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Abstract—We propose multi-task and multivariate methods
for multi-modal recognition based on low-rank and joint sparse
representations. Our formulations can be viewed as generalized
versions of multivariate low-rank and sparse regression, where
sparse and low-rank representations across all modalities are
imposed. One of our methods simultaneously couples information
within different modalities by enforcing the common low-rank
and joint sparse constraints among multi-modal observations.
We also modify our formulations by including an occlusion
term that is assumed to be sparse. The alternating direction
method of multipliers is proposed to efficiently solve the resulting
optimization problems. Extensive experiments on three publicly
available multi-modal biometrics and object recognition datasets
show that our methods compare favorably with other feature-
level fusion methods.

Index Terms—multi-modal recognition, feature-level fusion,
low-rank representation, joint-sparse representation.

I. INTRODUCTION

Developments in sensing and communication technologies
have led to an explosion in the availability of data from mul-
tiple sources and modalities. Millions of sensors of different
types have been installed in buildings, streets, and airports
around the world that are capable of capturing multi-modal
information such as light, depth and heat. This has resulted in
the development of various multi-sensor fusion methods [1],
[2].

The idea of fusing multiple sources or modalities to achieve
better performance compared to using a single modality
alone is appealing. In particular, multi-modal classification
has received a lot of attention where one uses information
from various modalities recording the same physical event to
achieve improved classification performance. Many practical
systems are multi-modal systems. For example, in multi-modal
biometrics systems, similarity scores generated by multiple
features extracted from face, fingerprints and iris are integrated
for identity recognition [3], [4]. One advantage of multi-modal
biometrics systems is that they are less vulnerable to spoof
attacks.

In recent years, sparse and low-rank representations have
been explored in problems such as matrix recovery [5], [6],
[7], compressive sensing [8], regression [9], and subspace
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clustering [10], [11], [12], [13]. In particular, a low-rank and
joint sparse representation-based method was proposed in [8]
to recover hyperspectral images from a very few number of
noisy compressive measurements. A low-rank sparse subspace
clustering (LRSSC) method was proposed in [13] that si-
multaneously enforces low-rank and sparse constraints on the
representation matrix for subspace clustering. The trade-off
between self-expressiveness property and graph-connectivity
was analyzed and LRSSC was shown to take advantage of both
low-rank and sparse constraints to yield improved clustering
performance.

Motivated by recent developments in joint sparse and low-
rank matrix recovery [8], clustering [13] and multi-modal
fusion [14], [15], we propose multi-modal feature-level fu-
sion methods by simultaneously enforcing low-rank and joint
sparsity constraints across the representations corresponding
to multiple modalities. We derive efficient optimization algo-
rithms using the alternating direction method of multipliers
(ADMM) to solve the resulting optimization problems. Once
the representation coefficients are estimated, the minimum re-
construction rule is used for multi-modal recognition. Figure 1
gives an overview of the proposed method.

This paper makes the following contributions:
1) A general formulation based on low-rank and joint

sparse representation is proposed for multi-modal recog-
nition.

2) A modified formulation based on common sparse and
low-rank representation is proposed to robustly leverage
the correlation and coupling information across the
modalities especially when the performance of each
modality differs a lot.

3) We evaluate our method on various multi-modal recogni-
tion problems such as multi-modal active authentication
[16], [17], multi-biometrics recognition [18], and multi-
modal object recognition [19].

Earlier versions of this work appeared in [15] and [20].
Joint sparse and low-rank representation as well as common
joint sparse and low rank representation-based frameworks and
extensive experimental evaluations on the object recognition
dataset are extension to [15] and [20].

The rest of the paper is organized as follows. In Section II,
we briefly review various multi-modal feature-level fusion
algorithms. In Section III, we introduce our formulation based
on low-rank and joint sparse representations and present two
special cases of the proposed method. In Section IV, we
present an extension of our method based on common sparse
and low-rank representations. An optimization algorithm based
on the ADMM method is presented in Section V. Experimental
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Fig. 1: An overview of the proposed low-rank and joint sparse representation-based multi-modal recognition.

evaluations on three multi-modal datasets are described in
Section VI. In Section VII, the complexity of proposed meth-
ods is analyzed. Finally, concluding remarks are presented in
Section VIII with a brief summary and discussion.

II. RELATED WORK

Data fusion can be achieved at several different levels,
which can be broadly classified as sensor-level, feature-level,
score-level or decision-level fusion. Since feature-level fusion
preserves the raw information, it can be more discriminative
and robust than score-level or decision-level fusion. The focus
of this paper is on designing new feature-level fusion methods
and making comparisons with previous feature-level fusion
methods.

Differences in features extracted from different modalities
in terms of types and dimensions make the feature-level fusion
non trivial. One of the simplest methods for feature-level
fusion is feature concatenation [21], [22]. However, feature
concatenation often tends to be computationally demanding
and inefficient. Multiple Kernel Learning (MKL) has also
been used to integrate information from multiple features by
learning a weighted combination of appropriate kernels. See
[23] for more details on various MKL algorithms.

Recent multi-modal fusion methods based on sparse or low-
rank representations of multi-modal data have been shown to
produce state-of-the-art results on various multi-modal recog-
nition problems. In [24], a multi-task sparse linear regression
model is proposed for image classification. In [25], a joint
dynamic sparse representation method was proposed to recog-
nize object viewed from multiple observations (e.g. poses). In

[14], a joint sparse representation-based method was proposed
for fusing multiple biometrics features. This method is based
on multi-task, multivariate Lasso [26]. [15] proposed low-rank
representation-based multi-modal recognition methods. In [20]
and [15], the idea of enforcing common sparse (low-rank)
representation was shown to be robust and more effective
especially when the quality of different modality differs a lot.

In [27], a general collaborative sparse-representation frame-
work for multi-sensor classification is proposed. Joint sparsity
is enforced within each sensor’s multiple observations and is
also simultaneously enforced across heterogeneous sensors.
Sparse noise and low rank interference signals are considered
in their approach. The objective of the resulting optimization
is to seek a joint sparse representation while minimizing the
sparse error or low rank interference signals. A multi-modal
task-driven dictionary learning algorithm with joint sparsity
constraint enforced across multiple sources of information
is proposed in [28]. In [8], a low-rank and joint sparse
representation-based method is proposed for recovering hy-
perspectral images from a small number of noisy compressive
measurements.

