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Sparse Representation-based Open Set Recognition
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Abstract—We propose a generalized Sparse Representation-
based Classification (SRC) algorithm for open set recognition
where not all classes presented during testing are known during
training. The SRC algorithm uses class reconstruction errors
for classification. As most of the discriminative information for
open set recognition is hidden in the tail part of the matched
and sum of non-matched reconstruction error distributions, we
model the tail of those two error distributions using the statistical
Extreme Value Theory (EVT). Then we simplify the open set
recognition problem into a set of hypothesis testing problems.
The confidence scores corresponding to the tail distributions of
a novel test sample are then fused to determine its identity. The
effectiveness of the proposed method is demonstrated using four
publicly available image and object classification datasets and it
is shown that this method can perform significantly better than
many competitive open set recognition algorithms.

Index Terms—Open set recognition, sparse representation-
based classification, extreme value theory.

I. INTRODUCTION

In recent years, sparse representation-based techniques have
drawn much interest in computer vision and image processing
fields [1], [2]. A number of image classification and restoration
algorithms have been proposed based on sparse representa-
tions. In particular, sparse representation-based classification
(SRC) algorithm [3] has gained a lot of traction. The basic idea
of SRC is to identify the correct class by seeking the sparsest
representation of the test sample in terms of the training. The
SRC algorithm was originally proposed for face recognition
and later extended for iris recognition and automatic target
recognition in [4] and [5], respectively. A simultaneous dimen-
sion reduction and classification framework based on SRC was
proposed in [6]. Furthermore, non-linear kernel extensions of
the SRC method have also been proposed in [7], [8], [9], [10].

The SRC algorithm and its variants are essentially based
on the closed world assumption. In other words, it is assumed
that the testing data pertains to one of K classes that are used
during training. But in practice, testing data may come from
a class that is not necessarily seen in training. This problem
where the testing data corresponds to a class that is not seen
during training is known as open set recognition [11]. Consider
the problem of animal classification. If the training samples
correspond to K different animals, then given a test image
corresponding to an animal from one of the K classes, the
algorithm should be able to determine its identity. However, if
the test image corresponds to an animal which does not match
one of the K animals seen during training, then the algorithm
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should have the capability to ignore or reject the test sample
[12].

The goal of an open set recognition algorithm is to learn
a predictive model that classifies the known data into correct
class and rejects the data from open class. As a result, one can
view open set recognition as tackling both the classification
and novelty detection problem at the same time. Novelty
detection refers to the problem of finding anomalous behaviors
that are inconsistent with the expected pattern. A novelty
detection problem can be formulated as a hypothesis testing
problem where the null hypothesis, o, implies the test sample
coming from normal class and the alternative hypothesis, H1,
indicates the presence of anomalies and the objective is to find
the best threshold that separates Hg from ;.

A number of approaches have been proposed in the literature
for open set recognition. For instance, [11] introduced a
concept of open space risk and developed a 1-vs-Set Machine
formulation using linear SVMs for open set recognition. In
[13], the concept of Compact Abating Probability (CAP) was
introduced for open set recognition. In particular, Weibull-
calibrated SVM (W-SVM) algorithm was developed which
essentially combines the statistical Extreme Value Theory
(EVT) with binary SVMs for open set recognition. Also, the
W-SVM framework was recently used in [14] for fingerprint
spoof detection. In [15], an open set recognition-based method
was developed to identify whether or not an image was
captured by a specific digital camera.

In order to reject invalid samples, the notion of Sparsity
Concentration Index (SCI) was proposed in [3]. Similarly,
a rejection rule based on the ratio of the first two highest
projection scores was developed for rejecting non-face images
in [16]. The rejection rules defined using sparse representations
in [3] and [16] were specifically designed to reject non-face
images. As will be shown later, these rules do not work well
on general open set recognition problems.

