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ABSTRACT

A sparse representation-based approach is proposed to find the
salient views of 3D objects. Under the assumption that a meaningful
object can appear in several perceptible views, we build the ob-
ject’s approximate convex shape that exhibits these apparent views.
The salient views are categorized into two groups. The first are
boundary representative views that have several visible sides and
object surfaces attractive to human perceivers. The second category
are side representative views that best represent views from sides
of the approximating convex shape. The side representative views
are class-specific views that possess the most representative power
compared to other within-class views. Using the concept of char-
acteristic view class, we first present a sparse representation-based
approach for estimating the boundary representative views. With the
estimated boundaries, we determine the side representative view(s)
based on a minimum reconstruction error.

Index Terms— Salient view, characteristic view class, view ge-
ometry, sparse representation, compressive sensing.

1. INTRODUCTION

The concept of characteristic views was first proposed in [1][2] for
object recognition. It was defined in such a way that two views
belonging to the same Characteristic View Class (CVC) are topo-
logically equivalent, and they can be related by a 3D transformation
which consists of geometric rotation, translation and perspective pro-
jection [3]. [3] proposes a framework to partition the viewing space
and to find the set of characteristic views for planar-faced solid ob-
jects. This work was later extended in [4], which essentially com-
putes the characteristic views of objects with curved-surface.

There are a number of approaches for describing what is con-
tained in a view [5], [6]. For view-based representations, human
perceivers are influenced by factors such as the familiarity with the
object being viewed, the similarity of a given view to known views
of visually-similar objects and the pose of the object [5]. The three-
quarter views with all visible front, top and side, are often used as
candidate views. As noted in [7], these are essentially the views that
most humans prefer when looking at an object. These views are also
known as the canonical views [6].

In [8], saliency was defined as the amount of energy not captured
by the basis set in an eigenspace representation. A greedy algorithm
was proposed for subset selection where the saliency of every en-
semble view is first computed and then the view with the highest
saliency is added to the subset. The subset is then updated using the
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eigenspace representation updating algorithm [9][10] so that the task
of salient view selection can be realized in a dynamic environment.

In recent years, Sparse Representations (SR) have emerged as
a powerful tool for efficient processing of data in non-traditional
ways. Motivated by the success of SR in many computer vision and
image processing applications [11], [12], we propose an SR-based
approach to select the salient views of an object [6], [7]. Given an
object, we first find its approximate convex shape which exhibits ap-
parent sides. A side view class (SVC) is defined as a set of views
of the corresponding side of the shape, while a boundary view class
(BVC) refers to views where two or more sides can be seen simul-
taneously. Fig. 1(a) illustrates distinct regions of SVCs and BVCs
using an approximate convex shape of a given object. The shape
in this figure consists of four sides, which give four SVCs and four
BVCs under orthographic projection. These eight classes are ex-
actly the eight CVCs of the approximate convex shape. With the
concept of object’s approximate convex shape and its sides, we cat-
egorize salient views into two categories: boundary representative
views (BRVs) which have more visible sides and object surfaces,
and therefore are more attractive from a human perception point of
view; and side representative views (SRVs) which best describe the
underlying SVCs. In Fig. 1(a), BRVs and SRVs are views seen from
directions marked with red and blue arrows, respectively. Fig. 1(b)
shows the block diagram of the proposed two-stage approach to find
salient views. Views are extracted from a video sequence, cropped
and properly resized. In the first stage (in blue) the boundary scores
are computed using a spread metric and BRVs are estimated. Next
the SVCs are determined. In the second stage (in green), the SRV(s)
are chosen that best represent the associated side by minimizing a
representation error.

This paper is organized as follows. Section 2 presents a way to
estimate the BRVs of an object. In Section 3, we describe our ap-
proach to determine the SRVs. Experiment results on three 3D-view
example sequences are presented in Section 4. Section 5 concludes
the paper with a brief summary and discussions.

2. ESTIMATING BOUNDARY REPRESENTATIVE VIEWS

For any convex object, the type-A planes described in [3] are suffi-
cient to partition the space into CVCs. Whenever two views belong
to the same CVC, every viewable point in one view is also viewable
in the other view, and vice versa. Following this idea and using the
approximate convex shape of a given object, we present an approach
to estimate BRVs as follows.