Other recent multi-modal feature-level fusion methods in-
clude [29] and [30]. In [29], a class consistent multi-modal
fusion (CCMM) scheme was proposed which essentially ex-
tends the application of binary codes [31] for multi-modal
recognition. In [30], harmonic image fusion was proposed to
achieve clutter mitigation and speckle noise reduction.
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III. LOW-RANK AND JOINT SPARSE REPRESENTATIONS
FOR MULTI-MODAL RECOGNITION

Suppose we are given a C-class classification problem
with D different modalities. Assume there are m training
samples in each modality. For each modality, i = 1, · · · , D,
we denote Xi = [Xi

1,X
i
2, · · · ,Xi

C ] as an ni × m matrix
of training samples containing C sub-matrices Xi

j’s corre-
sponding to C different classes. Each sub-matrix Xi

j =
[xij,1,x

i
j,2, · · · ,xij,mj ] ∈ Rni×mj contains a set of training

samples from the ith modality corresponding to the jth class.
Here, mj is the number of training samples in class j and ni
is the feature dimension of each sample. As a result, there
are in total m =

∑C
j=1mj many samples in Xi. Given

a test matrix Y, which consists of D different modalities,
{Y1, · · · ,YD}, where each sample Yi consists of di obser-
vations Yi = [yi1,y

i
2, · · · ,yidi ] ∈ Rni×di , the objective is to

identify the class to which a test sample Y belongs to.

A. Basic version

In the case when the data is contaminated by random noise,
the observations from ith modality can be modeled as follows

Yi = XiΓi + Ni,

where Ni is small dense additive noise. Let Γ =
[Γ1,Γ2, · · · ,ΓD] ∈ Rm×d be the coefficient matrix formed
by concatenating D representation matrices with d =

∑D
i=1 di.

We wish to solve for the low-rank and joint sparse matrix Γ
by solving the following problem

Γ̂ = argmin
Γ

1

2

D∑
i=1

‖Yi−XiΓi‖2F+λ1‖Γ‖∗+λ2‖Γ‖1,2, (1)

where ‖A‖F =
√∑

i,j A
2
i,j is the Frobenius norm of A;

‖A‖∗ =
∑
i σi(A) is the sum of the singular values of A (i.e.

the nuclear norm of A); ‖A‖1,2 =
∑
k ‖ak‖2 and ak is the kth

row vector of the matrix A (i.e the row sparsity of A); λ1 and
λ2 are two positive regularization parameters corresponding to
low rank constraint and joint sparse constraint, respectively.

Once the coefficient matrix Γ̂ is obtained, the class label
associated with an observation vector is declared as the one
that produces the smallest approximation error

ˆ̀= argmin
`

D∑
i=1

‖Yi −Xiδ`(Γ̂
i
)‖2F , (2)

where δ`(·) is the matrix indicator function that keeps rows
corresponding to the `th class and sets all other rows equal to
zero.

Ideally, the learned coefficients corresponding to the correct
class should exhibit relatively larger values compared to co-
efficients corresponding to the incorrect classes. In order to
exploit this, for a given coefficient vector obtained from the
ith modality, we define wi as:

wi =
λ1(C

max`‖δ`(Γ̂
i
)‖∗

‖Γ̂i‖∗
− 1) + λ2(C

max`‖δ`(Γ̂
i
)‖1,2

‖Γ̂i‖1,2
− 1)

(λ1 + λ2)(C − 1)
.

(3)

This weight measures the quality of the learned repre-
sentation. Representation of high quality will be low-rank
(max` ‖δ`(Γ̂

i
)‖∗ close to ‖Γ̂

i
‖∗) and will also be joint sparse

(max` ‖δ`(Γ̂
i
)‖1,2 close to ‖Γ̂

i
‖1,2).

The classification rule (2) based on the weighted reconstruc-
tion error can be modified as follows

ˆ̀= argmin
`

D∑
i=1

wi‖Yi −Xiδ`(Γ̂
i
)‖2F . (4)

Similar ideas have been explored in [32], [14], [15] and [20].
We call the resulting algorithm Multi-modal Recognition via
Low-Rank and Joint Sparse (MRLRJS) representation.

B. Robust version

In the case when data is contaminated by noise and occlu-
sion, the observation from the ith modality can be modeled as
follows

Yi = XiΓi + Ni + Ei,

where Ni is a small dense additive noise and Ei is a matrix
of sparse occlusion with arbitrary large magnitude. By taking
advantage of the fact that Ei is sparse, one can simultaneously
estimate Γi and Ei by solving the following optimization
problem

Γ̂, Ê = argmin
Γ,E

1

2

D∑
i=1

‖Yi −XiΓi −Ei‖2F + λ1‖Γ‖∗

+ λ2‖Γ‖1,2 + λ3

D∑
i=1

‖Ei‖1, (5)

where E = [E1,E2, · · · ,ED] is the spare occlusion matrix
and ‖A‖1 =

∑
i,j |Ai,j | is the `1-norm of A. Note that E is

just a compact representation and we solve each Ei separately
since their dimensions can be different. Here, λ1, λ2 and λ3 are
positive parameters that control the rank of coefficients, joint
sparsity of the coefficients and the sparsity of the occlusion
term, respectively.

Once Γ and E are estimated, the effect of occlusion can be
removed by setting Ŷi = Yi − Êi. Finally, one can declare
the class label associated with an observation vector as

ˆ̀= argmin
`

D∑
i=1

wi‖Yi −Xiδ`(Γ̂
i
)− Êi‖2F , (6)

where wi
` is defined in (3). We call the resulting algorithm

Robust Multi-modal Recognition via Low-Rank and Joint
Sparse (RMRLRJS) representation.

C. Two Special Cases

The above formulations take both low-rank and joint spar-
sity into consideration and the parameters λ1 and λ2 control
the relative importance between these representations. If λ1 is
set equal to 0, MRLRJS and RMRLRJS are reduced to joint
sparse representation-based multi-modal recognition methods
proposed in [14]. If λ2 is set equal to 0, MRLRJS and
RMRLRJS reduce to low-rank representation-based multi-
modal recognition methods proposed in [15].
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Enforcing joint sparsity (row sparsity) ensures that the
number of rows that have nonzero norm to be small. Ideally,
these nonzero rows correspond to the true class. A matrix
which has row sparsity can also be a low-rank matrix (e.g.
many rows of the matrix are null vectors). The reason for
enforcing the low-rank constraint is that it can explore the
underlying structure of the representation matrix especially in
the column sense. For the given input multi-modal instance,
representations of different modalities are assumed to be
correlated, therefore, when these representations are stacked
horizontally, the resulting representation matrix is assumed to
have a small column rank.

