. 2 shows the precision-recall curves corre-
sponding to various methods, that are pre-trained using the

Figure 2: Evaluation results of different algorithms, that
are pre-trained on WIDER FACE, on the proposed UFDD
dataset.

WIDER FACE training set [48], on the proposed UFDD
dataset. Contrary to the suggestions made by the authors
of [48], it can be observed that WIDER FACE need not
necessarily be effective as a source training set especially
for constraints such as rain, snow, haze, blur, distractors,
that are captured by the UFDD dataset. The poor perfor-
mance of state-of-the-art detectors in such cases highlights
the need for a dataset that explicitly captures them. Ad-
ditionally, this argument calls for an improvement on the
design of algorithms and networks in order to capture these
kind of variations and hence, improve the robustness of the
detectors.

Figure 3: Sample annotated images from the synthetic
WIDER FACE dataset. Left to right and top to bottom:
Rain, snow, motion blur, Gaussian blur, illumination, lens
impediments.

(ii) Use synthetic dataset for fine-tuning: Under ideal con-
ditions, one would want to train their networks on large
scale datasets. However, conditions such as rain, snow, and
haze occur with relatively less frequency, due to which the
availability of such images on the web is limited. A po-
tential solution to address this issue is to synthesize these
conditions and simulate images containing these less fre-
quently occurred constraints. Since WIDER FACE [48]
is the largest face dataset containing occlusions, different



scale variations, and difficult poses, we use this dataset to
produce the synthetic dataset that contains variations such
as rain, snow, lens impediments and blur 2. Fig. 3 illus-
trates sample images from the synthetic dataset. In the fol-
lowing, we discuss the details of the synthesis procedure for
different conditions.
Rain: Following [5], 15 large rainy masks are synthesized,
which are used to be blended with the images in WIDER
FACE [48] to synthesize rainy images. Particularly, these
15 masks are with three Gaussian noise levels (16, 32, and
48), and five rotation angles (70◦, 80◦, 90◦, 100◦ and 110◦).
Snow: Following the procedure discussed in [6], 3 large
snowy masks are synthesized. In particular, 3 different
masks with different resize ratios and number of mixtures,
(75%, 9), (100%, 12) and (133%, 16) are synthesized. Fi-
nally we get 15 types of snowy masks with same rotation
method as rainy image. Then we crop mask randomly and
blend it with the original image.
Blur: Both focus blur and motion blur are used to synthe-
size the blurry images. Particularly, 3 levels of focus blur
kernels (α, 1.5α and 2α,where α = image height /640) are
leveraged to synthesize images with focus blur and 3 lev-
els of motion blur kernels (5β, 10β and 15β, where β =
image height /640) are used to synthesize images with mo-
tion blur. We use random motion angles in the range of
[0◦, 180◦].
Illumination: Pixel intensity values of the original images
are modified to make these images brighter or darker. To
make these images brighter, we change the image intensity
from [0, 255γ] to [0, 255], where γ = 0.6δ + 0.4 and δ is
random number in (0, 1). To make these images darker, we
add Possion noise with [4] to reproduce (or approximate)
shot noise by high ISO sensitivity as discussed in [21] and
change the image intensity from [0, 255] to [0, 255γ], where
γ is the same as above.
Lens impediments Seven different lens impediment masks
are downloaded from web and are blended with the images
by the procedure discussed in [3]. The masks have almost
uniform background to keep the contrast of images. To in-
crease the number of masks, we rotate, combine and crop
each mask to be similar in size as the image. Then, these
augmented masks are blended with images with opacity in
the range of [0.5, 1].

This synthetic dataset is then used as a source train-
ing dataset to fine-tune the existing state-of-the-art face
detectors discussed above. Fig. 4 shows the precision-
recall curves corresponding to different methods (trained
on the proposed synthetic dataset) evaluated on the pro-
posed UFDD datasets. Table 3 shows the mean average
precision (mAP) corresponding to different methods that

2Transmission maps are required to synthesize hazy images [14, 34].
Since transmission maps are not available in the considered datasets, we
are unable to synthesize the corresponding hazy images.

are trained on the original WIDER FACE training set and
synthetic dataset. It can be observed that there is consider-
able improvements in the detection performance when the
networks are trained on the synthesized dataset. This also
demonstrates the limitations of existing large scale face de-
tection datasets, where many real-world conditions such as
rain and haze are not considered.

Figure 4: Evaluation results of different algorithms on the
proposed UFDD dataset. Note that the face detectors are
trained on the synthetic WIDER FACE dataset.