In this paper, we extend the SRC formulation for open
set recognition. Our method relies on the statistical EVT
[17] and consists of two main stages. In the first stage, the
tail distributions of the matched reconstruction errors and the
sum of non-matched reconstruction errors are modeled using
the EVT to simplify the open set recognition problem into
two hypothesis testing problems. In the second stage, the
reconstruction errors corresponding to a test sample from each
class are calculated and the confidence scores based on the
two tail distributions are fused to determine the identity of
the test sample. Figure 1 gives an overview of the proposed
Sparse Representation-based Open Set Recognition (SROSR)
algorithm.

This paper is organized as follows. In Section II, we give a
brief background on the EVT and the SRC algorithm. Details
of the proposed SROSR algorithm are given in Section III.
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Fig. 1: Overview of the proposed SROSR algorithm. Given training samples, we model tail part of the matched reconstruction error distribution
and the sum of non-matched reconstruction error using the statistical EVT. Given a novel test sample, the modeled distributions and the
matched and the sum of non-matched reconstruction errors are used to calculate the confidence scores. Then, these scores are fused to obtain

the final score for recognition.

Experimental results are presented in Section IV and Section V
concludes the paper with a brief summary and discussion.

II. BACKGROUND

In this section, we review some related work in SRC and
EVT.

A. Sparse Representation-based Classification

Stack the training samples from the i-th class as columns
of a large matrix Y; € RM*Ni and use

Y = [Y17Y23"'7YK] € RMXN?

as the dictionary of training samples from K classes, where
N = 3", N; is the total number of training samples and M
is the dimension of each training sample. Let £Y denote the
corresponding label set. If the Y; are sufficiently expressive
[18], a new input sample from the ¢-th class, stacked as a
vector y; € RM, will have a sparse representation

yt =YX

in terms of the training data Y: x will be nonzero only for
those samples from class ¢. The sparse coefficient vector x €
RY can be estimated by solving the following optimization
problem

(D

where we have assumed that the observations are noisy with
noise energy € and ||x||; = ), |x;|. The sparse code X can
then be used to determine the class of y; based on the class
residuals

X = argm}in [x[[1 st [lye — Yx|]2 <,

k=1,..., K, )

e = ly: — YiXp|lo,

where Xy, is the part of X that corresponds to class k. Finally,
the class k£* that is associated to the test sample y;, can be
declared as the one that produces the smallest approximation
error

k™ = class of y; = arg mkin L.

This method provides excellent performance on several image
classification datasets [3], [4], and is provably robust to errors
and occlusion [19]. The basic SRC algorithm is summarized
in Algorithm 1.

Algorithm 1: Sparse Representation-based Classification
Input: Y, LY e, Yt
X = argminy ||x[|1 s.t. ||ly: — Yx|2 <€
e = llye — YeXpllz for k=1,... K
k* = arg ming ri
Output: k*,r = [ry,79,...

7TK]

In order to reject outliers, the following SCI rule was defined
in [3]

K xmaxp ||xkll1 1
[ESIE!

K -1
Sparsity coefficient index takes values between O and 1. The
SCI values close to 1 correspond to the case where the
test image can be approximately represented by using only
images from a single class. If the SCI value of the recovered
coefficient is close to zero, then the coefficients are spread
across all classes. Hence, the test vector is not similar to any
of the classes and can be rejected. A threshold can be chosen
to reject invalid test samples if SCI(X) < « and otherwise

SCI(x) =

€ [0,1]. 3)
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accepted as valid, where « is some chosen threshold between
0 and 1.

B. Extreme Value Theory

Extreme value theory is a branch of statistics analyzing the
distribution of data of abnormally high or low values. It has
been applied in Finance [20], Hydrology [21] and novelty
detection problems [22], [23], [24]. In this section, we give
a brief overview of the statistical EVT.

Assume that we are given n i.i.d. samples {Z;, Z, ..., Z,,}
drawn from an unknown distribution F'(z). Denote

Zm =maxZ; 1€ [l,n].
3

The Fisher-Tippett-Gnedenko theorem [25] states that if there
exists a pair of parameters (a,,b,), subject to the condition
an, > 0 and b,, € R, then

lim P (Zmb"> = E(2), 4)
n—o0o anp
where F(z) is a non-degenerate distribution that belongs to
either Fréchet, Weibull or Gumbel distribution. These distri-
butions can be represented as a Generalized Extreme Value
distribution (GEV) as follows

E(zp,0,8) = exp P, (5)

o= ((522)

and p, o and ¢ are the location, scaling and shape parameters,
respectively.