In our experiments, we observed that instances where (1)
with λ1 = 0 fails are often different from those where (1) with
λ2 = 0 fails. Hence, combining the two algorithms may lead
to a better multi-modal fusion method, since the underlying
representation matrix we want to recover is both row-sparse
and low-rank simultaneously. Our work is specifically moti-
vated by [9] and [13] where simultaneous `1-norm and nuclear
norm have been studied for general regression and subspace
clustering problems, respectively. In contrast, our focus in this
paper is specifically on multi-modal recognition problems.

IV. COMMON LOW-RANK AND JOINT SPARSE
REPRESENTATIONS FOR MULTI-MODAL RECOGNITION

Different from previous formulations, we propose to enforce
common sparse and low-rank representations on the coeffi-
cients from different modalities. As a result, we are able to
exploit the correlations among the different modalities better.
In this method, the coefficient matrices corresponding to D
different modalities are required to be the same as follows

Γ = Γ1 = Γ2 = · · · = ΓD.

In order to make the coefficient matrices match in terms of
matrix dimensions, for classifying a multi-modal instance in
test phase, the number of samples from each modality has to
be the same. With the common representation, imposing low-
rank and joint sparse constraints on the concatenated matrix
[Γ1,Γ2, · · · ,ΓD] is equivalent to enforcing the constraint on
Γ1. Similar ideas have been explored in [33] for image super-
resolution and in [15], [20] for multi-modal recognition.

A. Robust Formulation

When we consider the common representation, we assume
that the ith modality’s observations are of the following form

Yi = XiΓ + Ni + Ei.

With this model, the robust common low-rank and joint sparse
representation-based multi-modal recognition (RMRLRJS-C)
problem can be formulated as

Γ̂, Ê = argmin
Γ,E

1

2

D∑
i=1

‖Yi −XiΓ−Ei‖2F + λ1‖Γ‖∗

+ λ2‖Γ‖1,2 + λ3

D∑
i=1

‖Ei‖1. (7)

For the case of single modality (D = 1), the common
representation-based formulation is the same as the general
formulation proposed in Section III-B. For the case of multi-
ple modalities, the common representation-based formulation
requires the number of test samples of each modality to be
the same. This requirement makes the common representation-
based formulation less general.

It is easy to note that the model based on the common
representation is equivalent to vertically stacking features
corresponding to each modality together and applying the
optimization algorithm with D = 1. After solving for Γ̂ and
Ê, the following minimum reconstruction error rule can be
used to classify the multi-modal data as

ˆ̀= argmin
`

D∑
i=1

w‖Yi −Xiδ`(Γ̂)− Êi‖2F , (8)

where w is defined as

w =
λ1(C

max` ‖δ`(Γ̂)‖∗
‖Γ̂‖∗

− 1) + λ2(C
max` ‖δ`(Γ̂)‖1,2

‖Γ̂‖1,2
− 1)

(λ1 + λ2)(C − 1)
.

(9)
Similar to the formulation (5), eliminating the sparse error

term Ei leads to the basic version which is denoted as common
low-rank and joint sparse representation-based multi-modal
recognition (MRLRJS-C).

B. Two Special Cases

Similarly, if λ1 is set equal to 0, MRLRJS-C and
RMRLRJS-C reduce to the common sparse representation-
based multi-modal recognition methods proposed in [20]; if
λ2 is set equal to 0, MRLRJS-C and RMRLRJS-C reduce
to the common low-rank representation-based multi-modal
recognition methods proposed in [15].

V. OPTIMIZATION

In this section, we propose an approach based on the
ADMM method [34] to solve the resulting optimization prob-
lems. Due to the similarity of these problems, we only provide
details on the optimization of (5). In ADMM, appropriate aux-
iliary variables are introduced into the optimization program,
the constraints are augmented into the objective function and
the Lagrangian is iteratively minimized with respect to the
primal variables and maximized with respect to the Lagrange
multipliers.

A. Optimization of RMRLRJS

Problem (5) can be reformulated by introducing the auxil-
iary variables as follows

arg min
Γ,E,V,U,Z

1

2

D∑
i=1

‖Yi −XiΓi −Ei‖2F + λ1‖V‖∗

+ λ2‖Z‖1,2 + λ3

D∑
i=1

‖Ei‖1 (10)

s.t. Γ = V,Γ = Z.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, JUN 20XX 5

Note that similar to Γ, we denote V = [V1,V2, · · · ,VD] ∈
Rm×d, Z = [Z1,Z2, · · · ,ZD] ∈ Rm×d.

Equation (10) can be solved using the Augmented La-
grangian Method (ALM) [34]. The augmented Lagrangian
function fαV ,αZ (Γ,E,V,Z;AV ,AZ) is defined as

arg min
Γ,E,V,Z

1

2

D∑
i=1

‖Yi −XiΓi −Ei‖2F + λ3

D∑
i=1

‖Ei‖1

+ λ1‖V‖∗ + 〈AV ,Γ−V〉+ αV
2
‖Γ−V‖2F (11)

+ λ2‖Z‖1,2 + 〈AZ ,Γ− Z〉+ αZ
2
‖Γ− Z‖2F ,

where AV and AZ are the multipliers of the linear constrains,
αV and αZ are the positive parameters, 〈A,B〉 denotes
tr(ATB). We denote AV = [A1

V ,A
2
V , · · · ,AD

V ] ∈ Rm×d
and AZ = [A1

Z ,A
2
Z , · · · ,AD

Z ] ∈ Rm×d.
In the ALM algorithm, fαV ,αZ is solved iteratively with

respect to Γ,E,V and Z jointly while keeping AV and AZ

fixed and then updating AV and AZ keeping the remaining
variables fixed.