Spread Metric: Let Sm, where m ∈ {1, 2, ..., N}, be a subset of
the m-th SVC. Sm consists of a finite number of views that are ap-
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Fig. 1. (a) Convex shape approximation and the associated
SVC/BVC regions. (b) Block diagram of the proposed salient view
selecting approach.

proximately topologically equivalent as they can be related by 3-D
transformations. We can further subdivide Sm into exclusive sub-
groups si’s such that Sm = s1

∪
s2

∪
...

∪
skm . si contains views

that are fairly close to each other as they are viewed from locations
with small rotation or translation differences. We further assume Sm

is sufficiently large such that the representation of a view in the class
associated with Sm is sparse under Sm. We use a spread metric de-
noted by SM = 1 − SCI, to represent the saliency of a candidate
view zj to Sm, where SCI stands for Sparsity Concentration Index
defined in [13]. SCI is a measure of sparsity of the coefficient repre-
sentation of a vector under some basis. Low values of SCI (i.e., high
SM) indicate that the given view is fairly informative relative to the
existing group. Thus, we have

SMm(zj) =
km

(
1− max

i∈{1,2,...,km}

∥δm,i(xm,j)∥1
∥xm,j∥1

)
km − 1

, (1)

where xm,j is the representation of the candidate view zj under Sm.
That is,

xm,j = argmin
x

∥x∥1 s.t. zj = Smx. (2)

In (1), δm,i(xm,j) is a vector whose only nonzero entries are the
entries of xm,j that belong to the i-th subgroup of Sm. It can be
shown that SMm(zj) ∈ [0, 1]. The larger the SMm(zj) is, the larger
the saliency possessed by zj relative to Sm. Large SMm(zj) is a
strong indication that zj belongs to a subset different from Sm.

Finding boundary representative views: In this section, we de-
scribe our method for finding the BRVs. For simplicity, we consider
only the 3-D views of an object w.r.t. Y axis rotation (0◦ ∼ 360◦)
under the orthographic projection. Without loss of generality, as-
sume {zj}K−1

j=0 are the original full 3-D views of a given object in
the clockwise positive direction (i.e., as j increases, it goes in the
clockwise direction 1). After zK−1, the sequence rounds back to z0
as these are rotated views w.r.t. Y axis. Now, for any given zj , we
calculate its boundary score as follows:

S̃MWj(β,γ)
(zj(α)) =

γ

(
1− max

i∈{1,2,...,γ}

∥δW,i(xW,j(α))∥1
∥xW,j(α)∥1

)
γ − 1

, (3)

1The same analysis follows for the counterclockwise position assumption
as well.

where j(α) , mod(j + α,K), and

Wj(β,γ) ,
(
zj(−β−γ+1) zj(−β−γ+2) ... zj(−β)

)
. (4)

In (3), xW,j(α) is the representation of the candidate view zj(α) under
Wj(β,γ). That is,

xW,j(α) = argmin
x

∥x∥1 s.t. zj(α) = Wj(β,γ)x. (5)

Similar to δm,i(xm,j) in (1), here δW,i(xW,j(α)) is a masked version
of xW,j(α) such that its only nonzero entry is the one that corre-
sponds to the i-th column vector of Wj(β,γ). In this setting, for a
given zj , we calculate the SM of the view ahead of it by α units of
indices, with respect to the set formed from the (β + γ − 1)-th view
up to the β-th view behind zj . That is, this set is formed according
to a β-index logged window with size γ.
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Fig. 2. An illustration of finding the boundary score.