Table 3: The mAP scores using different training sets.
Training set Original WIDER FACE Synthetic WIDER FACE
Faster-RCNN [33] 0.521 0.541
SSH [27] 0.695 0.731
S3FD [27] 0.725 -
HR-ER [16] 0.742 0.762

4.3. Cohort Analysis

In this section, we individually analyze the effect of dif-
ferent conditions such as rain, haze, etc. on the performance
of recent state-of-the-art face detection methods3. Results
of this study (precision-recall curves) are presented in Fig.
6. Detection results on a sample image for all the four
benchmark methods are shown in Fig. 5. It can be clearly
observed from these figures that all the degradations hin-
der the performance of the recent state-of-the-art detectors.
These degradations introduce different kinds of artifacts in
the feature maps, thereby resulting in a slightly modified
representation as compared to the original representation.
Since the existing methods are trained on the datasets that
do not necessarily contain large number of images with
these conditions, such methods do not generalize well to
new conditions.

Performance drops are observed under all degradations,
although to different degrees. Among all degradations, the
presence of haze and lens impediments have a relatively
more impact, which is probably because these conditions

3All four methods use WIDER FACE as the source training set and
these pre-trained models are evaluated on the UFDD dataset.
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Figure 5: Sample face detection results on the proposed UFDD dataset.

Rain Snow Haze

Blur Illumination Lens impediments
Figure 6: Cohort Analysis: Individual precision-recall curves of different face detection algorithms on the proposed UFDD
dataset. Note that the face detectors are pre-trained on the WIDER FACE dataset.

severely degrade the image and the problem is further ag-
gravated due to the fact that the WIDER FACE dataset does
not contain many hazy and lens impediments images. A

surprising observation is that the HR-ER method [16] con-
sistently performs better than more recent methods such as
SSH [27] and S3FD [52]. This is especially important con-



Table 4: The mAP scores corresponding to different detec-
tors on the UFDD dataset with and without distractors and
their differences.

DB UFDD UFDD without distractors Difference
Faster-RCNN [33] 0.521 0.564 0.043
SSH [27] 0.695 0.725 0.030
S3FD [27] 0.725 0.761 0.036
HR-ER [16] 0.742 0.767 0.025

sidering the fact that SSH and S3FD perform better on the
WIDER FACE dataset as compared to HR-ER. Based on
this observation, we may conclude that HR-ER has better
generalization ability as compared to the other detectors. In
the following, we discuss the results for each condition in
detail.
Rain: The presence of rain streaks alters the high frequency
components in an image, thus changing the filter responses.
This results in degradation of visual quality and poor detec-
tion performance [50]. The problem is further exacerbated
when images containing occluded faces are degraded with
rain streaks.
Snow: Similar to rain, the presence of snow also degrades
the performance of face detection since it blocks certain
parts of the face (as shown in Fig. 5. However, the degra-
dation observed due to snow is comparatively higher which
could be due to the fact that the presence of snow results in
larger degrees of occlusion as compared to that caused by
rain.
Haze: Haze, caused by the absorption or reflection of light
by floating particles in the air, results in low image contrast
affecting the visibility of faces in images. In addition to
causing serious degradation of image quality, haze causes a
significant drop in face detection performance. As shown
in the third column in Fig. 5, the faces are less visible and
tend to be darker due to the presence of haze. It can be
observed that haze causes relatively more degradation in the
performance compared to rain and snow.
Blur: Blur, caused either by camera shake or due to depth,
results in loss of crucial high frequency details in an image.
This loss of information results in considerable difficulties
for face detection. Since existing face detectors are trained
on datasets containing sharp and high-quality images, the
representations learned by these detectors are not robust to
blurry images.
Illumination: Extreme illumination conditions such as ex-
cessive brightness or darkness affects the visibility of faces.
It can be observed from Fig. 5 that all four methods are un-
able to detect the faces in images with extreme illumination
conditions.
Lens impediments: Lens impediments, caused by the pres-
ence of dirt particles or water droplets on the camera lens,
introduces sudden discontinuities in frequencies and hence,
large variations in focus in the captured images. As shown
in the last column in Fig. 5, the presence of water droplets

Figure 7: Evaluation results of different algorithms on the
proposed UFDD dataset with and without distractors.

results in regions in the image that have different focus.
This results either in false detections or miss-detections.
Distractors: Distractors are images that do not contain
human faces. Example of distractor images are the ones
containing hand regions, animal faces, etc. These images
contain regions which can be easily confused as faces and
hence, these kind of images result in high false positive rate.
It can be observed from Table 4 and Fig. 7 that the detection
accuracies drop drastically in the presence of distractor im-
ages. Similar observation can be made from the last column
in Fig. 5.

5. Conclusion
We identified the next set of challenges that plague the

face detection task. While existing datasets capture large
variations in different factors, these newly identified condi-
tions are largely ignored. To overcome this, we collected a
new UFDD dataset that specifically captures different im-
age degradations due to weather conditions such as rain,
snow, haze, etc. and blur-based degradations. In addition,
the dataset also consists of several images known as distrac-
tors that contain non-human faces and objects. We bench-
marked recent state-of-the-art face detection algorithms on
this newly proposed dataset and demonstrate a significant
gap in their performance. Additionally, in order to provide
an insight for design of future algorithms, we also presented
a detailed cohort analysis that studies the effect of different
conditions on the detection performance.
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