1) Update step for Γ: Obtain Γt+1 by minimizing fαV ,αZ
with respect to Γ. This can be done by taking the first-
order derivative of fαV ,αZ ,αU and setting it equal to zero.
Furthermore, as the first term of fαV ,αZ is a sum of con-
vex functions associated with sub-matrices Γi, one can find
Γit+1(i = 1, · · · , D) by solving the following linear system

(XiTXi+(αV + αZ)I)Γ
i
t+1 = XiT (Yi −Ei

t)

+ αV Vi
t −Ai

V,t + αZZit −Ai
Z,t, (12)

where I is m × m identity matrix and Ei
t, Vi

t, Zit, Ai
V,t

and Ai
Z,t are submatrices of Et,Vt,Zt, AV,t and AZ,t,

respectively. When m is is not very large, one can simply
apply matrix inversion to obtain Γit+1 from (12). For large
values of m, gradient-based methods should be employed to
obtain Γit+1.

2) Update step for E: In order to update Ei
t+1(i =

1, · · · , D), one needs to solve the following `1 minimization
problem

min
1

2
‖Yi −XiΓit+1 −Ei

t+1‖2F + λ3‖Ei‖1, (13)

whose solution is given by [35]

Ei
t+1 = S

(
Yi −XiΓit+1, λ3

)
,

where S(a, b) = sgn(a)(|a| − b) for |a| ≥ b and zero
otherwise.

3) Update step for V: The subproblem for updating V has
the following form

min
1

2
‖Γt+1 + α−1V AV,t −V‖2F +

λ1
αV
‖V‖∗. (14)

Solution to this optimization problem is obtained by shrinking
the singular values of Γt+1+α

−1
V AV,t [36], [37]. As a result,

we obtain the following update for V

Vt+1 = FS(Σ, λ1
αV

)BT ,

where FΣBT is the Singular Value Decomposition (SVD) of
Γt+1 + α−1V AV,t. Same S(a, b) is applied as above.

4) Update step for Z: In order to update Z, we need to
solve the following optimization problem

min
1

2
‖Γt+1 + α−1Z AZ,t − Z‖2F +

λ2
αZ
‖Z‖1,2. (15)

Due to the separable structure of (15), it can be solved by min-
imizing it with respect to each row of Z separately. Following
the method used in [14], we let γi,t+1, aZi,t and zi,t+1 be the
ith row of matrices Γt+1, AZ,t and Zt+1 respectively. Then
for each row, we solve the following subproblem

zi,t+1 = min
1

2
‖p− z‖22 +

λ2
αZ
‖z‖2, (16)

where p = γi,t+1 + aZi,tα
−1
Z . The closed form solution of

(16) is given as follows

zi,t+1 =

(
1− λ2

αZ‖p‖2

)
+

p,

where (v)+ is the vector with entries receiving values
max (vi, 0).

5) Update steps for AV and AZ: Finally, the Lagrange
multipliers are updated as

AV,t+1 = AV,t + αV (Γt+1 −Vt+1), (17)
AZ,t+1 = AZ,t + αZ(Γt+1 − Zt+1). (18)

The proposed ADMM algorithm for solving the RMRLRJS
problem is summarized in Algorithm 1. Note that the opti-
mization problem is not convex and there does not exist any
guarantee for the Algorithm 1 to converge. The convergence
issue of ADMM is still not fully understood and remains an
open research problem. Yet, ADMM works well in practice.
For our proposed methods, the termination condition is either
when the difference of the cost function errors is below some
threshold or the maximum number of iteration is reached.

B. Optimization of RMRLRJS-C

The RMRLRJS-C problem (7) can be optimized in a similar
way using the ADMM method. However, there are a few key
differences in solving the subproblems. In particular, Γ is not
separated into D different parts and Γ can be updated as

Γt+1 =(

D∑
i=1

XiTXi + (αV + αZ)I)
−1(

D∑
i=1

XiT (Yi −Ei)

+ αV Vi
t −Ai

V,t + αZZit −Ai
Z,t). (19)

After solving Êi(i = 1, · · · , D) and Γ̂, the class label can by
obtained by using (8) and (9).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithms on three
publicly available multi-modal recognition datasets, namely
the WVU multi-modal biometrics dataset [18], the UMDAA-
01 multi-modal active authentication dataset [16], [17] and
the multi-modal object recognition [19]. We compare the
proposed method with various feature-level fusion methods
including multiple kernel learning based multi-modal fusion
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Fig. 2: Sample fingerprint and iris images from the WVU dataset.

Algorithm 1: Robust Multi-modal Recognition via Low-Rank
and Joint Sparse Representation (RMRLRJS) using ADMM.

Input: Multi-modal training samples {Xi}Di=1, multi-modal test
sample {Yi}Di=1, λ1, λ2, λ3, αV and αZ

Initialization:
Γ0,V0,Z0,AV,0,AZ,0 are initialized to be zero matrices.
While not converged do
1. Update Γ: Γt+1 = [Γ1

t+1, · · · ,ΓDt+1], where

Γit+1 = (XiTXi + (αV + αZ)I)−1(XiT (Yi −Eit)

+αV Vi
t −Ai

V,t + αZZit −Ai
Z,t)

2. Update E: Et+1 = [Eit+1, · · · ,EDt+1], where

Eit+1 = S
(
Yi −XiΓit+1, λ3

)
3. Update V:

Vt+1 = FL λ1
αV

(Σ) BT

4. Update Z:

zi,t+1 =

(
1−

λ2

αZ‖p‖2

)
+

p

5. Update AV and AZ :

AV,t+1 = AV,t + αV (Γt+1 −Vt+1)

AZ,t+1 = AZ,t + αZ(Γt+1 − Zt+1)

Classification:
Let Êi = Eit+1(i = 1, · · · , D) and Γ̂ = Γt+1,
1. Compute weight wi:

wi =

λ1(C
max`‖δ`(Γ̂

i
)‖∗

‖Γ̂i‖∗
− 1) + λ2(C

max`‖δ`(Γ̂
i
)‖1,2

‖Γ̂i‖1,2
− 1)

(λ1 + λ2)(C − 1)

2. Assign the class label with minimum error:

ˆ̀= arg min
`

D∑
i=1

wi‖Yi −Xiδ`(Γ̂
i
)− Êi‖2F

Output: class label ˆ̀

method (MKL) [38], joint sparse representation-based multi-
modal fusion methods (SMBR-WE and SMBR-E) [14], com-
mon sparse representation-based multi-modal fusion methods
(MCSR and RMCSR) [20], low-rank representation-based
multi-modal fusion methods (MLRR, RMLRR, MCLRR and
RMCLRR) [15] and the class consistent multi-modal fusion
(CCMM) [29].

