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Abstract—We propose novel convolutional sparse and low-
rank coding-based methods for cartoon and texture decompo-
sition. In our method, we first learn a set of generic filters
that can efficiently represent cartoon and texture type images.
Then using these learned filters, we propose two optimization
frameworks to decompose a given image into cartoon and
texture components - Convolutional Sparse Coding-Based Image
Decomposition (CSCD) and Convolutional Low-rank Coding-
Based Image Decomposition (CLCD). By working directly on
the whole image, the proposed image separation algorithms
do not need to divide the image into overlapping patches for
leaning local dictionaries. The shift-invariance property is directly
modeled into the objective function for learning filters. Extensive
experiments show that the proposed methods perform favorably
compared to state-of-the-art image separation methods.

Index Terms—Image decomposition, convolutional coding, low-
rank coding, sparse coding.

I. INTRODUCTION

In many practical applications such as biomedical imaging,
remote sensing, biometrics and astronomy, images can be
modeled as superpositions of cartoon (e.g. piecewise smooth
image) and texture structures (i.e. rain-component or fence)
[1], [2], [3], [4], [5], [6]. For instance, in remote sensing, a syn-
thetic aperture radar image can be modeled as a superposition
of the ground reflectivity field (cartoon) with multiplicative
speckle (texture) [7], [8], [9]. Similarly, in order to detect
cracks on concrete structures, one can also model the image as
a superposition of background texture with a crack component
[10]. In these applications, a common task is to separate such
an image into two individual images - one containing the
cartoon part and the other containing the texture part.

In recent years, methods based on sparse representation
and `1-minimization have been developed to deal with this
problem. In particular, an approach called Morphological
Component Analysis (MCA) was proposed in [11] for sep-
arating different geometrical components from a given image
under the assumption that an image is the linear mixture
of several morphological components. In this method, it is
assumed that different morphological components are suffi-
ciently distinct and that each one can be sparsely represented
using a specific dictionary but not in the other ones. The
performance of MCA depends on the dictionaries chosen
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for representing cartoon and texture components. In practice,
dictionaries corresponding to the Discrete Cosine Transform
(DCT) or the Discrete Sine Transform (DST) are used to
represent the texture component as their atoms are oscillatory
in nature and dictionaries corresponding to wavelet, curvelet,
shearlet or contourlet are used to represent the piecewise
smooth component as they represent geometric features such
as edges well. The MCA algorithm has been very successful in
separating various components in many practical applications
[11], [12], [8], [13]. However, one of the limitations of this
approach is that complicated textures found in many practical
applications can not be modeled by DCT or DST dictionaries
[14], [8]. As a result, it tends to produce a poor separation.

It has been observed that learning a dictionary directly
from training samples rather than using a predetermined
dictionary such as DCT or wavelet, usually leads to better
representation and hence can provide improved results in many
image processing and classification problems [15], [16]. One
such dictionary learning-based method for image separation
was proposed in [14]. However, this method only learns local
dictionaries for the texture component and uses predetermined
global dictionaries such as wavelet or curvelet for the cartoon
component. One of the limitations of this method is that it
is computationally very expensive and extremely slow [14].
Furthermore, most dictionary leaning approaches are patch-
based and features learned with these methods often contain
shifted versions of the same features [16]. To deal with this
issue, Convolutional Sparse Coding (CSC) methods have been
introduced in which shift invariance is directly modeled in the
objective [17], [18], [19], [20]. CSC has been demonstrated
to have important applications in a wide range of computer
vision and image processing problems [21], [22], [23], [6].

Even though sparsity-based methods have been very suc-
cessful in various image decomposition applications, the spar-
sity prior for texture can sometimes capture the edges in the
cartoon part. To deal with this issue, many recent works have
proposed using a low-rank prior to characterize the texture
component [24], [25]. The idea is that the texture may have
a globally different pattern, however, the matrix composed
by suitable stacking of vectorized blocks is low-rank. Using
this idea, [24] proposed a novel texture prior called Block
Nuclear Norm (BNN) for image separation. Similarly, a Low
Patch Rank (LPR) prior was enforced on the patches extracted
from a texture component in [25] for separating an image
into cartoon and texture components. However, these low-rank
based methods assume that the underlying texture lies in a
single low-rank subspace, which may not be true in practice
since a texture often lies in a union of multiple subspaces.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.XX, NO. XX 2

Besides sparsity and patch-rank methods, edge-preserving
techniques can also be used for image separation, as the task
of edge-preserving methods can be regarded as decomposing
a given image into a natural image with sharp edges (cartoon)
and the noise or texture component [26]. Different types of
affinity relations have been explored to preserve the sharp
edges [27], [26], [28]. Even though the edge-preserving meth-
ods achieve very good performance in recovering the cartoon-
type images, they often fail to distinguish textures from noise
[27], [26], [28]. Most recently, deep learning methods have
also been adopted to address the singe image separation
problem via directly learn the mapping between input image
and desired target image [29], [30].

In contrast to these methods, we propose a global Convolu-
tional Low-rank Coding (CLC) method to model the texture
component by learning a set of low-rank convolutional filters
directly from the training texture images. Using the CSC and
CLC methods for representing cartoon and texture compo-
nents, respectively, we propose two image separation methods
- Convolutional Sparse Coding-based Decomposition (CSCD)
and Convolutional Low-rank Coding-based Decomposition
(CLCD) for Cartoon + Texture decomposition. Figure 1 gives
an overview of the proposed image separation methods. We
first learn a set of generic filters that can efficiently represent
cartoon and texture type images. Then using these learned
filters, we propose an optimization framework to separate a
given image into cartoon and texture components. Rather than
using TV-regularization as post-processing procedure to refine
the recovered cartoon component discussed in [31], [11], we
propose a new optimization procedure to directly include the
TV-regularization into the optimization framework.

This paper makes the following contributions.

1) CSCD is proposed in which using multiple cartoon and
texture training images, we first learn sparsity-based
convolutional filters corresponding to these components.
Then, using the learned filters, we develop an MCA
type of algorithm to separate the texture and cartoon
components from a given image.

2) Similar to CSC, we propose CLC to efficiently represent
low-rank textures.