There are two challenges that one has to overcome before
using the GEV distribution to model the tail distribution of
data. Firstly, we have to choose which distribution to use
among the three based on prior knowledge. Secondly, we
need to segment the data into several parts and model the
maximum in each part as a distribution using GEV. However,
to overcome these challenges, an alternative method based
on the Generalized Pareto distribution (GPD), denoted as
G(z)!, was proposed in [17] to estimate the tail distribution
of data samples. It was shown that given a sufficiently large
threshold u, the probability of an observation exceeding u by
z conditioned on w can be approximated by

where

nl;n;o P(Z>z+ulZ >u)=1-G(z), (6)

with

—1
Glz)=1— (1+§5) € 2>,
o/ +
where o > 0, £ € R and x4 = max(z,0).

To estimate the parameters of GPD, one can use the
maximum likelihood estimation (MLE) method introduced in
[26]. Even though there is the possibility that the parameters
of GPD don’t exist and that maximum likelihood estimation
may not converge when & > 1/2, it has been shown that these
are extremely rare cases in practice [26] [27] .

'Here, G is the Cumulative Distribution Function (CDF) of the GPD.

III. SPARSE REPRESENTATION-BASED OPEN-SET
RECOGNITION (SROSR)

In [11] the notion of “Open set Risk” was defined as the
cost of labeling the open set sample as known sample. Based
on this, one can minimize the following cost to develop an
open set recognition algorithm

argm}nCo(f) + M Ce(f), (7

where f is a measurable function, C,(f) denotes open set
risk, C¢(f) denotes empirical risk for classification and A, is
a parameter that balances open set risk and empirical risk.

The SRC algorithm uses residuals from (2) for classification
which can also be used to model f in (7) for open set
recognition. This is due to the following reason. If the test
sample corresponds to class k, then the reconstruction error
corresponding to class £ should be much lower than that
corresponding to the other classes. As a result, there may be a
distinction between matched and non-matched reconstruction
errors. To illustrate this, we plot the distributions of matched
and non-matched reconstruction errors using the samples from
the MNIST handwritten digits dataset [28], shown in Figure 2.
Training samples consists of digits 0 to 9 and test samples
correspond to digit 9. Matched reconstruction errors here mean
that the errors correspond to the sparse coefficients of digit 9
and non-matched reconstruction errors mean that the errors are
generated by the sparse coefficients of all other digits. One can
see from this figure that matched classes’ reconstruction errors
follow some underlying distribution. If one can fit a probability
model P(r) to describe the distribution of the reconstruction
errors of the matched class, then one can reformulate the open-
set recognition problem as a hypothesis testing for novelty
detection problem as

Ho : P(’I“k) <9
Hi: P(’I“k) > 9, 3)

where the null hypothesis H( implies that the test data are
generated from the distribution P(rj), and the alternative
hypothesis H; implies that test data correspond to the classes
other than the ones considered in training and ¢ € [0, 1] is the
threshold for rejection.

However, as we have no prior knowledge on the underlying
distribution of the matched reconstruction errors, we cannot
fit a proper distribution on them. Instead, we can apply the
EVT on the tail of the matched distribution as we are only
concerned about the right tail of this distribution for hypothesis
testing. As the implementation of GEV on real data is difficult,
we instead use the GPD to model the tail of the matched
distribution. Once we learn the distribution of the tail, we can
modify the hypothesis testing problem Eq. 8 to the following

HO : G(rk) S (59
Hi 2 G(ry) > 6, 9)

where G(r) is the learned GPD distribution for fitting the
right tail of r;, and J, is the rejection threshold.