The proposed methods can have up to six parameters during
the optimization procedure. To efficiently tune these parame-

ters, we adopt the following strategy: solve for appropriate
parameters for joint sparse representation-based optimization
and low-rank representation-based optimization separately and
then weigh these parameters to control their relative contri-
butions to final recognition. For example, in order to tune
the parameters in Algorithm 1, we first consider the sparsity
constraint only by letting λ1 be 0 and obtain “optimal” λ2
and λ3s , αZ and αUs through grid search. Then, we consider
the low-rank constraint only and obtain λ1 and λ3r , αV and
αUr . Finally, we introduce a parameter r(0 ≤ r ≤ 1) to
control the relative contribution and the final parameters used
are rλ1, (1 − r)λ2 and rλ3r + (1 − r)λ3s , rαV , (1 − r)αZ
and rαUr + (1− r)αUs .

The parameters of each methods being compared are tuned
in order to provide the best recognition results by fusing all
the modalities. We also apply the same parameters and show
the recognition result using single modality alone. In this way,
the results reported using single modality may not be the best
because the parameters are tuned for the fusion of all the
modalities. As discussed before, when using a single modality
for recognition (D = 1), the common representation-based
methods and the corresponding general methods are the same,
but the results are different. This is because the parameters
used are tuned for the fusion of all the modalities and they
are not necessarily the same for two kinds of methods.

A. WVU multi-modal biometrics dataset

The WVU biometrics dataset is a comprehensive collection
of different biometric modalities such as fingerprint, iris,
palmprint, hand geometry, and voice from subjects of different
age, gender, and ethnicity. It is a challenging dataset as many
of these samples are corrupted with blur, occlusion, and sensor
noise. Following the experimental settings described in [14],
we chose four fingerprint modalities and two iris modalities
on a subset of 219 subjects having data in all these modalities.
Figure 2 shows some sample fingerprint and iris images from
this dataset.

1) Preprocessing and Feature Extraction: We applied the
same preprocessing and feature extraction methods used in
[14]. In particular, fingerprint images were enhanced using
the filtering methods described in [39]. After detecting the
core point [40], Gabor features were extracted around the core
point and a feature vector of dimension 3600 was obtained for
each fingerprint image. The iris images were segmented using
the method proposed in [41] and the publicly available code
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described in [42] was applied to create 25×240 iris templates.
A Gabor feature of dimension 6000 was generated for every
iris image.

2) Experiment Setup, Results and Analysis: The data in-
stances (one instance includes six samples corresponding to six
modalities) were randomly divided into four training instances
per class and the remaining instances were used for testing.
As a result, 876 instances were used for training and 519
instances were used for testing. The recognition result was
averaged over five runs and we report the mean and standard
deviation of rank one recognition accuracy. The rank one
recognition results comparing the proposed methods with
other feature-level multi-modal fusion methods are shown in
Table I and Table II for each modality alone and the case
of fused modalities, respectively. RMRLRJS-C shows the best
recognition performance and the corresponding parameters λ1,
λ2, λ3, rαV , αZ are set equal to 0.0004, 0.0006, 0.0007,
0.0004, 0.006 respectively.

From the results shown in Table I and Table II, we make
the following observations. (1) All the considered methods
achieve better recognition accuracy when fusing multiple
modalities than using a single modality for recognition. (2)
Robust formulations that include the sparse error term in the
optimization step can lead to improved recognition results. (3)
Compared to applying the low-rank constraint or joint sparsity
constraint alone, the proposed methods that enforce both low-
rank and joint sparse constraints perform better. (4) Common
representation-based methods RMRLRJS-C perform slightly
better than their corresponding methods without applying
common representation constraints.

For the first proposed formulation (MRLRJS and RMRL-
RJS), the representation we seek is Γ = [Γ1,Γ2, · · · ,ΓD] ∈
Rm×d. The advantage of this formulation is that the informa-
tion from each modality is preserved in the representation ma-
trix; the disadvantage is that a single modality may determine
the low-rank and joint sparse property of the representation
matrix, thus determining the overall performance. For exam-
ple, if the representation of a certain modality is not low-rank
or joint sparse, this modality can still determine the overall
low-rank and joint sparse property of the overall representation
matrix and as a result, we may get a poor performance.

For the second proposed formulation (MRLRJS-C and
RMRLRJS-C), the representation is the same for all the D
modalities, i.e. Γ = Γ1 = Γ2 = · · · = ΓD. The advantage
of this formulation is that it satisfies the low-rank and joint
sparse constraint more easily and it is more robust as each
modality contributes partially to the same representation and
no modality can determine the overall representation alone; the
disadvantage is that it loses some discriminative information
since only a single representation is enforced for all modalities.

Therefore, for this dataset in which the performance of each
modalities is at the same level, both the proposed methods
work. However, due to the advantage and disadvantage of
common representation (second formulation), RMRLRJS-C
works only slightly better than RMRLRJS.

B. UMDAA-01 Active Authentication Dataset

The UMD mobile active authentication dataset [16], [17] is
a bimodal dataset consisting of face images and screen touch
data collected from 50 users while they were playing with
a data collection App on iPhone5s. The goal of the active
authentication research is to study possible physiological and
behavioral traits to continuously authenticate users while using
mobile devices without interrupting users’ interaction with the
devices. Despite the fact that a face image is a strong biometric
for verifying the user’s identity, touch gestures, the way users
swipe their fingers on the touchscreen of the mobile device,
has shown to be a promising behavioral biometric trait for
authentication. More details can be found in [43] and [17].

While users played with the App, their touch data sensed by
the screen and face images acquired by the front-facing camera
were simultaneously captured. The users were asked to interact
with the App in 3 different sessions with different ambient
conditions, namely in a well-lit room, in a dim-lit room, and
in a room with natural daytime illumination. The goal was to
simulate real-world scenarios to study how ambient changes
can influence the performance of authenticating users using
face and touch gestures. During data collection, users were
free to use the phone in either orientation mode and hold the
phone in any position of their choice.

Since face data were collected in an unconstrained manner,
many faces exhibit different poses, rotations and extreme
illuminations. In particular, partial faces are common in this
dataset. Figures 3 shows sample face images from this dataset.
Each row shows images from a particular ambient condition
and each column shows a randomly selected user. For screen
touch data, user-intra variation is large because of the un-
constrained data acquisition strategy. The trajectories of some
randomly selected raw touch swipes are shown in Figure 4.