3) CLCD is proposed in which we use multiple texture
images to learn a set of convolutional low-rank filters
based on CLC and use multiple cartoon images to learn
a set of sparsity-based convolutional filters. Then, we
develop a modified MCA type of algorithm to separate
the texture and cartoon components from a given image
by replacing the sparsity prior on texture with low-rank
prior.

A preliminary version of this work appeared in [31], which
describes just the CSCD method for image separation. Exten-
sive experimental evaluations, CLC and CLCD are extensions
to [31].

The rest of the paper is organized as follows. In Section II,
we give a brief background on sparsity-based image separation
and convolutional sparse coding. Details of the proposed
CSCD algorithm are given in Section III. The CLC and CLCD
algorithms are introduced in Section IV. Experimental results

are presented in Section V and Section VI concludes the paper
with a brief summary and discussion.

II. BACKGROUND

In this section, we give a brief background on sparsity-based
image separation and convolutional sparse coding.

A. Image Separation

Let y be a lexicographically ordered vector of size N2

corresponding to an image Y ∈ RN×N . Assume that y is
a superposition of two different images

y = yc + yt, (1)

where yc and yt are the cartoon or piecewise smooth compo-
nent and the texture component of y, respectively. We assume
that yc is sparse in a dictionary represented in a matrix form
as Dc ∈ RN2×Mc , and similarly, yt is sparse in a dictionary
represented in a matrix form as Dt ∈ RN2×Mt . The dictio-
naries Dc and Dt are chosen such that they provide sparse
representations of piecewise smooth and texture components,
respectively. That is, we assume there are coefficient vectors
xc ∈ RMc and xt ∈ RMt so that yc = Dcxc and yt = Dtxt.
The sparsity assumption means that when the coefficients
are ordered in magnitude, they decay rapidly. Then, one can
estimate the components yc and yt via xc and xt by solving
the following optimization problem [11]

x̂c, x̂t =arg min
xc,xt

1

2
‖y −Dcxc −Dtxt‖22 + λc‖xc‖1

+ λt‖xt‖1 + λTV(Dcxc),
(2)

where TV is the total variation (i.e. sum of the absolute
variations in the image) [32] and for an N -dimensional vector
x, ‖ · ‖q denotes the `q-norm, 1 ≤ q < ∞, defined as

‖x‖q =
(∑N

i=1 |xi|q
) 1

q

. Here, λc, λt and λ are positive
regularization parameters. The two components are the corre-
sponding representations of the two parts and can be obtained
by ŷc = Dcx̂c and ŷt = Dtx̂t. Various methods have been
developed in the literature to obtain the solution of (2) [11],
[12].

B. Convolutional Sparse Coding

In CSC, given a set of M training samples {ym}Mm=1, the
objective is to learn a set of convolutional filters {dk}Ki=1 by
solving the following optimization problem

argmin
d,x

1

2

M∑
m=1

∥∥∥∥∥ym −
K∑

k=1

dk ∗ xm,k

∥∥∥∥∥
2

2

+ λ

M∑
m=1

K∑
k=1

‖xm,k‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, · · · ,K}, (3)

where xm,k are the sparse coefficients that approximate the
data ym when convolved with the corresponding filters dk

of fixed support. Here, ∗ represents the 2-D convolution
operator and λ is a positive regularization parameter. Several
methods have been proposed in the literature for solving the
above optimization problem. For instance, [18] introduced a
Fourier domain Alternating Direction Method of Multipliers
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Fig. 1: An overview of the testing process of the proposed convolutional sparse and low-rank coding-based image decomposition methods.
The cartoon filters dc,k have already been learned from a set of clean cartoon images and the texture filters dt,k have already been learned
from a set of clean texture images.

(ADMM) [33] framework for solving the CSC problem. In
[19] proper boundary conditions were incorporated for solving
the CSC optimization problem. More recently, [20], [34],
[35], [36] developed an efficient method that jointly uses the
space and Fourier domains to solve the CSC problem. Most
recently, [37] proposed a new convolutional sparse coding
algorithm that incorporates the boundary truncation operator
whose algorithm is more friendly to training with big-data. In
this paper, we adapt the method proposed in [20] for learning
the convolutional filters due to its simplicity and efficiency.

III. CONVOLUTIONAL SPARSE CODING-BASED IMAGE
DECOMPOSITION (CSCD)

Following the mixture model in (1), given y our goal is
to separate it into yc and yt. Assume that we have already
learned the convolutional sparsity-based filters corresponding
to yc and yt by solving the CSC problem (3) for the cartoon
and the texture components separately. That is, we have
learned {dc,k}Kc

k=1 and {dt,k}Kt

k=1 such that yc =
∑Kc

k=1 dc,k ∗
xc,k and yt =

∑Kt

k=1 dt,k ∗ xt,k, where xc,k and xt,k are the
sparse coefficients that approximate yc and yt when convolved
with the filters dc,k and dt,k, respectively. We propose to
estimate yc and yt via xc,k and xt,k by solving the following

CSC-based optimization problem

x̂c,k, x̂t,k = arg min
xc,k,xt,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kt∑
k=1

dt,k ∗ xt,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 + λt

Kt∑
k=1

‖xt,k‖1

+ λTV

(
Kc∑
k=1

dc,k ∗ xc,k

)
,

(4)

where λt, λc and λ are positive regularization parameters.
In this paper, we adopt the anisotropic version of the TV-
regularization

TV(x) = ‖g0 ∗ x‖1 + ‖g1, ∗x‖1, (5)

where g0 and g1 are filters that compute the image gradients
along the rows and columns, respectively. Once, xc,k and xt,k

are estimated, the two components can be obtained by ŷc =∑Kc

k=1 dc,k ∗ x̂c,k and ŷt =
∑Kt

k=1 dt,k ∗ x̂t,k.

