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Abstract

In pattern recognition and computer vision, one is often faced with scenarios where the training data

used to learn a model has different distribution from the data on which the model is applied. Regardless

of the cause, any distributional change that occurs after learning a classifier can degrade its performance

at test time. Domain adaptation tries to mitigate this degradation. In this paper, we provide a survey

of domain adaptation methods for visual recognition. We discuss the merits and drawbacks of existing

domain adaptation approaches and identify promising avenues for research in this rapidly evolving field.
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I. INTRODUCTION

Supervised learning techniques have made tremendous contributions to machine learning and computer

vision, leading to the development of robust algorithms that are applicable in practical scenarios. While
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(a) (b) (c) (d)

Fig. 1: (a) Unconstrained face images. (b) Images with expression variations. (c) Sketch images. (d)

Images with pose variations. Real-world object recognition algorithms, such as face recognition, must

learn to adapt to distributions specific to each domain shown in (a)-(d).

these algorithms have advanced the state-of-the-art significantly, their performance is often limited by the

amount of labeled training data available. Labeling is expensive and time consuming due to the significant

amount of human efforts involved. However, collecting unlabeled visual data is becoming considerably

easier due to the availability of low cost consumer and surveillance cameras, and large internet databases

such as Flickr and YouTube. These data often come from multiple sources and modalities. Thus, when

designing a classification or retrieval algorithm using these heterogeneous data, one has to constantly

deal with the changing distribution of these data samples. Examples of such cases include: recognizing

objects under poor lighting conditions and poses while algorithms are trained on well-illuminated objects

at frontal pose, detecting and segmenting an organ of interest from MRI images when available algorithms

are instead optimized for CT and X-Ray images, recognizing and detecting human faces on infrared

images while algorithms are optimized for color images, etc.

This challenge is commonly referred to as covariate shift [1] or data set bias [2], [3]. Any distributional

change or domain shift that occurs after training can degrade the performance at test time. For instance, in

the case of face recognition, to achieve useful performance in the wild, face representation and recognition

methods must learn to adapt to distributions specific to each application domain shown in Fig. 1 (a)-

(d). Domain adaptation tackles this problem by leveraging domain shift characteristics from labeled

data in a related domain when learning a classifier for unseen data. Although some special kinds of

domain adaptation problems have been studied under different names such as covariate shift [1], class

imbalance [4], and sample selection bias [5], [6], it only started gaining significant interest very recently

in computer vision. There are also some closely related but not equivalent machine learning problems that
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have been studied extensively, including transfer learning or multi-task learning [7], self-taught learning

[8], semi-supervised learning [9] and multiview analysis [10]. A review of domain adaptation methods

from machine learning and natural language processing communities can be found in [11]. Our goal in

this paper is to survey recent domain adaptation approaches for computer vision applications, discuss

their advantages and disadvantages, and identify interesting open problems.

Rest of the paper is organized as follows. The domain adaptation learning problem is formulated in

Section II. Various visual domain adaptation methods are reviewed in Section III. Applications of domain

adaptation in object and face recognition are presented in Section IV. Finally, concluding remarks are

made in Section V.

II. NOTATION AND RELATED LEARNING PROBLEMS

In this section, we introduce the notation and formulate the domain adaptation learning problem.

Furthermore, we discuss similarities and differences among the various learning problems related to

domain adaptation.