1) Preprocessing and Feature Extraction: We used the
preprocessing and feature extraction steps for the face images
suggested in [15]. In particular, the landmarks of face images
were detected using the tree-based landmarks detector [44],
then face images were then cropped and aligned based on
the landmarks’ locations by applying the method in [45].
Illumination normalization [46] was applied to the cropped
face images. Finally the face images were rescaled to dimen-
sion 192× 168× 3 and converted to grayscale images. After
preprocessing, we down sampled the preprocessed face images
to 24 by 21 and simply used the whole image as a feature
vector of dimension 504.

Every touch swipe S was encoded as a sequence of vectors

si = (xi, yi, ti, Ai, o
ph
i ),

i ∈ {1, · · · , Nc} where xi, yi are the location points, ti is the
time stamp, Ai is the area occluded by the finger and ophi is
the orientation of the phone (e.g. landscape or portrait). Given
these touch data, we extracted a 27-dimensional feature vector
for every single swipe by using the method described in [47].

2) Experimental Setup, Results and Analysis: In order
to evaluate the proposed multi-modal fusion methods, we
sampled a subset from this dataset. For each user in each of
the three sessions, thirty face images and thirty touch swipes
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Methods Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2
CCMM 67.8 ± 1.2 86.9 ± 1.1 69.4 ± 1.9 89.3 ± 1.6 60.5 ± 1.7 61.2 ± 0.9

SMBR-WE 68.1 ± 1.1 88.4 ± 1.2 69.2 ± 1.5 87.5 ± 1.5 60.0 ± 1.5 62.1 ± 0.4
SMBR-E 67.1 ± 1.0 87.9 ± 0.8 67.4 ± 1.9 86.9 ± 1.5 62.5 ± 1.2 64.3 ± 1.0
MCSR 70.3 ± 1.0 90.1 ± 0.8 69.2 ± 2.3 89.5 ± 1.4 62.6 ± 1.8 64.6 ± 1.0

RMCSR 69.8 ± 1.4 89.4 ± 1.0 69.2 ± 2.3 89.2 ± 1.1 70.5± 1.1 71.7± 0.5
MLRR 70.0 ± 1.8 90.0 ± 0.9 68.3 ± 1.8 89.6 ± 1.4 59.0 ± 1.8 60.1 ± 0.8

RMLRR 70.4± 1.5 89.8 ± 1.0 68.8 ± 2.1 89.9 ± 1.9 63.0 ± 1.4 65.2 ± 0.6
MCLRR 68.5 ± 1.9 88.8 ± 1.2 67.5 ± 1.5 88.5 ± 1.6 56.5 ± 1.4 58.8 ± 0.6

RMCLRR 68.5 ± 1.5 88.3 ± 1.1 67.0 ± 1.6 87.9 ± 1.7 58.7 ± 1.0 60.1 ± 0.6
MRLRJS 69.7 ± 1.1 89.7 ± 1.3 70.6 ± 1.6 90.4 ± 0.6 59.6 ± 1.0 61.0 ± 0.4

RMRLRJS 68.6 ± 1.3 89.3 ± 1.1 69.0 ± 2.0 89.0 ± 1.4 63.5 ± 1.1 64.6 ± 1.0
MRLRJS-C 69.5 ± 0.9 90.0 ± 1.0 70.1 ± 1.6 90.4 ± 0.5 59.1 ± 0.8 60.6 ± 0.5

RMRLRJS-C 70.1 ± 1.8 90.1± 0.3 71.2± 1.3 90.5± 0.1 69.5 ± 1.3 69.8 ± 0.6

TABLE I: Rank one recognition accuracy (in %) for WVU biometric multi-modal dataset for individual modality.

Methods 4 Fingerprints 2 Irises All Modalities
MKL 86.2 ± 1.2 76.8 ± 2.5 89.8 ±0.9

CCMM 98.9± 0.5 82.9 ± 1.4 99.6 ±0.2
SMBR-WE 97.9 ± 0.4 76.5 ± 1.6 98.7 ±0.2
SMBR-E 97.6 ± 0.6 78.2 ± 1.2 98.6 ±0.5
MCSR 95.6 ± 0.4 78.3 ± 0.2 98.2 ±0.4

RMCSR 96.1 ± 0.6 85.3 ± 1.9 99.4 ±0.5
MLRR 98.7 ± 0.6 74.0 ± 0.9 98.9 ±0.4

RMLRR 98.7 ± 0.5 78.2 ± 1.2 99.1 ±0.4
MCLRR 96.0 ± 0.4 74.9 ± 1.7 98.6 ±0.5

RMCLRR 96.5 ± 0.2 77.0 ± 1.6 99.4 ±0.5
MRLRJS 98.5 ± 0.7 75.9 ± 0.9 99.0 ± 0.2

RMRLRJS 98.2 ± 0.5 78.6 ± 1.7 99.2 ± 0.1
MRLRJS-C 96.0 ± 0.6 76.2 ± 2.12 99.0 ± 0.7

RMRLRJS-C 96.6 ± 0.2 85.6± 1.7 99.8± 0.1

TABLE II: Rank one recognition accuracy (in %) for the
WVU multi-modal biometric dataset for fusion of different
modalities.

Fig. 3: Examples of face images in Active Authentication
dataset. Each row shows face images collected from a mobile
device in a particular ambient condition. Images in each
column correspond to the same individual. It can be seen that
images from different ambient conditions show very different
characteristics.

were randomly selected and the resulting subset consists of
4500 face images and 4500 touch swipes corresponding to
fifty users across three sessions. We selected 10, 15 and 20
instances for each user to form the training data, and used
the remaining data for testing. In total, there are 500, 750,
and 1000 instances for training and 4000, 3750 and 3500
instances for testing. Each instance contains a 504-dimensional
feature vector for the face image and a 27-dimensional feature
vector for screen touch gestures. By randomly splitting data
for training and testing, we repeated each experiment ten times
and report the mean and standard deviation of the rank one
recognition accuracy.

The reason why we chose a small fraction of data for
training is because in active authentication, the matching
algorithm is supposed to work on mobile devices nearly in
real-time. Our algorithm calculates the representation (either
sparse or low rank or both) using the training samples, thus
more training samples means high-dimensional representation
and high computational cost, which should be tuned carefully
in order to achieve a balance between performance and speed.