A. Optimization
The optimization problem can be solved iteratively over xc,k

and xt,k.
1) Update step for xc,k: In this step, we assume that xt,k

is fixed. As a result, the following problem needs to be solved

x̂c,k =argmin
xc,k

1

2

∥∥∥∥∥y −
Kt∑
k=1

dt,k ∗ xt,k −
Kc∑
k=1

dc,k ∗ xc,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 + λTV

(
Kc∑
k=1

dc,k ∗ xc,k

)
(6)
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(a) W/O TV-regularization (b) With TV-regularization

Fig. 2: Sample results of the proposed CSCD methods with and
without the TV-regularization.

Since, xt,k,dt,k and dc,k are fixed, (6) is essentially a sparse
coding problem with the TV-regularization, which can be
solved using the DFT-based ADMM algorithm [35]. Optimiza-
tion details are given in the Appendix A.

Note that the TV-regularization is used to preserve important
details such as edges in the cartoon component and to remove
some undesirable artifacts. Figure 2 gives an example of the
cartoon image obtained using the proposed CSCD method with
and without the TV-regularization. As can be seen from Fig-
ure 2 (a), when CSCD is used without the TV-regularization,
we observe the presence of some unwanted artifacts. From
Figure 2 (b) we see that these artifacts are removed when
the TV-regularization is included into the optimization and we
obtain much better cartoon component.

2) Update step for xt,k: For a fixed xc,k, we have to solve
the following problem to obtain xt,k

x̂t,k = argmin
xt,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kt∑
k=1

dt,k ∗ xt,k

∥∥∥∥∥
2

2

+ λt

Kt∑
k=1

‖xt,k‖1 . (7)

Again, this problem can be solved using the ADMM frame-
work proposed in [34].

The overall CSCD algorithm is summarized in the Algo-
rithm 1. Here, λc, λt, and λ are regularization parameters,
L is the total iteration number, y is the input image to be
separated and ŷc and ŷt are the estimated cartoon component
and the texture component, respectively.

Algorithm 1: The CSCD Algorithm for Cartoon+Texture
Image Decomposition.

1 Input: {dc,k}Kc

k=1, {dt,k}Kt

k=1, y, λc, λt, λ, L
2 for i = 1 : L
3 Obtain x̂c,k by solving (6).
4 Obtain x̂t,k by solving (7).
5 end for
6 ŷc =

∑Kc

k=1 dc,k ∗ x̂c,k

7 ŷt =
∑Kl,t

k=1 dt,k ∗ x̂t,k

8 Output: ŷc, ŷt

IV. CONVOLUTIONAL LOW-RANK CODING-BASED IMAGE
DECOMPOSITION (CLCD)

Since textures inherently have low-rank characteristics, one
can learn a better representation for them by promoting a low-
rank property on the coefficients rather than a sparsity property
as is normally done in CSC. The proposed framework for CLC
is very similar to CSC, which involves solving the following
optimization problem

arg min
dk,xm,k

1

2

M∑
m=1

∥∥∥∥∥ym −
K∑

k=1

dk ∗ xm,k

∥∥∥∥∥
2

2

+ λ

M∑
m=1

K∑
k=1

‖xm,k‖∗

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, · · · ,K}, (8)

where xm,k are the low-rank coefficients that approximate the
data ym when convolved with the corresponding filters dk

of fixed support and ‖ · ‖∗ is the nuclear norm, which is the
sum of the singular values. Optimization problem (8) can be
solved iteratively by updating dk while fixing xm,k and then
updating xm,k while fixing dk as it is a bi-convex problem.
Optimization details are given in the Appendix B.

Assume that we have learned a set of convolutional sparsity-
based filters {dc,k} using CSC to sparsely represent the
cartoon part and another set of convolutional low-rank based
filters {dt,k} using CLC to efficiently represent the texture
component. That is, we have learned {dc,k}Kc

k=1 and {dt,k}Kt

k=1

such that yc =
∑Kc

k=1 dc,k ∗ xc,k and yt =
∑Kt

k=1 dt,k ∗ xt,k,
where xc,k are the sparse coefficients and xt,k are the low-
rank coefficients that approximate yc and yt when convolved
with the filters dc,k and dt,k, respectively. Then, we propose
to estimate the cartoon and texture components via xc,k and
xt,k, respectively by solving the following CLCD optimization
problem

x̂c,k, x̂t,k = arg min
xc,k,xt,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kt∑
k=1

dt,k ∗ xt,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 + λt

Kt∑
k=1

‖xt,k‖∗

+ λTV

(
Kc∑
k=1

dc,k ∗ xc,k

)
,

(9)

where λt, λc, and λ are positive regularization parameters.
Note that in CLCD, we promote sparsity property on the
coefficients corresponding to the cartoon part and low-rank
property on the coefficients corresponding to the texture part.
This is in contrast to CSCD where coefficients corresponding
to both cartoon and texture components are required to be
sparse.

A. Optimization

The resulting optimization problem can be solved iteratively
over xc,k and xt,k.
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Algorithm 2: The CLCD Algorithm for Cartoon+Texture
Image Decomposition.

1 Input: {dc,k}Kc

k=1, {dt,k}Kt

k=1, y, λc, λt, λ, L
2 for i = 1 : L
3 Obtain x̂c,k by solving (6).
4 Obtain x̂t,k by solving (11).
5 end for
6 ŷc =

∑Kc

k=1 dc,k ∗ x̂c,k

7 ŷt =
∑Kt

k=1 dt,k ∗ x̂t,k

8 Output: ŷc, ŷt

1) Update step for xc,k: When xt,k is fixed, we need to
solve the following problem to obtain the sparse coefficients
xc,k

x̂c,k = argmin
xc,k

1

2

∥∥∥∥∥y −
Kt∑
k=1

dt,k ∗ xt,k −
Kc∑
k=1

dc,k ∗ xc,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1 + λTV

(
Kc∑
k=1

dc,k ∗ xc,k

)
.

(10)

This problem is exactly the same as (6) and can be solved us-
ing the DFT-based ADMM method described in the Appendix
A.