A. Notation and Formulation

We refer to the training dataset with plenty of labeled data as the source domain and the test dataset

with a few labeled data or no labeled data as the target domain. Following [11], let X and Y denote

the input (data) and the output (label) random variables, respectively. Let P (X,Y ) denote the joint

probability distribution of X and Y . In domain adaptation, the target distribution is generally different

than the source distribution and the true underlying joint distribution P (X,Y ) is unknown. We have

two different distributions one for the target domain and the other for the source domain. We denote

the joint distribution in the source domain and the target domain as Ps(X,Y ) and Pt(X,Y ), respec-

tively. The marginal distributions of X and Y in the source and the target domains are denoted by

Ps(X), Ps(Y ), Pt(X), Pt(Y ), respectively. Similarly, the conditional distributions in the two domains

are denoted by Ps(X|Y ), Ps(Y |X), Pt(X|Y ), Pt(Y |X). The joint probability of X = x and Y = y is

denoted by P (X = x, Y = y) = P (x, y). Here, x ∈ X and y ∈ Y , where X and Y denote the instance

space and class label spaces, respectively.

Let S = {(xsi , ysi )}
Ns

i=1, where xs ∈ RN denote the labeled data from the source domain. Here, xs is

referred to as an observation and ys is the corresponding class label. Labeled data from the target domain

is denoted by Tl = {(xtli , ytli )}Ntl

i=1 where xtl ∈ RM . Similarly, unlabeled data in the target domain is

denoted by Tu = {xtui }
Ntu

i=1 where xtu ∈ RM . Unless specified otherwise, we assume N = M . Let
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T = Tl ∪ Tu. As a result, the total number of samples in the target domain is denoted by Nt which

is equal to Ntl + Ntu. Denote S = [xs1, · · · ,xsNs
] as the matrix of Ns data points from S. Denote

Tl = [xtl1 , · · · ,xtlNtl
] as the matrix of Ntl data from Tl, Tu = [xtu1 , · · · ,xtuNtu

] as the matrix of Ntu data

from Tu and T = [Tl|Tu] = [xt1, · · · ,xtNt
] as the matrix of Nt data from T .

It is assumed that both the target and source data pertain to C classes or categories. Furthermore, it is

assumed that all categories have some labeled data. We assume there is always a relatively large amount

of labeled data in the source domain and a small amount of labeled data in the target domain. As a result,

Ns � Ntl.

The goal of domain adaptation is to learn a function f(.) that predicts the class label of a novel test

sample from the target domain. Depending on the availability of the source and target domain data, the

domain adaptation problem can be defined in many different ways:

• In semi-supervised domain adaptation, the function f(.) is learned using the knowledge in S and

Tl.

• In unsupervised domain adaptation, the function f(.) is learned using the knowledge in S and Tu.

• In multi-source domain adaptation, f(.) is learned from more than one domain in S accompanying

each of the above two cases.

• Finally, in the heterogeneous domain adaptation, the dimensions of features in the source and target

domains are assumed to be different. In other words, N 6= M .

B. Related Approaches

1) Covariate Shift: One variation of the domain adaptation problem is where given an observation,

the conditional distributions of Y are the same in the source and the target domains but the marginal

distributions of X differ in the two domains. In other words, Pt(Y |X = x) = Ps(Y |X = x) for all

x ∈ X , but Pt(X) 6= Ps(X). This resulting difference between the two domains is known as covariate

shift [1] or sample selection bias [5], [6].

Instance weighting methods can be used to address this covariate shift problem in which estimated

weights are incorporated into a loss function in an attempt to make the weighted training distribution

look like the testing distribution [11]. To see this, let us briefly review the empirical risk minimization

framework for supervised learning [12]. Let θ ∈ Θ be a model family from which we want to select

an optimal parameter θ∗ for the inference. Let g(x, y, θ) be a loss function. We want to minimize the

October 1, 2014 DRAFT



5

following objective function

θ∗ = arg min
θ∈Θ

∑
(x,y)∈X×Y

P (x, y)g(x, y, θ)

to obtain the optimal θ∗ for the distribution P (X,Y ). Since P (X,Y ) is unknown, we use the empirical

distribution P̃ (X,Y ) to estimate P (X,Y ). A good model θ̂ can be found by minimizing the following

empirical risk

θ̂ = arg min
θ∈Θ

∑
(x,y)∈X×Y

P̃ (x, y)g(x, y, θ)

= arg min
θ∈Θ

N∑
i=1

g(xi, yi, θ),

where {(xi, yi)}Ni=1 is a set of training instances randomly sampled from P (X,Y ). This formulation

can be extended to domain adaptation by minimizing the following expected loss over the target domain

distribution to find the optimal model parameter for the target domain [11]

θ∗t = arg min
θ∈Θ

∑
(x,y)∈X×Y

Pt(x, y)g(x, y, θ).