The experimental results comparing our proposed methods
with the other fusion methods are shown in Table III, Table IV,
and Table V respectively, corresponding to 10, 15 and 20
training instances for each user. MRLRJS-C shows the best
recognition performance and the corresponding parameters λ1,
λ2, rαV , αZ are set equal to 0.0014, 0.0001, 0.45, 0.001,
respectively.

Methods Face Touch Face & Touch
MKL 72.58 ± 1.08 36.02± 0.49 75.13 ±2.22

CCMM 76.87 ± 1.18 33.54 ± 1.71 79.25 ±1.39
SMBR-WE 75.37 ± 1.13 30.40 ± 1.59 66.69 ±0.78
SMBR-E 73.05 ± 1.29 27.72 ± 1.50 64.49 ±1.61
MCSR 78.23 ± 0.98 28.44 ± 1.27 78.50 ±0.87

RMCSR 78.38 ± 0.87 27.72 ± 1.50 78.44 ±0.87
MLRR 76.04 ± 0.92 21.95 ± 1.41 69.24 ±0.85

RMLRR 75.94 ± 1.16 21.88 ± 1.35 69.21 ±1.17
MCLRR 75.49 ± 1.03 22.02 ± 1.37 78.58 ±1.21

RMCLRR 72.72 ± 1.49 21.88 ± 1.34 77.93 ±1.35
MRLRJS 77.36 ± 1.19 31.09 ± 1.61 68.96 ±0.86

RMRLRJS 77.15 ± 0.98 28.82 ± 1.64 63.74 ±1.04
MRLRJS-C 80.28± 1.01 23.85 ± 1.57 81.94± 1.09

RMRLRJS-C 78.77 ± 1.05 24.95 ± 1.56 81.15 ± 1.05

TABLE III: Rank one recognition accuracy (in %) for different
fusion methods using ten samples from each user for training.
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Fig. 4: Touch data corresponds to four different individuals performing the same task. The figure is best viewed in color and
200% zoom in. It is interesting to see that even for the same task touch data of different users show significant differences.
This is a clue that touch data might be useful to authenticate different users.

Methods Face Touch Face & Touch
MKL 77.23 ± 0.57 39.19± 1.25 80.80 ±1.22

CCMM 79.78 ± 0.61 37.27 ± 1.11 83.16 ±1.03
SMBR-WE 81.44 ± 0.49 32.42 ± 1.13 74.31 ±1.10
SMBR-E 79.12 ± 0.61 30.18 ± 1.22 71.90 ±1.36
MCSR 83.71 ± 0.47 29.79 ± 1.14 84.95 ±0.49

RMCSR 83.96 ± 0.45 29.93 ± 1.14 85.02 ±0.43
MLRR 81.04 ± 0.60 23.26 ± 1.57 75.82 ±1.06

RMLRR 81.19 ± 0.63 23.27 ± 1.69 76.28 ±1.06
MCLRR 80.60 ± 0.52 23.26 ± 1.58 83.68 ±0.53

RMCLRR 79.19 ± 0.72 23.27 ± 1.65 83.75 ±0.66
MRLRJS 83.09 ± 0.61 32.64 ± 1.18 76.08 ±1.02

RMRLRJS 81.54 ± 0.63 31.21 ± 1.34 71.28 ±0.99
MRLRJS-C 85.47± 0.54 24.78 ± 1.43 87.45± 0.58

RMRLRJS-C 84.44 ± 0.38 25.94 ± 1.28 87.26 ± 0.46

TABLE IV: Rank one recognition accuracy (in %) for different
fusion methods using fifteen samples from each user for
training.

Methods Face Touch Face & Touch
MKL 78.36 ± 0.94 41.48± 0.56 82.20 ±0.61

CCMM 83.29 ± 0.71 40.15 ± 1.03 87.54 ±0.72
SMBR-WE 85.83 ± 0.66 32.71 ± 0.99 74.64 ±0.85
SMBR-E 87.47 ± 0.66 28.61 ± 1.45 74.88 ±1.00
MCSR 87.06 ± 0.64 29.07 ± 1.07 88.49 ±0.95

RMCSR 87.11 ± 0.71 29.08 ± 1.16 88.48 ±0.56
MLRR 87.67 ± 0.70 23.35 ± 0.99 78.94 ±0.78

RMLRR 88.02 ± 0.82 23.52 ± 1.07 79.65 ±0.86
MCLRR 87.44 ± 0.73 23.41 ± 1.10 89.33 ±0.61

RMCLRR 86.69 ± 0.85 23.61 ± 1.11 89.60 ±0.85
MRLRJS 86.30 ± 0.74 33.97 ± 1.13 80.66 ± 0.86

RMRLRJS 85.64 ± 0.78 32.01 ± 1.19 75.80 ± 0.88
MRLRJS-C 88.58± 0.60 26.78 ± 1.17 90.42 ± 0.54

RMRLRJS-C 87.57 ± 0.68 26.64 ± 1.11 90.45± 0.62

TABLE V: Rank one recognition accuracy (in %) for different
fusion methods using twenty samples from each user for
training.

From the results shown in Tables III, IV and V, we make
the following observations: (1) Face modality works much
better than touch modality. (2) As we increase the number
of training samples, we observe consistent performance for
each fusion method. (3) Methods without enforcing common
representation fails to generate better performance for face
and touch modality than for a single modality alone. On
the contrary, methods that enforce the common represen-

tation (MCSR, RMCSR, MCLRR, RMCLRR, MRLRJS-C,
RMRLRJS-C) successfully fuse two modalities.

In this dataset, faces (strong modality) as physical bio-
metrics are more robust and reliable while screen touch
gestures (weak modality), as a kind of behavioral biometric,
exhibit more variations and can change more easily. The
performance of face modality and touch modality differs a
lot. For fusion methods enforcing the common representation,
it is more robust as each modality contributes partially to
the same representation and no modality can determine the
overall representation alone. Therefore, it can successfully
fuse two modalities even in the presence of weak modality.
However, for fusion methods that do not enforce the common
representation, the weak modality can significantly influence
the quality of the overall representation and lead to worse
performance when fusing two modalities compared to using
the face modality alone.

C. Pascal-Sentence Dataset

Pascal-Sentence dataset is a bi-modal dataset consisting of
two modalities, i. e image and sentences describing the image
[19]. The images are chosen from the PASCAL VOC 2008
Challenge, which is a benchmark dataset for object recognition
and detection. Thousand images were randomly selected from
twenty classes. Each image was annotated with five sentences
using Amazon’s Mechanical Turk. Samples images and the
corresponding sentences from this dataset are shown in Figure
5.