2) Update step for xt,k: For a fixed xc,k, we have to solve
the following problem to obtain xt,k

x̂t,k = argmin
xt,k

1

2

∥∥∥∥∥y −
Kc∑
k=1

dc,k ∗ xc,k −
Kt∑
k=1

dt,k ∗ xt,k

∥∥∥∥∥
2

2

+ λt

Kt∑
k=1

‖xt,k‖∗ . (11)

This problem is very similar to the sub-problem that we solve
in CLC for finding the low-rank coefficients when dk are fixed.
Let yr = y−

∑Kc

k=1 dc,k ∗xc,k. Then (11) can be rewritten as

x̂t,k = argmin
xt,k

1

2

∥∥∥∥∥yr −
Kt∑
k=1

dt,k ∗ xt,k

∥∥∥∥∥
2

2

+ λt

Kt∑
k=1

‖xt,k‖∗ ,

which can be solved using the optimization procedure de-
scribed in Appendix B-2.

The overall CLCD algorithm for Cartoon+Texture separa-
tion is summarized in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our proposed image
separation algorithms and compare them with the sparsity-
based MCA method [11], adaptive dictionary learning-based
MCA (A-MCA) method [14] and a recent state-of-the-art low-
rank-based Block Nuclear Norm (BNN) method [24]. We also
compare our methods with two edge-preserving techniques:
image guided filtering (GF) based method [38] and recently
introduced rolling guidance filter (RGF) [28]. Furthermore,
we compare the performance of different methods with a
CLCD method where instead of learning low-rank filters for

the texture component, we learn sparsity-based filters using
CSC. We call this method S-CLCD. This will clearly show
the significance of learning texture filters by CLC. In these
experiments, we use Peak Signal to Noise Ratio (PSNR)
to measure the performance of the routines tested. For the
MCA method, curvelet and local DCT dictionaries are used to
represent the cartoon and the texture components, respectively.
For the A-MCA method, we use a curvelet dictionary for
sparsely representing the cartoon component and learn a set
of local patch-based texture dictionaries using the images
shown in Figure 5 (a) to represent the texture component.
Following the common practice in CSC [20], the input image
is first high-pass and low-pass filtered. The CSCD and CLCD
methods are applied only on the high-pass filtered image
since convolutional sparse representations do not provide a
good representation of the low-frequency components of an
image. The low-pass filtered image is considered as part of
the cartoon component. During training, 100 cartoon images
and 50 texture images are selected to learn the cartoon and
texture filters, respectively. Experiments were conducted using
Python on an Ubuntu 14.04 system with Intel Xeon(R) CPU
E5-2623 v3 3.00GHz processor.

All the parameters corresponding to the proposed methods
are empirically determined, as tabulated in Table I, where i
indicates the index of iteration. In all the experiments, the
total number of outer (L) and inner iterations are set equal to
10 and 50, respectively. The parameters for the RGF method
[28] were also fine-tuned for different experiments. They are
chosen as follows: we set spatial variance σs = 1.5 and range
variances σr = 0.18 for the first three experiments, σs = 1.5
and σr = 0.15 for the fourth experiment (Barbara Image)
and σs = 2.3 and σr = 0.2 for the last experiment. In our
experiments, we found that the anisotropic TV-norm performs
slightly better than the isotropic TV-norm. Hence, we use the
anisotropic TV-norm based optimization for image separation
in this paper.

A. Cartoon + Texture Image Separation

Some training images shown in Figure 5 (a) and Figure 5 (b)
are used to learn the convolution sparse filters {dt,k}Kt

k=1 and
{dc,k}Kc

k=1, respectively using the CSC method proposed in
[20]. The corresponding learned filters are shown in Figure 5
(c) and Figure 5 (d) for the texture and the cartoon compo-
nents, respectively. The convolution low-rank filters {dt,k}Kt

k=1

learned by CLC using the textures in Figure 5 (a), are shown
in Figure 5 (e). The size of each filter is set equal to 11×11
for all three methods.

Figures 3, 4 and 6 show the original images and the
decomposed images corresponding to different methods. All
the test images were excluded from the images used to learn
the convolutional filters. In all three figures, the first column
shows the original test image, original cartoon image and
original texture image. Second, third and fourth columns show
the results corresponding to our CSCD, S-CLCD and CLCD
methods, respectively. Fifth, sixth, seventh, eighth and ninth
columns show the results corresponding to the BNN [24],
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Original
Test

Image

CSCD All
(PSNR:
42.57)

S-CLCD All
(PSNR:
34.64)

CLCD All
(PSNR:
37.07)

BNN All
(PSNR:
30.34)

MCA All
(PSNR:
33.15)

A-MCA All
(PSNR:
29.20)

Original
Cartoon
Image

CSCD
Cartoon
(PSNR:
28.48)

S-CLCD
Cartoon
(PSNR:
28.53)

CLCD
Cartoon
(PSNR:
28.61)

BNN
Cartoon
(PSNR:
28.50)

MCA
Cartoon
(PSNR:
27.80)

A-MCA
Cartoon
(PSNR:
28.70)

GF
Cartoon
(PSNR:
28.00)

RGF
Cartoon
(PSNR:
28.19)

Original
Texture
Image

CSCD
Texture

(PSNR:28.40)

S-CLCD
Texture

(PSNR:28.52)

CLCD
Texture

(PSNR:28.95)

BNN
Texture

PSNR:27.06)

MCA
Texture

(PSNR:27.81)

A-MCA
Texture

(PSNR:27.92)

GF
Texture

(PSNR:28.02)

RGF
Texture

(PSNR:28.18)

Fig. 3: Image decomposition results on the Tiger+Texture image. We compare the performance of our three methods with that of BNN [24],
MCA [11], A-MCA [14], GF [38] and RGF [28].

TABLE I: Parameters used in our experiemnts(i represents the iteration).