In domain adaptation setting, the training instances {(xsi , ysi )}
Ns

i=1 are randomly sampled from the source

distribution Ps(X,Y ). As a result, we get

θ∗t = arg min
θ∈Θ

∑
(x,y)∈X×Y

Pt(x, y)

Ps(x, y)
Ps(x, y)g(x, y, θ)

≈ arg min
θ∈Θ

∑
(x,y)∈X×Y

Pt(x, y)

Ps(x, y)
P̃s(x, y)g(x, y, θ)

= arg min
θ∈Θ

Ns∑
i=1

Pt(x
s
i , y

s
i )

Ps(xsi , y
s
i )
g(xsi , y

s
i , θ). (1)

As can be seen from (1), weighting the loss of the source samples by Pt(x,y)
Ps(x,y) provides a solution to the

domain adaptation problem [11].

Under covariate shift, the ratio Pt(x,y)
Ps(x,y) can be rewritten as follows

Pt(x, y)

Ps(x, y)
=
Pt(x)

Ps(x)

Pt(y|x)

Ps(y|x)

=
Pt(x)

Ps(x)
.

As a result, one can weigh each training instance with Pt(x)
Ps(x) . Shimodaira [1] explored this approach to

reweight the log likelihood of each training instance using Pt(x)
Ps(x) for covariate shift. Various methods can
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be used to estimate the ratio Pt(x)
Ps(x) . For instance, non-parametric density estimation [1], [13] and Kernel

Mean Match-based methods [14] have been proposed in the literature to directly estimate the ratio.

2) Class Imbalance: Another special case of the domain adaptation formulation assumes that Pt(X|Y =

y) = Ps(X|Y = y) for all y ∈ Y, but Pt(Y ) 6= Ps(Y ). This difference is often known as class imbalance

[4]. Under this assumption, the ratio in (1) can be rewritten as follows

Pt(x, y)

Ps(x, y)
=
Pt(y)

Ps(y)

Pt(x|y)

Ps(x|y)

=
Pt(y)

Ps(y)
.

As a result, one only needs to consider Pt(y)
Ps(y) to weigh the instances [15].

Re-sampling can also be applied on the training instances from the source domain so that the re-sampled

data roughly has the same class distribution as the target domain. In these methods, under-represented

classes are over-sampled and over-represented classes are under-sampled [11].

3) Transfer Learning: Multitask learning or transfer learning is closely related to domain adapta-

tion [7], [16]. In multitask learning, different tasks are considered but the marginal distribution of the

source and target data are similar. In other words, assuming L tasks, the joint probability of each task

{P (X,Yi)}Li=1 are different but there is only a single distribution P (X) of the observation. When learning

the class conditional models {P (Yi|X, θi)}Li=1 for L tasks, it is assumed that the model parameters of

the individual tasks are drawn from a common prior distribution PΘ(θ).

Since domain adaptation considers only a single task but different domains, it is a somewhat different

problem than multitask learning. However, one can view domain adaptation as a special case of multitask

learning with two tasks, one on the source domain and the other on the target domain. In fact, some

domain adaptation methods are essentially solving transfer learning problems. We refer the readers to

[16] for a comprehensive survey on various transfer learning methods.