When SRC is used for classification, we don’t only get the
information of the matched reconstruction errors but we also
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Fig. 2: Histogram of the matched and non-matched reconstruction
errors. Matched reconstruction errors are the errors corresponding
to the sparse coefficients of digit 9 and non-matched reconstruction
errors are the errors that are generated by the sparse coefficients of
all other digits when training samples consists of digits 0 to 9 and the

test samples correspond to digit 9. All samples are from the MNIST
dataset.

have access to the non-matched reconstruction errors which
can be used to enhance the performance of our open set
recognition algorithm. Due to the self expressiveness property
of the SRC algorithm [3], the sparse coefficients corresponding
to open set samples are very different from that of the closed
set samples and they follow a certain pattern. If an open set
sample is written as a linear combination of the training sam-
ples from closed set then the resulting sparse coefficient vector
will not concentrate on any class but instead spread widely
across the entire closed training set. Thus, the distribution of
the estimated sparse coefficient contains important information
about the validity of open set sample. In order to illustrate this
point, we conduct the following toy experiment using the digits
from the MNIST dataset. Suppose that the training data only
contains digits O to 5 and the test samples consist of closed set
digits O to 5 and open set digits 6 to 9. In Figure 3, we plot the
sum of the non-matched reconstruction errors corresponding
to the closed set digits 0 to 5 and the sum of non-matched
reconstruction errors corresponding to the open set digits 6 to
9. As one can see from this figure that the sum of the non-
matched reconstruction errors from the closed set digits 0 to
5 also follow a certain distribution that is very different from
the distribution that one obtains from the errors corresponding
to the open set digits.

As a result, we can formulate another hypothesis testing
problem similar to (8) for the sum of non-matched recon-
struction errors. We can combine the two hypothesis testing
problems together to make the open set recognition algorithm
more accurate. As we are only interested in the right tail of
the matched distribution and the left tail of the sum of non-
matched distribution, we apply an inverse procedure to the
random variable Z as

Zr=—-2.

lSum of Non-Matched from Closed-set
lSum of Non-Matched from Open-set

0.04 \

sum(r I()

Fig. 3: Histogram of the sum of non-matched reconstruction errors
corresponding to the closed set classes O to 5 and the sum of non-
matched reconstruction errors corresponding to the open set digits 6
to 9 . All samples are from MNIST dataset.

So the right tail of Z; is the left tail of Z.

A. Training

In the training phase, we have to estimate the parameters
for fitting the tail distribution based on the GPD. Estimating
the parameters based on MLE requires the availability of
multiple reconstruction errors. To deal with this issue, we
propose the following iterative procedure. In each iteration,
we first randomly order the training samples from each class
Y, and then partition them into two sets - cross-train Y!”
and cross-test Y}°. Samples in the cross-train set Y!" and
samples in the cross-test set Y!¢ are used as training and
testing samples, respectively for the SRC algorithm during this
particular iteration. The cross-test and cross-train sets contain
20 and 80 percent of the training samples in Y;, respectively.
Let £!" and £L¢ denote the associated label sets corresponding
to Y!" and Y!°, respectively. Once the training samples
from all classes are partitioned into cross-train and cross-
test sets, combine the cross-train samples from all K classes
into a cross-train matrix Y*" = [Y!", Y5, ..., Y] and their
associated labels into a label set £ = {£{", LY, ... LT}
Similarly, combine the cross-test sets into a cross-test matrix
Yt = [Yi, YL, ..., Y] and their labels into a label set
cte = {£te, £l .. L} Use (Y, Yt L, L €) as the
inputs to the SRC algorithm and obtain the reconstruction
error vector r;. We repeat this process for L times and gather
the matched R]" and the sum of non-matched reconstruction
errors R}, respectively for ¢ = 1, ..., K, for fitting the tail
distribution based on the GDP. The entire training phase of
our method is summarized in Algorithm 2, where p indicates
the tail size.