CSCD S-CLCD CLCD

First Four Experiments
λc = max(0.55− 0.07 ∗ i, 0.003);
λt = max(0.5− 0.07 ∗ i, 0.003);

λ = 0.05;

λc = max(0.47− 0.063 ∗ i, 0.002);
λt = max(5.08− 0.72 ∗ i, 0.38);

λ = 0.05;

λc = max(0.53− 0.07 ∗ i, 0.003);
λt = max(4.80− 0.65 ∗ i, 0.35);

λ = 0.05;

Fingerprints
λc = max(0.55− 0.05 ∗ i, 0.15);
λt = max(0.5− 0.05 ∗ i, 0.05);

λ = 0.03;

λc = max(0.45− 0.06 ∗ i, 0.12);
λt = max(5.00− 0.65 ∗ i, 0.65);

λ = 0.03;

λc = max(0.45− 0.06 ∗ i, 0.12);
λt = max(5.00− 0.75 ∗ i, 0.60);

λ = 0.03;

MCA [11], A-MCA [14], GF [38] and RGF [28] methods,
respectively.1

As can be seen from these figures, our methods are able to
separate the morphological components from the given images
better than the other methods. In particular, experiments with
the Tiger+Texture image shown in Figure 3 show that CSCD,
S-CLCD and CLCD methods achieve better PSNR results of
28.48 dB, 28.53 dB and 28.61 dB on the separated cartoon
component compared to the PSNRs of 28.50 dB, 27.80 dB,
28.70 dB, 28.00 dB and 28.19 dB corresponding to BNN,
MCA, A-MCA, GF, RGF methods, respectively. Similarly,
CSCD, S-CLCD and CLCD obtain the PSNR of 28.40 dB,
28.52 dB and 28.95 dB for the texture component compared
to the PSNRs of 27.06 dB, 27.81 dB, 27.92 dB. 28.02 dB
and 28.18 dB corresponding to BNN, MCA, A-MCA, GF and
RGF methods, respectively. Overall, our method achieves the

1As there is no specific prior in the GF [38] and RGF [28] methods
in charactering texture component, we regard the subtraction between the
input image and the recovered cartoon image as the recovered texture part.
Therefore, we are unable to evaluate how well these two methods perform
overall on the addition of the two components. (the PSNR measured on the
addition of the recovered cartoon and the recovered texture part compared
with the original test image).

PSNR of 42.57 dB, 34.64 dB and 37.07 dB when the two
estimated components are combined compared to the PSNRs
of 30.34 dB, 33.15 dB and 29.20 dB for the BNN, MCA and
A-MCA methods, respectively. Similar PSNR performances
are also observed in Figure 4 and 6 with the experiments on
the Cat+Cage image and Boy+Mixed Texture image, respec-
tively. These results clearly indicate that an improvement is
achieved when CSC and CLC methods are used to separate
morphological components of an image as can be seen by
comparing the visual as well as PSNR results of our method
with that of MCA, A-MCA BNN, GF and RGF in Figures 3,
4 and 6.

To better demonstrate the effectiveness of the proposed
methods, more quantitative results are evaluated on another
twenty synthetic images. The average results evaluated on the
recovered cartoon and texture components are tabulated in
Table II. According to the quantitative performance, it can be
observed that our proposed CLCD method achieves the best
performance on average compared to the other methods. In
particular, CLCD achieves much better results on the recovered
texture components. This demonstrates the effectiveness of
using convolutional low-rank coding to represent the texture
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Original
Test
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CSCD All
(PSNR:
38.53)

S-CLCD All
(PSNR:
34.52)

CLCD All
(PSNR:
36.14)

BNN All
(PSNR:
33.15)

MCA All
(PSNR:
32.81)

A-MCA All
(PSNR:
29.70)

Original
Cartoon
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CSCD
Cartoon

(PSNR:28.26)

S-CLCD
Cartoon

(PSNR:28.07)

CLCD
Cartoon

(PSNR:28.76)

BNN
Cartoon

(PSNR:28.04)

MCA
Cartoon

(PSNR:26.82)

A-MCA
Cartoon

(PSNR:27.80)

GF
Cartoon

(PSNR:26.72)

RGF
Cartoon

(PSNR:28.56)

Original
Texture
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CSCD
Texture

(PSNR:28.16)

S-CLCD
Texture

(PSNR:28.27)

CLCD
Texture

(PSNR:29.14)

BNN
Texture

(PSNR:26.24)
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(PSNR:26.40)

A-MCA
Texture

(PSNR:26.63)

GF
Texture

(PSNR:26.70)

RGF
Texture

(PSNR:28.52)

Fig. 4: Image decomposition results on the Cat+Cage image. We compare the performance of our three methods with that of BNN [24],
MCA [11], A-MCA [14], GF [38] and RGF [28].

(a)

(b)

(c) (d) (e)

Fig. 5: (a) Training texture images used for learning a set of texture filters {dt,k}Kt
k=1. (b) Training cartoon images used for learning a set of

cartoon filters {dc,k}Kc
k=1. (c) Learned sparsity-based texture filters {dt,k}Kt

k=1. (d) Learned cartoon filters {dc,k}Kc
k=1. (e) Learned low-rank

based texture filters {dt,k}Kt
k=1.

components in our application.

It is interesting to note that CLCD recovered the texture

component better than the other methods, demonstrating its
effectiveness in characterizing the texture component using a
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Original
Test

Image

CSCD All
(PSNR:
40.41)

S-CLCD All
(PSNR:
38.42)

CLCD All
(PSNR:
38.88)

BNN All
(PSNR:
35.90)

MCA All
(PSNR:
39.95)

A-MCA All
(PSNR:
35.30)

Original
Cartoon
Image

CSCD
Cartoon

(PSNR:28.12)

S-CLCD
Cartoon

(PSNR:29.22)

CLCD
Cartoon

(PSNR:30.01)

BNN
Cartoon

(PSNR:29.04)

MCA
Cartoon

(PSNR:27.82)

A-MCA
Cartoon

(PSNR:28.10)

GF
Cartoon

(PSNR:26.10)

RGF
Cartoon

(PSNR:28.25)

Original
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CSCD
Texture

(PSNR:28.38)
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(PSNR:29.66)

CLCD
Texture

(PSNR:30.20)

BNN
Texture

(PSNR:28.80)

MCA
Texture

(PSNR:28.20)

A-MCA
Texture

(PSNR:28.33)

GF
Texture

(PSNR:26.23)

RGF
Texture

(PSNR:28.33)

Fig. 6: Image decomposition results on the Boy + Mixed texture image. We compare the performance of our three methods with that of
BNN [24], MCA [11], A-MCA [14], GF [38] and RGF [28].