4) Semi-supervised Learning: The performance of a supervised classification algorithm is often depen-

dent on the availability of sufficient amount of training data. However, labeling samples is expensive and

time consuming due to the significant human effort involved. As a result, it is desirable to have methods

that learn a classifier with high accuracy from only a limited number of labeled training data. In semi-

supervised learning, unlabeled data is exploited to remedy the lack of labeled data. This in turn requires

that the unlabeled data comes from the same distribution as the labeled data. Hence, if we ignore the

domain difference, and treat the labeled source instances as labeled data and the unlabeled target domain

instances as unlabeled data, then the resulting problem is that of the semi-supervised learning problem.

As a result, one can apply any semi-supervised learning algorithm [9] to the domain adaptation problem.
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The subtle difference between domain adaptation and semi-supervised learning comes from the following

two facts [11]

• The amount of labeled data in semi-supervised learning is small but large in domain adaptation, and

• The labeled data may be noisy in domain adaptation if one does not assume Ps(Y |X = x) =

Pt(Y |X = x) for all x, whereas in semi-supervised learning the labeled data is assumed to be

reliable.

In fact, there have been several works in the literature that extend semi-supervised learning methods to

domain adaptation. A naive Bayes transfer classifier algorithm which allows for the training and test data

distributions to be different for text classification was proposed in [17]. This algorithm first estimates the

initial probabilities under a distribution of one labeled data set, and then uses an Expectation Maximization

(EM) algorithm to revise the model for a different distribution of the test data which are assumed to be

unlabeled. This EM-based domain adaptation method can be shown to be equivalent to a semi-supervised

EM algorithm [18]. Some of the other methods that extend domain adaptation using semi-supervised

learning include [19], [20].

5) Self-taught Learning: Another problem related to domain adaptation and semi-supervised learning is

self-taught learning [8], [21]. In self-taught learning, we are given limited data for a classification task and

also large amounts of unlabeled data that is only mildly related to the task. In particular, the unlabeled

data may not arise from the same distribution or share the class labels. This assumption essentially

differentiates self-taught learning from semi-supervised learning. Self-taught learning is motivated by the

observation that many randomly downloaded images contain basic visual features such as edges and

corners that are similar to those in the training images. As a result, if one is able to learn to recognize

such patterns from the unlabeled data, then these features can be used for the supervised learning task

of interest [8].

A sparse coding-based approach was proposed in [8] for self-taught learning, where a dictionary is

learned using unlabeled data. Then, higher level features are computed by solving a convex `1-regularized

least squares problem using the learned dictionary and the labeled training data. Finally, a classifier is

trained by applying a supervised learning algorithm such as an SVM on these higher level labeled features.

A discriminative version of this algorithm was also presented in [22]. Furthermore, an unsupervised self-

taught learning algorithm called self-taught clustering was proposed in [23]. Self-taught clustering aims at

clustering small collection of target unlabeled data with the help of a large amount of auxiliary unlabeled

data. It is assumed that the target and auxiliary data have different distribution. It was shown that this

algorithm can greatly outperform several state-of-the-art clustering methods when utilizing irrelevant
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unlabeled data.

6) Multiview Analysis: In many computer vision applications, data often comes in multiple views or

styles. For instance, in object recognition, one has to deal with objects in different poses (views) and

lighting conditions. As a result, one is faced with the problem of classifying or retrieving objects where

the source (gallery) and target (query) data belong to different views. A direct comparison of instances

across different views is not meaningful since they lie in different feature spaces.

In a multiview (also known as cross view or multi-modal) learning setting, correspondences are assumed

to be known between the two view samples. In other words, samples are often given in pairs corresponding

to different views. This assumption essentially differentiates cross view learning from domain adaptation,

where no correspondences are assumed between the domain samples. One popular solution in multiview

learning is to learn view-specific projection directions using the paired samples from different views

(domains) into a common latent space [10]. Classification or retrieval can then be performed in the latent

space where both the target and source data share the same feature space. Other methods for multiview

leaning include [24], [25], [26], [27], [28].