Figure 2 depicts an illustration of how we compute the boundary
score. Consider two SVCs: m-th SVC (in color purple) and (m+1)-
th SVC (in color yellow), and one BVC in between. Since in the
beginning no information on SVCs is provided, the choice of basis
is unknown and no spread metric can be calculated. Instead, we use a
sliding window with a predetermined size γ to select views and form
Wj(β,γ) (consisting of views in color green). To find the boundary
score at zj , we calculate the spread metric of zj(α) which leads zj by
α units of views, with respect to Wj(β,γ) which lags zj by β units of
views. Note that α and β should be properly tuned according to not
only the complexity of object but also the view sampling interval.
If α and β are too small, the spread metric is not obvious as zj(α)

is close to a member of Wj(β,γ). On the other hand, whenever α
and β are too large, so are the spread metric since zj(α) is close
to none of Wj(β,γ). In both above cases the spread metric can no
longer be a discriminative measure for BRVs. With properly chosen
α and β, one could expect the boundary score at zj when zj is in
the BVC (i.e., overlapped region) to be higher than those when zj(α)

and members in Wj(β,γ) are in the same SVC.

3. SIDE REPRESENTATIVE VIEW(S) SELECTION

Representative views can either be interpreted as a sparse represen-
tation (i.e., coefficients) under some basis, or can be used as sparse
observation where sparse coefficients under some basis can be found.
In this section, with representative views regarded as sparse observa-
tions, we propose a procedure for finding an object-dependent basis
set. We assume that camera parameters are not known.

We assume distinct SVCs are independent of each other. With-
out loss of generality, we consider the first SVC, [z0 z1 ... zk1−1]. Its
singular value decomposition (SVD) is [z0 z1 ... zk1−1] = VΣUT ,
where V = [v1 v2 ... vL] is an L-by-L matrix (L is total number of
pixels of an image); U = [u1 u2 ... uk1 ] is a k1-by-k1 matrix; and



σ1, ...σk1 are the eigenvalues (i.e., first k1 diagonal entries of Σ). It
can be shown that

y1 ,

 z0
...

zk1−1

 =

 | | ... |
c1 c2 ... ck1

| | ... |


 σ1

...
σk1



=

 Q1

...
Qk1


 σ1

...
σk1

 = Rw,

(6)

where ci (i ∈ {1, ..., k1}) is the column-vectorized form of matrix
viuT

i , and each Qj (j ∈ {1, ..., k1}) is a L-by-k1 matrix. Note
that Qj is not a 1-by-k1 row vector. In (6), matrix R is an object-
dependent basis set, and w contains eigenvalues σ1, ...σk1 as coeffi-
cients.

Our objective is to select l1 out of k1 views as representative
views that best represent the SVC, where l1 < k1. There are

(
k1
l1

)
possible selecting ways. Consider one way in which the selected
views are zs1 , ..., zsl1 , which form a column vector ys. Next, we
pick the corresponding matrices Qs1

, ...,Qsl1
, to form a sub-basis

Rs:

ys ,

 zs1
...

zsl1

 ; Rs ,

 Qs1
...

Qsl1

 . (7)

We solve the following equation using the ℓ1 norm:

x̂(ys) = argmin
x

∥x∥1 s.t. ys = Rsx. (8)

Since l1 < k1, less constraints are involved in solving (8) than in (6),
and one would expect x̂(ys) to be sparser than w. Among all possible(
k1
l1

)
ways, the one which gives the least sparse-to-full reconstruction

residual is chosen. In other words, we seek

ŷs = argmin
ys

∥y1 − Rx̂(ys)∥2. (9)

The corresponding best reconstruction is closest to y1, and can be
thought of as the one directly reconstructed using sparse observa-
tions from these l1 representative views. It has sparse representation
x̂(ŷs) under the basis R defined in (6).

4. EXPERIMENTAL RESULTS

We selected three available sequences of 3-D videos for our exper-
iments: the BUS sequence 2, the HEAD sequence3 and the JONES
sequence 4. A given video is converted into a set of images, each
of which is one view of the object at some particular rotation angle
w.r.t. Y axis, ranging from 0◦ to 360◦. Images are cropped and re-
sized in the preprocessing stage. Figure 3 shows these sequences of
images. There are 126 views (2.85◦ increment per view), 32 views
(∼ 11.25◦ increment per view), and 51 views (∼ 7.05◦ increment
per view) for BUS, HEAD and JONES sequences, respectively. In
these figures, the sequence of images going from the left to the right
in each row, and then from the top row to the bottom row, corre-
sponds to the (camera) clockwise direction. We calculate the spread
metrics with Wβ,γ sliding in both clockwise (positive) direction, and
counterclockwise (negative) direction.