TABLE II: Average quantitative results evaluated on twenty synthetic images.

PSNR MCA [11] A-MCA [14] BNN [24] GF [38] RGF [28] CSCD S-CSCD CLCD

Cartoon (dB) 26.88 27.62 27.49 26.83 27.45 27.55 28.02 28.15

Texture (dB) 26.56 27.58 26.89 26.92 27.52 27.28 27.89 28.80

low-rank prior. Furthermore, the recovered texture component
in Figure 6 indicates that the proposed CLCD method can
deal with heterogeneous textures better compared to BNN.
In general better results are obtained by our methods than
previous patch-based methods, indicting the advantage of
using convolutional coding for image separation.

Using a set of twenty synthetic images (including the three
examples we use in this paper), we show the average evolution
of the CSCD and CLCD objective functions in Figure 7.
Note that in Figure 7, the relative error decreases significantly
after a few iterations and saturates around the ninth iteration,
showing that the proposed method is efficient and requires a
few number of iterations to converge.

B. Real Image Separation
We also evaluate different methods on the Barbara image.

The decomposition results as shown in Fig 8, where the
recovered cartoon part, recovered texture part and close-up
of the recovered cartoon part are shown in the first, second
and third row, respectively. As can be seen from this figure,
the proposed methods achieve similar performance compared
to the state-of-art BNN method in the recovered texture
part. Furthermore, from the third row, we can see that our
methods can capture less texture component in the recovered
cartoon part, which clearly demonstrates the effectiveness of
the proposed methods in separating real-world images.
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CLCD

Fig. 7: The objective function value as a function of iteration number
for the experiments conducted on twenty synthetic images.

C. Fingerprint Extraction

In the last set of experiments, we present an application
of the proposed CSCD and CLCD methods in extracting
the underlying fingerprint from a latent fingerprint. Latent
fingerprints are among the most valuable and common types
of physical evidence. Latent fingerprints obtained from crime
scenes can be used as crucial evidence in forensic identifica-
tion. However, matching latent fingerprints with the enrolled
fingerprints is a difficult problem as latent fingerprints are
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often of poor quality. In this experiment, we show that one
can use the proposed CSCD, S-CLCD and CLCD methods
to extract the underlying fingerprint from a latent fingerprint,
which can be then matched with the enrolled fingerprints. In
this experiment, we only present the separation results as the
matching of latent fingerprints is beyond the scope of this
paper. We use the same learned cartoon filters as used in the
previous experiments. However, we learn the texture sparsity
based and low-rank-based filters corresponding to fingerprints,
from a set of clean fingerprints. For the A-MCA method, we
use a curvelet dictionary for sparsely representing the cartoon
component and learn a local patch-based dictionary using the
same set of clean clean fingerprints. The parameters used in
this experiment are tabulated in Table I.

The first row of Figure 9 shows the input latent fingerprint
and the second row presents the learned sparsity-based texture
(fingerprint) filters and a set of learned low-rank-based texture
(fingerprint) filters. The learned fingerprint filters show some
characteristics unique to fingerprints. As can be seen from
the binarized close-ups of delta and whorl shown in the first
column in Figure 9, fingerprints are difficult to analyze due
to the presence of black marks. In the third row, we show
the extracted fingerprints by the CSCD, S-CLCD and CLCD
methods as well as BNN [24], MCA [11], A-MCA [14], GF
[38] and RGF [28] methods. We can observe from this figure
that our methods are able to extract the underlying structure
of the fingerprint better than MCA, A-MCA, GF and RGF.
This can be seen by comparing the binarized extracted delta
and whorl patterns in the last two rows of this figure. These
two features are close-ups of certain regions in recovered
fingerprints component. It is interesting to see that if the
cartoon part is piecewise smooth, then our method and BNN
can recover the shape of the fingerprint better than MCA
since it uses local DCT to represent the texture component.
Furthermore, as can be seen from the results of A-MCA,
learning a local dictionary to represent the fingerprint textures
does not produce good results. This experiment clearly shows
the significance of our proposed convolutional coding-based
methods compared to MCA and A-MCA that use fixed and
patch-based adaptive dictionaries, respectively.

D. Analysis of Algorithms with Noisy Test Data
We evaluate the performance of the proposed image separa-

tion methods in the presence of additive white Gaussian noise.
Experiments are conducted by corrupting the Tiger+Texture,
Cat+Cage and Boy + Mixed Texture images by Gaussian noise
with varying standard deviations. In these experiments, we
empirically determined the parameters λc and λt for different
noise levels. We also fine-tune the parameter for other methods
in the presence of gaussian noise with different variance.
Results are tabulated in Tables III, IV and V.

As can be seen from these tables, our methods achieve the
best PSNR results in most of the cases, which demonstrate
their robustness in the presence of noise compared with
other methods. Meanwhile, we can observe that though edge-
preserving methods [38], [28] achieve comparable perfor-
mance in recovering the cartoon component, they are unable
to separate texture from noise.

E. Boundary Artifacts
Since our methods are solved in the DFT domain, they

implicitly impose periodic boundary conditions, which may
result in artifacts around the boundary when the input images
are not circularly symmetric on the boundary. One possible
solution is to involve the boundary spatial mask to mask
out the boundaries of the padded estimation as discussed in
[36]. However, the spatial mask does not have a compact
representation in the DFT domain. In our future work, we will
explore different ways to handle boundary artifacts within our
optimization framework.

F. Computational Complexity
In this section, we analyze the computational complexity

of the proposed image separation algorithms. Suppose we are
given an N × N test image, yt and we have learned a set
of {dk}Kk=1 convolutional filters using CSC or CLC. Then,
the computational complexity of the CSCD algorithm is as
follows [31]: The complexity of solving (17) is O(KN2).
The complexity in transferring (16) in the DFT domain is
O(KN2 logN2) and the complexity of solving (16) in the
DFT domain is O(KN2). As a result, the overall complexity
of the CSCD algorithm is O(KN2 logN2).

Similar analysis is also applied to the CLCD algorithm:
The complexity of solving (29) is O(KN3), which is the
most computationally heavy part in CLCD. The complexity in
transferring (28) in the DFT domain is O(KN2 logN2) and
the complexity in solving (28) in the DFT domain is O(KN2).
Therefore, the overall complexity of the CLCD algorithm is
O(KN3).