1) Preprocessing and Feature Extraction: We followed the
same feature extraction method as described in [29]. Specif-
ically, the image features are collections of responses from
a variety of detectors, image classifiers and scene classifiers.
The semantic features were constructed by using word-net
semantic with a dictionary of 1200 words. The details of
feature extraction for both modalities are described in [48].
These low-level features were then converted to binary codes
using the methods described in [31]. The binary codes were
then used to evaluate the performance of various feature-level
fusion methods.

2) Experiment Setup, Results and Analysis: Following the
experimental setup in [29], we randomly chose 500 samples
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Fig. 5: Sample images and corresponding sentences from the
Pascal-Sentence dataset.

for training and kept the remaining 500 samples for testing. We
repeated this process five times and report the final accuracy
in terms of mean and standard deviation (std) in TableVI. Note
that the results of the other methods are directly copied from
[29] which essentially follows the same protocol but does not
report the std values. RMRLRJS and MRLRJS show the best
recognition performance and the corresponding parameters λ1,
λ2, λ3, rαV , αZ , are set equal to 0.5, 1, 0.5, 0.5, 1 respectively.

Methods Intensity Features Semantic Features Fusion
MKL 67.2 64.4 76

CCMM 66.2 63.2 77.2
SMBR 66.2 69.6 75.4

MRLRJS 75.5± 0.2 77.7± 0.1 82.7± 0.3
RMRLRJS 75.5± 0.2 77.7± 0.1 82.7± 0.3
MRLRJS-C 75.0 ± 0.2 74.6 ± 0.5 81.1 ±0.6

RMRLRJS-C 75.0 ± 0.2 74.6 ± 0.5 81.1 ±0.6

TABLE VI: Classification accuracy (in %) for the Pascal-
Sentence dataset.

From the results shown in Tables VI, we make the following
observations: (1) The performance of each modality is about
the same. (2) The robust version of each formulations (RM-
RLRJS, EMRLRJS-C) does not yield better performance than
their corresponding basic version (MRLRJS, MRLRJS-C). (3)
Enforcing the common representation does not yield better
performance.

In this dataset, since the performance of each modality is
similar, both formulations perform comparably. The proposed
formulation that enforces the common representation does not
show better results because we get a more robust representa-
tion at the cost of losing (discriminative) information. Also, the
robust version of each formulation does not show significant

performance improvement because of the fact that the original
low-level features were converted into binary codes which are
already robust to sparse errors.

D. Low-Rank versus Joint Sparsity

To study the relative contributions of low-rank constraint
and joint sparse constraint, we vary the parameter r from 0
to 1 in the increments of 0.1 and plot the mean rank one
recognition accuracy for RMRLRJS-C. When r = 0, our
method reduces to RMCSR and when r = 1 the proposed
method reduces to RMCLRR. Figure 6 shows the performance
change of RMRLRJS-C under different values of r. This figure
clearly illustrates the advantage of enforcing low-rank and
joint sparsity constraints together over enforcing just low-rank
or joint sparsity constraint alone.
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Fig. 6: Mean rank one recognition accuracy versus the relative
contribution of low-rank and joint sparsity constraint. (Results
on UMDAA-01 dataset)

E. Weighted vs Non-Weighted Classification

We applied the weighted reconstruction error to assign a
given test instance after solving the (common) low-rank and
joint sparse representation. To empirically compare these two
classification strategies, we applied non-weighted classifica-
tion using the same representation obtained by the proposed
methods on the three datasets and report the recognition. As
shown in Table VII, the weighted classification rule provides
no worse results than those obtained by non-weighted classi-
fication.

Dataset Non-Weighted Weighted
WVU 99.80 99.80

UMDAA-01 89.51 90.45
Pascal-Sentence 81.48 82.72

TABLE VII: Rank one recognition accuracy (in %) for
weighted and non-weighted classification on three datasets.
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VII. COMPLEXITY ANALYSIS

To analyze the computational complexity of the proposed
methods, we look at each step in the algorithm. For simplicity,
we assume the number of modalities is D, the number of
classes is C, the dimension of the feature vector from different
modality is n, the number of training samples is m, the number
of iterations is k and the number of observations from different
modality in one test sample is p. D and p are usually much
smaller than C, m and n. k depends on how quickly the
algorithm can converge.

In general, the complexity of matrix multiplication is O(n3)
and the complexity of matrix addition is O(n2) for two n×n
matrices. The complexity of matrix inversion and singular
value decomposition is O(n3) for an n × n matrix. For the
proposed algorithm, in every iteration, the complexity of com-
puting Γ and E is O(mnpD). Note that the matrix inversion
part can be computed in advance since it is fixed. Computing
U requires thresholding each element and its complexity is
O(npD). Computing V involves singular value decomposi-
tion, singular value shrinking and matrix multiplication and
their complexity is O(m2pD). The complexity of computing
Z is O(mpD). The complexity of computing AV , AZ , AU

is also O(mpD). Therefore, computing the coefficient matrix
through k iterations requires the computations in the order of
O(k(mnpD + m2pD)). For classifying the test sample, we
need to compute the weights and reconstruction error, leading
to O(mnpCD) complexity. Note that, the overall complexity
of the proposed algorithms is the same as its special cases,
even though more variables are introduced and computed.

VIII. CONCLUSION

We proposed joint sparsity and low-rank representation-
based methods for multi-modal recognition. The second for-
mulation further enforces the common representation across
all the modalities in order to get a more robust representation.
Previously proposed joint sparsity or low-rank representation-
based multi-modal recognition methods are special cases of the
proposed formulations. Efficient algorithms based on ADMM
are derived to solve the proposed problems.

From experimental results, we can conclude that: (1) for
datasets, such as the WVU dataset and the Pascal-Sentence
dataset, in which the performance of each modality is about
the same, there is no guarantee that enforcing the common rep-
resentation (MRLRJS-C and RMRLRJS-C) may always show
better results; (2) for datasets, such as UMDAA-01 dataset, in
which the performance of each modality differs a lot, enforcing
the common representation (MRLRJS and RMRLRJS) will
successfully fuse all the modalities and perform much better
than the general formulation (MRLRJS and RMRLRJS) which
fail to fuse strong and weak modalities together.
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