III. VISUAL DOMAIN ADAPTATION APPROACHES

Domain adaptation is a fundamental problem in machine learning and has gained a lot of traction in

natural language processing, statistics, machine learning and recently in computer vision. Early visual

domain adaptation methods were applied to domain shift in videos [29], [30]. In particular, Duan et

al. [30] proposed to adapt video concept classifiers between news videos collected from different news

channels. Since then, there have been a plethora of approaches proposed in the vision literature for object

category adaptation. In what follows, we present a number of recent domain adaptation strategies for

visual recognition.

A. Feature Augmentation-based Approaches

One of the simplest domain adaptation approaches is the feature augmentation work of DauméIII [31].

The goal is to make a domain specific copy of the original features for each domain. Each feature in

the original domain of dimension N is mapped onto an augmented space of dimension 3N simply by

duplicating the feature vectors. The augmented feature maps for the source and target domains are defined

as

Φs(xsi ) =


xsi

xsi

0N

 , Φt(xtli ) =


xtli

0N

xtli

 (2)
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where xsi ∈ S , xtli ∈ Tl, and 0N denotes a zero vector of dimension N . The first N -dimensional

component of this augmented feature corresponds to commonality between source and target, the second

N -dimensional component corresponds to the source while the last component corresponds to the target

domain. Both source and target domain features are transformed using these augmented feature map and

the resulting feature is passed onto the underlying supervised classifier. It was shown in [31] that when

linear classifiers are used, this feature augmentation method is equivalent to decomposing the model

parameter θi for domain i into θ̃i + θc, where θc is shared by all domains. This “frustratingly easy”

feature augmentation framework can be easily extended to a multi-domain case by making more copies

of the original feature space. Furthermore, a kernel version of this method is also derived in [31].

A feature augmentation-based method for utilizing the heterogeneous data from the source and target

domains was recently proposed in [32]. The approach taken in [32] is to introduce a common subspace

for the source and target data so that the heterogeneous features from two domains can be compared.

In particular, both the source and target data of dimension N and M , respectively are projected onto a

latent domain of dimension l using two projection matrices W1 ∈ Rl×N and W2 ∈ Rl×M , respectively.

The augmented feature maps for the source and target domains in the common space are then defined as

Φs(xsi ) =


W1x

s
i

xsi

0M

 ∈ Rl+N+M , (3)

Φt(xtli ) =


W2x

tl
i

0N

xtli

 ∈ Rl+N+M , (4)

where xsi ∈ S, xtli ∈ Tl, and 0M is an M -dimensional zero vector. Once, the data from both domains are

transformed onto a common space, they can be readily passed onto a supervised classifier [32]. Fig. 2

illustrates an overview of this method.

The general idea behind “frustratingly easy” feature augmentation method of DauméIII [31] has

been extended to consider a manifold of intermediate domains [33], [34]. Manifold-based methods for

unsupervised visual domain adaptation were first proposed by Gopalan et al. in [33]. Rather than working

with the information conveyed by the source and target domains alone, [33] proposes to use incremental

learning by gradually following the geodesic path between the source and target domains. Geodesic flows

are used to derive intermediate subspaces that interpolate between the source and target domains. Fig. 3

shown an overview of this method.
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Fig. 2: By using two projection matrices W1 and W2, one can transform the heterogeneous samples

from two domains into an augmented feature space [32].

It is assumed that the dimension of features in both the source and target domains is the same, e.g.