VI. CONCLUSION

In this paper, we presented convolutional coding-based
image separation methods to decompose a given image into a
texture and a cartoon component. Our methods entail learn-
ing cartoon and texture filters directly from training exam-
ples. Using these learned filters, we proposed low-rank and
sparsity-based optimization frameworks for image separation.
Various experiments showed the significance of our CSC
and CLC-based image separation methods over the sparse
representation-based methods that use global dictionaries and
patch-based methods that use local dictionaries for image
separation.

In this work, we have leveraged a nested optimization
approach for image decomposition. In the future, we will
explore more efficient and integrated approaches to solve
this problem. Furthermore, we will apply the proposed image
separation methods on various computer vision problems such
as intrinsic image estimation and albedo estimation that require
separating a specific component from a given image.
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Fig. 8: Real image separation results. We compare the performance of our three methods with that of BNN [24], MCA [11], A-MCA [14],
GF [38] and RGF [28].

TABLE III: Analysis of algorithms with noisy Tiger+Texture image.

σ2/ PSNR (dB) CSCD: All/Cartoon/Texture S-CLCD: All/Cartoon/Texture CLCD:All/Cartoon/Texture BNN: All/Cartoon/Texture MCA: All/Cartoon/Texture A-MCA: All/Cartoon/Texture GF: All/Cartoon/Texture RGF: All/Cartoon/Texture

0.0025 (26.02) 27.98/28.05/25.77 28.14/27.02/25.88 27.99/28.51/25.72 25.39/27.95/24.78 26.52/28.25/24.63 28.03/28.40/24.76 */27.83/24.46 */28.01/24.12

0.0056 (22.50) 25.62/27.84/25.04 25.31/27.89/24.89 25.84/28.08/25.06 22.74/26.69/22.61 24.32/27.70/23.77 25.41/27.62/24.58 */27.54/22.25 */27.62/22.78

0.01 (20.04) 24.14/27.31/23.80 24.06/28.02/23.82 24.58/27.96/24.23 20.62/25.68/21.15 22.82/27.34/22.5 4 23.82/26.64/23.05 */27.11/20.48 */27.01/19.76

0.017 (17.73) 22.39/26.57/22.33 22.78/27.22/22.30 22.88/27.04/22.82 19.19/23.95/19.37 20.62/26.43/21.37 22.51/26.75/22.15 */26.29/18.68 */26.65/18.08

TABLE IV: Analysis of algorithms with noisy Cat+Cage image.

σ2/PSNR (dB) CSCD: All/Cartoon/Texture S-CLCD: All/Cartoon/Texture CLCD: All/Cartoon/Texture BNN: All/Cartoon/Texture MCA: All/Cartoon/Texture A-MCA: All/Cartoon/Texture GF: All/Cartoon/Texture RGF: All/Cartoon/Texture

0.0025 (26.02) 27.65/28.27/25.89 28.19/28.47/26.19 27.75/28.15/25.85 25.98/27.8/23.5 26.74/27.92/24.14 26.44/25.05/22.72 */26.49/23.95 */27.49/23.83

0.0056 (22.51) 24.39/28.09/23.81 24.68/27.99/23.34 24.97/27.89/24.20 23/24.2/21.6 23.72/27.65/22.77 23.91/26.74/22.94 */26.17/21.95 */27.46/21.50

0.01 (20.01) 22.79/28.01/22.52 22.75/27.95/21.97 23.14/27.44/22.84 20.88/24.36/20.70 22.14/26.72/21.55 22.40/26.72/21.94 */25.83/22.23 */27.24/19.41

0.017 (17.73) 21.16/27.16/21.19 21.16/27.33/21.00 21.47/26.78/21.41 19.56/24.46/19.88 20.71/26.10/20.40 21.01/26.15/21.04 */24.79/18.60 */26.95/17.41

TABLE V: Analysis of algorithms with noisy Boy+ Mixed Texture image.

σ2/PSNR (dB) CSCD: All/Cartoon/Texture S-CLCD: All/Cartoon/Texture CLCD: All/Cartoon/Texture BNN: All/Cartoon/Texture MCA: All/Cartoon/Texture A-MCA: All/Cartoon/Texture GF: All/Cartoon/Texture RGF: All/Cartoon/Texture

0.0025 (26.04) 27.30/27.29/25.92 27.97/27.65/26.02 27.89/27.56/25.93 25.92/27.32/24.5 26.7/26.62/23.98 26.7/26.58/24.07 */26.50/23.99 */26.71/23392

0.0056 (22.51) 24.92/26.32/23.09 25.32/27.08/25.52 25.51/26.58/25.67 22.71/27.18/22.27 23.72/25.82/22.94 24.22/25.73/23.54 */26.27/22.06 */26.51/21.92

0.01 (20.01) 23.48/26.06/21.92 24.10/26.95/24.27 24.24/26.19/24.59 20.39/26.69/20.20 22.37/25.78/21.81 23.42/25.89/22.54 */25.79/20.33 */26.38/19.25

0.017 (17.73) 21.78/24.93/20.00 22.19/26.24/22.37 22.25/25.93/22.59 19.56/24.46/19.88 21.15/24.91/21.12 21.68/25.02/21.71 */25.01/18.71 */26.16/17.41

APPENDIX

A. The ADMM procedure for solving (6)

Let yr = y −
∑Kt

k=1 dt,k ∗ xt,k, then (6) can be rewritten
as

x̂c,k = argmin
xc,k

1

2

∥∥∥∥∥yr −
Kc∑
k=1

dc,k ∗ xc,k

∥∥∥∥∥
2

2

+ λc

Kc∑
k=1

‖xc,k‖1+

λ

(∥∥∥∥∥(g0 ∗
Kc∑
k=1

dc,k ∗ xc,k)

∥∥∥∥∥
1

+

∥∥∥∥∥(g1 ∗
Kc∑
k=1

dc,k ∗ xc,k)

∥∥∥∥∥
1

)
.