2http://vimeo.com/3066167
3http://vimeo.com/15198240
4http://www.youtube.com/watch?v=vq1UeTW6uKE

Fig. 3. Sequences of 3-D views. Left: the BUS sequence (126
views); right top: the HEAD sequence (32 views); right bottom:
the JONES sequence (51 views).
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Fig. 4. Finding BRVs for the BUS sequence: (a) Clockwise SM and
counterclockwise SM. (b) Estimated BRVs.

By assuming that the approximate convex shape has four per-
ceptible sides for the object in each of these sequences, we pick four
peaks from spread metric scores. In addition, we use the fact that
any two peaks shall be separated by a certain gap, otherwise peaks
may be located within the same BVC (the gap is 22.5◦ for the BUS
sequence, and 30◦ for HEAD and JONES sequences). Figures 4,
5 and 6 show the results. For the BUS sequence, Figure 4(a) sug-
gests that the views with number 014, 055, 076 and 117 are selected
as BRVs as shown in Figure 4(b). Likewise, Figures 5(a) and 6(a)
suggest views with number 006, 010, 023 and 027, and views with
number 010, 022, 035 and 046 as BRVs, shown in Figure 5(b) and
6(b). It is expected that these BRVs are those with more sides and
visible surfaces as suggested in [6], [7], and hence human perceivers
are more sensitive to them.
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Fig. 5. Finding BRVs for the HEAD sequence: (a) Clockwise SM
and counterclockwise SM. (b) Estimated BRVs.

Fig. 7 shows the four SVCs which are separated using the esti-
mated BRVs. Taking into account the overall computation load, we
evenly down-sample views in each class, such that each class has
no greater than nine views. In Figure 7, we use green lines to mark
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Fig. 6. Finding BRVs for the JONES sequence: (a) Clockwise SM
and counterclockwise SM. (b) Estimated BRVs.

distinct SVCs. It can be seen that for most cases, views belonging
to the same SVC come with more similar poses than those of views
that are from distinct SVCs. Figure 8 shows the resulting SRVs. For
each SVC, we pick only one view with the minimum sparse-to-full
reconstruction error (i.e., l1 = 1). The results of the BUS sequence
are shown in Figure 8(a), where views with numbers 034, 070, 096
and 126 are obtained with the minimum residuals calculated by (9)
and are representatives of SVCs shown in the first row up to the
fourth row at the left top of Figure 7, respectively. Similarly, for the
HEAD sequence, views in Figure 8(b) with numbers 009, 014, 027
and 031 are obtained as SRVs of the left bottom 4 rows in Figure 7,
whereas views in Figure 8(c) with numbers 016, 030, 039 and 003
are SRVs of those 4 rows of SVCs shown at the right of Figure 7, for
the JONES sequence.

Fig. 7. Estimated 4 SVCs with down-sampled views. Left top: the
BUS sequence; left bottom: the HEAD sequence; right: the JONES
sequence.

Intuitively, one would expect a SRV to be the side view that cap-
ture the most energy compared to other within-class views, and thus
have minimum sparse-to-full reconstruction residuals according to
(8) and (9). It is not hard to see this phenomenon by comparing
representative views in Figure 8 with their associated classes in Fig-
ure 7. For all these sequences, the SRVs are generally pretty close
to side views: frontal view, left-side view, right-side view and back
view. Finally, the salient views are selected from both BRVs and
SRVs.

5. CONCLUSION

We presented a two-stage approach based on sparse representation
to find salient views of an object. The first stage computes the
spread metric and boundary scores to estimate boundary represen-
tative views. Using these estimated representative views, full views
are roughly partitioned into different side view classes. In the second
stage, side representative views are determined that have minimum
class sparse-to-full reconstruction residuals. We are currently evalu-
ating the robustness of our approach to noise and occlusions.

(a) (c)

(b)

Fig. 8. SRVs of (a) the BUS sequence (b) the HEAD sequence (c)
the JONES sequence.
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