B. Testing

Given a novel test sample y;, we compute its sparse
coefficient X by solving the ¢;-minimization problem Eq.
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Algorithm 2: Pseudocode for SROSR Training

Algorithm 3: Pseudocode for SROSR Testing

Input: Y, p,¢, L, LY
Initialization
fori=1: K do
for j=1:L do
Y, = randomly ordered Y; € RM*Ni
Ny = N; x 0.8
Yfr = Yj,(:, 1: Ntr)
L7 = Labels of Y!"
Ylt»e = Yi(Z, Ntr +1: end)
L! = Labels of Y!*
r;(j,:) - SRC (Y, Yt L' Lt ¢)
end for
R™ = [r;i(1,4),...,r:i(L,1)]
R =[S iri(L,p),. o Y s Ti(L, )]
om(i),&,,(1) < GPDfit(R™, p)
end for

Output: Om, Ema O nm, €nm

1. We then obtain K reconstruction errors as required by
the SRC algorithm. We choose the class with the minimum
reconstruction error as the candidate class. We then obtain two
probability scores by fitting matched and sum of non-matched
reconstruction errors to their corresponding GPDs. As the two
raw reconstruction errors are all normalized into probabilities
by their corresponding GPDs, we can add the two probability
scores together with appropriate weights to obtain the final
score. We set the weight, w, as

1
w = §(1 — Openness),

o 1 2 X NTA
enness = 1 — 4/ ————,
P Nrg + Nrg

and Nra, Nrg and Nrp are the number of training classes,
the number of target classes to be identified, and the number of
testing classes, respectively [11]. If ‘Openness = 0, then our
setting reduce to the traditional classification problem (i. e., a
completely closed problem). With the growth of ‘Openness’,
more and more unknown classes will appear during testing.
As a result, the weight on the non-matched probability scores
will decrease.

Our testing algorithm is summarized in Algorithm 3.
The inputs required during testing are the test sample
y¢, training samples Y, the estimated parameters for the
matched (o,,&,,) and the sum of non-matched distributions
(T nm, &nm), Tejection threshold J; and the weight w. The
output of the testing phase is one of the following classes
{1,2,...,K,O}, where O represents the open class.

where
(10)

IV. EXPERIMENTAL RESULTS

In this section, we present several experimental results
demonstrating the effectiveness of the proposed SROSR
method on open set recognition. In particular, we present the
open set recognition results on the MNIST handwritten digits

Input: Y, Y7 Om, £m,7 T nm, €7l,m’ 6t7 w, €
I: v < SRC (Y,y:, LY ¢€)
3: k* = argmin; r;
4 Ty = T, Tim = ZiK:Li;ék* T
5: S = G(rm; o m(k*), €, (K)),
Snm = G(rnm; o'n’rn(k*)a énm(k*))
6:S=85,+w...Sm
if S > 6; then
Class of y; = O
else
Class of y; = k*
end if
Qutput: £* or O

dataset [28], Extended Yale B face dataset [29], UIUC attribute
dataset [30] and Caltech-256 dataset [31]. The comparison
with other existing open set recognition methods such as 1-vs-
All Multi-class RBF SVM with Platt Probability Estimation
[32] and Pairwise Multi-class RBF SVM [33] in [13] suggests
that the W-SVM algorithm is among the best. Hence, we treat
it as state-of-the-art and use it as a benchmark for comparisons
in this paper. Furthermore, we compare the performance
of our method with two other sparse representation based
methods for rejecting invalid samples - SCI [3] and Ratio
method [16]. Finally, we compare our method with a “Naive”
baseline where we estimate a reconstruction error threshold
directly from training rather than using GPD to model the tail
distributions.

Recognition accuracy and F-measure are used to measure
the performance of different algorithms on open set recogni-
tion. The F-meaure is defined as a harmonic mean of Precision
and Recall

Precision - Recall
F-measure = 2 -

Y

Precision 4+ Recall’

where Recall is defined as

TP
Recall =
TP+FN
and Precision defined as
.. TP
Precision = .
TP+FP

Here TP, FN, and FP denote true positive, false negative and
false positive, respectively. F-measure is always between 0 and
1. The higher the F-measure the better the performance of an
object recognition system. Accuracy is defined as

TP + TN
TN + TP + FP + FN’

where TN denotes true negative. The rejection threshold, d;
was empirically determined. In our experiments, we have used
0 = 0.006- (14+w),0.007- (1+w),0.05- (14+w),0.1-(1+w)
for the simulations with the MNIST dataset, Extended YaleB
dataset, UIUC attribute dataset and Caltech-256 dataset, re-
spectively. We choose the tail size p based on cross-validation.
In particular, we set p = 0.14,0.10,0.39 and 0.25 for the

Accuracy =
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experiments with the MNIST dataset, Extended YaleB dataset,
UIUC attribute dataset and Caltech-256 dataset, respectively.
The noise level € is set equal to 0.001 for solving the SRC
problem in our proposed SROSR framework.