(12)

The last term in (12) corresponding to TV can be expressed
as∥∥∥∥∥

Kc∑
k=1

(g0 ∗ dc,k) ∗ xc,k

∥∥∥∥∥
1

+

∥∥∥∥∥
Kc∑
k=1

(g1 ∗ dc,k) ∗ xc,k

∥∥∥∥∥
1

. (13)

Define the linear operators G0,k,G1,k and Dc,k as
G0,kxc,k = (g0 ∗ dc,k) ∗ xc,k, G1,k = (g1 ∗ dc,k) ∗ xc,k, and
Dc,kxc,k = dc,k ∗ xc,k. Then, the TV term can be expressed
as ∥∥∥∥∥

Kc∑
k=1

G0,kxc,k

∥∥∥∥∥
1

+

∥∥∥∥∥
Kc∑
k=1

G1,kxc,k

∥∥∥∥∥
1

. (14)

Defining D = [Dc,1,Dc,2, · · · ,Dc,Kc
], x> =

[xc,1,xc,2, · · · ,xc,Kc ], H2 = [I, · · · , I], and



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.XX, NO. XX 11

Original Image

Fingerprints CSC Filters Fingerprints CLC Filters

CSCD
Estiamte

S-CLCD
Estimate

CLCD
Estimate

BNN
Estimate

MCA
Estimate

A-MCA
Estimate

GF
Estimate

RGF
Estimate

Original
Delta

CSCD
Delta

S-CLCD
Delta

CLCD
Delta

BNN
Delta

MCA
Delta

A-MCA
Delta

GF
Delta

RGF
Delta

Original
Whorl

CSCD
Whorl

SCLCD
Whorl

CLCD
Whorl

BNN
Whorl

MCA
Whorl

A-MCA
Whorl

GF
Whorl

RGF
Whorl

Fig. 9: Fingerprint separation results. We compare the performance of our three methods with that of BNN [24], MCA [11], A-MCA [14],
GF [38] and RGF [28].

H` = [G`,1,G`,2, · · · ,G`,Kc ], ` = 0, 1, (12) can be
written in the ADMM form as

arg min
x,y0,y1,y2

1

2
‖yr−Dx‖22+λc‖y2‖1+λ‖y0‖1+λ‖y1‖1

subject to

 H0x
H1x
H2x

−
 y0

y1

y2

 = 0.

(15)

Then, the iterative update rules are as follows:

x(j+1) =argmin
x

1

2
‖yr −Dx‖22 +

ρ

2
‖H0x− y

(j)
0 + u

(j)
0 ‖22

+
ρ

2
‖H1x− y

(j)
1 + u

(j)
1 ‖22 +

ρ

2
‖H2x− y

(j)
2 + u

(j)
2 ‖22,

(16)

y`
(j+1) = argmin

y`

λ‖y`‖1 +
ρ

2
‖H`x

(j+1) − y` + u
(j)
` ‖

2
2,

(17)

for ` = 0, 1.
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y2
(j+1) = argmin

y2

λc‖y2‖1 +
ρ

2
‖H2x

(j+1) − y2 + u
(j)
2 ‖22,

(18)

u`
(j+1) = u

(j)
` +H`x

(j+1) − y
(j+1)
` , ` = 0, 1, 2. (19)

Note that (16) can be solved in the DFT domain via iterative
application of the Sherman-Morrison formula [20] and the sub-
problems (17) and (18) can be optimized via soft-thresholding
[39].

B. The ADMM procedure for solving the CLC problem (8)
1) Fix xm,k and update dk.: We solve the following

optimization problem for updating each filter:

argmin
dk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22

subject to ‖dk‖2 ≤ 1, ∀k.
(20)

We can regard the ‖dk‖2 ≤ 1 as post-processing after each
iteration. Then, (20) can be rewritten as

argmin
dk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22. (21)

To solve (21) in the DFT domain, we zero pad dk so that
it has the same spatial support as xm,k. We form another
optimization problem (22) that can directly include the zero-
padding and normalization procedure for dk in the objective
[20] as

arg min
dk,gk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22 +
K∑

k=1

lCzp(gk)

subject to dk − gk = 0 ∀k,
(22)

where lCzp
is the indicator function of the constraint set Czp

2. The iterative update methods for solving (22) are as follows

dk
(j+1) =argmin

dk

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22

+
σ

2

K∑
k=1

‖dk − g
(j)
k + q

(j)
k ‖

2
2,

(24)

gk
(j+1) =argmin

gk

K∑
k=1

lCzp(gk)

+
σ

2

K∑
k=1

‖d(j+1)
k − gk + q

(j)
k ‖

2
2,

(25)

qk
(j+1) = q

(j)
k + d

(j+1)
k − g

(j+1)
k . (26)

2lC() is defined as

lC(p) =

{
0, if p ∈ C
∞, if p /∈ C. (23)

The optimization problem (24) can be solved using the DFT-
based method proposed in [20], and (25) can be solved using
the proximal operator, which can be regarded as generalized
projections [40].

2) Fix dk and update xm,k.: We rewrite (8) as

arg min
xm,k,zm,k

1

2

M∑
m=1

‖ym −
K∑

k=1

dk ∗ xm,k‖22

+ λl

M∑
m=1

K∑
k=1

‖zm,k‖∗

subject to xm,k − zm,k = 0, ∀k.

(27)

Then, the iterative update rules for solving (27) are as follows

xm,k
(j+1) = arg min

xm,k

1

2
‖ym −

K∑
k=1

dk ∗ xm,k‖22

+
ρ

2

K∑
k=1

‖xm,k − z
(j)
m,k + u

(j)
m,k‖

2
2,

(28)

zm,k
(j+1) = argmin

zm,k

λl

K∑
k=1

‖zm,k‖∗+

ρ

2

K∑
k=1

‖x(j+1)
m,k − zm,k + u

(j)
m,k‖

2
2,

(29)

um,k
(j+1) = u

(j)
m,k+x

(j+1)
m,k − z

(j+1)
m,k . (30)

Problems (28) can be solved using the optimization method
proposed in [20] and (29) can be solved using Singular Value
Thresholding (SVT) [39].
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