A. Results on the Extended YaleB Dataset

The Extended Yale B Dataset consists of 2,414 frontal
images of 38 individuals. These images were captured un-
der various controlled indoor lighting conditions. Each class
contains about 64 images. They were cropped and normalized
to the size of 32 x 32 pixels. We randomly choose 10 classes
for training and vary the openness by randomly selecting 10 to
28 classes. The following steps summarize our data partition
procedure on the Extended Yale B dataset.

1) Randomly select 10 classes among the 38 classes.

2) Randomly choose 80% of the samples in each of the 10
selected classes as training samples.

3) Select the remaining 20% of the samples from step 2
and all the samples from the other 28 classes as testing
samples.

We repeat the above procedure 50 times and report the average
F-measure and accuracy of different methods.

To show the significance of why we used the sum of
non-matched reconstruction error distribution along with the
matched error distribution, in this experiment, we consider just
the matched reconstruction error distribution without fusing
the sum of the non-matched reconstruction error distribution
in our method. The results as shown in Figure 4. Figure 4
(a) shows the average F-measure results on this dataset. The
face images in this dataset are cropped and well-aligned.
Furthermore, the images contain almost the same background.
As a result, all compared methods achieve very high F-
measures on this dataset. Figure 4 (b) shows the average
accuracy of different methods as we vary openness. As can be
seen from both of these plots, the proposed SROSR method
outperforms the other compared methods. In particular, if only
the matched reconstruction error distribution is considered,
then the performance degrades significantly. On the other had,
when both the sum of non-matched and matched distributions
are used, it greatly enhances the performance of the proposed
SROSR algorithm. This experiment clearly indicates that both
matched and the sum of non-matched reconstruction errors
contain complementary information which can be used to
improve the performance of an open set recognition algorithm.

B. Results on the MNIST Dataset

The MNIST dataset contains gray scale images of hand-
written digits of size 28 x 28. There are about 60,000 training
images and 10,000 testing images corresponding to 10 classes
in this dataset. Following the experimental setting described
in [13], we randomly choose 6 classes for training and alter
the openness by the remaining 4 classes. We repeat this
experiment 50 times and record the average F-measure and
Accuracy. Finally, we plot the Openness vs F-measure and
Openness vs Accuracy curves to validate our approach.

The Openness vs F-measure and Openness vs Accuracy
curves corresponding to this experiment are shown in Figure 5
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Fig. 4: Results on the Extended Yale B dataset. (a) Openness vs
F-Measure results. (b) Openness vs Accuracy results.

(a) and Figure 5 (a), respectively. It can be seen from these
results that the proposed SROSR method performs better than
the Naive method, the W-SVM method and the sparsity-based
rejection methods. Our method achieves the highest F-measure
and accuracy among all the five methods as we vary openness.
The rejection methods such as SCI and Ratio are based on
the sparsity of the test vector with respect to the training
samples. If an open set sample has a sparsity pattern similar
to that corresponding to one of the training samples, then
the SRC method based on SCI will not reject that sample.
This demonstrates that incorporating matched as well as non-
matched reconstruction errors can significantly enhance the
performance of a sparsity-based classification method on open
set recognition.

‘-O-SROSR === W-SVM=——SC| ——Ratio Naive ‘-O-SROSR === W-SVM=——SC| ——Ratio Naive

0% 2‘% 4“% 6“% B‘% 16% 12‘% 14% 0% 2‘% 4‘% 6“% B‘% 10‘% 12‘% 14%
Openness Openness

(a) b)

Fig. 5: Results on the MNIST dataset. (a) Openness vs F-Measure
results. (b) Openness vs Accuracy results.

By comparing Figure 4 (b) with Figure 5 (b), we see that
the accuracy in Figure 4 (b) increases while the accuracy in
Figure 5 (b) decreases. This is mainly due to the fact that
the rejection accuracy is higher than the recognition accuracy
on the Extended YaleB dataset while the rejection accuracy is
lower than the recognition accuracy on the MNIST dataset.

C. Results on the UIUC Attribute Dataset

The UIUC attributes dataset contains data in two parts - a-
Pascal and a-Yahoo. The a-Pascal dataset has twenty object
classes such as animals, vehicles, etc. and each category
contains 150 to 1000 samples. The a-Yahoo dataset contains
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twelve additional object classes, which can be used as open
set classes during testing. We randomly choose 10 classes
from the a-Pascal dataset as training and vary the openness by
randomly selecting 1 to 10 classes from the a-Yahoo dataset.
In each training class, we randomly choose 50 samples and in
each testing class, we randomly choose 20 samples. We repeat
the above procedure 50 times and average the F-measure and
accuracy results. Results are shown in Figure 6. As can be seen
from this figure that SROSR outperforms the other methods.
In particular, as the openness is increased, our method can
achieve much better F-measure and accuracies than the other
compared methods.

‘-O-SROSR === W-SVM=—SC| ——Ratio Naive =6=SROSR === W-SVM——SCI —— Ratio Naive

Accuracy

8‘% 10‘% 12‘% 14‘% 16‘% 18‘% 20%
Openness

8% 10% 12% 14% 16% 18% 20% 2% 4% 6%
Openness

(a) b)

Fig. 6: Results on the UIUC attribute dataset. (a) Openness vs F-
Measure results. (b) Openness vs Accuracy results.

2% 4% 6%

D. Results on the Caltech-256 Dataset

The Caltech-256 dataset contains 257 categories including
one background clutter class. Each category has about 80
to 827 images and most of the categories have about 100
images. In this experiment, we extracted the spatial pyramid
features [34] from these images as input for all four methods.
The evaluation protocol is very similar to the previous three
experiments. We randomly select 20 categories as training
classes and vary the openness by randomly selecting 31 to
40 classes out of the other 237 classes. For all the selected
classes, we randomly choose 50 samples for each training
class and 20 samples for each testing class. So the openness
of our experiments on the Caltech-256 dataset varies from
24.94% to 29.29%. We average the results over 50 random
trails. Figure 7 (a) and (b) show the average F-measure and
accuracy curves of different methods as we vary the openness,
respectively. Overall, the proposed SROSR achieves the best
F-measure and accuracy results on this dataset compared to
the other competitive open set recognition methods.

V. CONCLUSION

The SRC algorithm classifies a test sample by seeking
the sparsest representation in terms of the training data and
does not work well under the open world assumption. In
this paper, we have introduced a training stage to the SRC
algorithm so that it can be adapted to tackle the open set
recognition problems. The resulting algorithm makes use of
the reconstruction error distributions modeled by the EVT.
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Fig. 7: Results on the Caltech 256 dataset. (a) Openness vs F-Measure
results. (b) Openness vs Accuracy results.

F—measure

Various experiments on popular image and object classification
datasets have shown that our method can perform significantly
better than many competitive open set recognition algorithms.

If the dataset contains extreme variations in pose, illumi-
nation or resolution, then the self expressiveness property re-
quired by the SRC algorithm will no longer hold. In this case,
the proposed SROSR algorithm will fail. A possible solution
to this problem would be to develop kernel-based methods
for SROSR where kernel SRC [10], [9], [7] is used to find
the sparse representation in the high-demential feature space.
Another limitation of the proposed SROSR method is that for
good recognition performance, the training set is required to be
extensive enough to span the conditions that might occur in the
test set. Development of sparsity-based open set recognition
method where only a single image or a very few images are
given per class for training is an interesting open problem.
Furthermore, it remains an interesting topic for future work to
develop a sparse representation or dictionary learning-based
open set recognition algorithm by directly minimizing the open
risk criteria.
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