N = M . First, PCA is applied on S and Tu, which generates two l-dimensional subspaces dented by two

matrices S1 and S2, respectively, where l < N . The space of l-dimensional subspaces in RN containing

origin can be identified with the Grassmann manifold GN,l. As a result, S1 and S2 can be viewed as

points on GN,l. By viewing GN,l as quotient space of SO(N),1 the geodesic path in GN,l starting from

S1 is given by a one-parameter exponential flow Ψ(t′) = Q exp(t′B)J, where exp refers to the matrix

exponential, Q ∈ SO(N) such that QTS1 = J and J =

 Il

0N−l,l

. Here, Il is a l × l identity matrix

and B is a skew-symmetric, block-diagonal matrix of the form B =

 0 AT

−A 0

, A ∈ R(N−l)×l,

where (.)T denotes the transposition operation and the sub-matrix A specifies the direction and the speed

of geodesic flow. The geodesic flow between S1 and S2 is obtained by computing the direction matrix A

such that the geodesic along that direction, while starting from S1, reaches S2 in unit time. The matrix

A is computed using the inverse exponential mapping. Once A is computed, the expression for Ψ(t′) is

used to obtain the intermediate subspaces between S1 and S2 by varying the value of t′ between 0 and

1.

Let S′ be the collection of subspaces St, t ∈ R, 1 ≤ t ≤ 2, which includes S1 and S2 and all

intermediate subspaces. Let k denote the total number of such subspaces. The intermediate cross-domain

data representations U is obtained by projecting the source data S and the target data Tu onto S′. The

1Here, SO(N) represents the special orthogonal group which is the group of orthogonal N ×N matrices with determinant

1.
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Fig. 3: An overview of the manifold-based unsupervised domain adaptation method [33]. With labeled

data S from source domain corresponding to two classes + and ×, and unlabeled data Tu from target

domain belonging to class ×, generative subspaces S1 and S2 are derived using PCA. Then, by viewing S1

and S2 as points on the Grassmann manifold GN,l (green and red dots), points along the geodesic between

them (dashed line) are sampled to obtain geometrically meaningful intermediate subspaces (yellow dots).

final feature representation of dimension lk is obtained by projecting data onto k different subspaces. A

model on these extended features is learned using PLS and the assignment of target labels is performed

using the nearest neighbor method [33]. A non-linear version of this method, as well as extension to

semi-supervised domain adaptation have also been presented in [34]. Furthermore, assuming that the

domain to which samples belong to has been identified a priori [35], [36] this method has been extended

to multi-domain adaptation in [34].

Recently, the approach of [33] was kernelized and extended to the infinite case, defining a new kernel

equivalent to integrating over all common subspaces that lie on the geodesic flow connecting the source

and target subspaces S1 and S2, respectively [37], [38], [39]. Furthermore, assuming that the data lies

in a union of subspaces in both source and target domains, a framework based on the parallel transport

of union of the source subspaces on the Grassmann manifold was proposed in [40]. It was shown that

this way of modeling data with union of subspaces instead of a single subspace significantly improves

the recognition performance [40].

B. Feature Transformation-based Approaches

One of the earliest object category adaptation methods was proposed by Saenko et al. in [41]. The

idea behind this method is to adapt features across general image domains by learning transformations.

Given feature vectors xs ∈ S and xt ∈ T , a linear transformation W ∈ RN×M from T to S is learned.
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The inner product similarity function between xs and the transformed xt is denoted by

simW = (xs)TWxt. (5)

One can view this function as an inner product between the transformed target point Wxt and xs. The

objective is to learn the linear transformation given some form of supervision, and then to utilize the

learned similarity function in a classification algorithm [41]. A regularization function for the matrix W

is introduced to avoid over-fitting, which is denoted as r(W). Assume that the supervision is a function

of the learned similarity values simW, so a general optimization problem would seek to minimize the

regularizer subject to supervision constraints given by functions ci :

min
W

r(W) s.t. ci(S
TWT) ≥ 0, 1 ≤ i ≤ J. (6)

The above problem (6) can be written as an unconstrained problem

min
W

r(W) + λ
∑
i

ci(S
TWT). (7)

The regularizer studied in [41] is

r(W) = trace(W)− log det(W) (8)

and the resulting optimization problem is solved using an information-theoretic metric learning (ITML)

[42] type of algorithm. One of the limitations of this method is that it can only be applied when the

dimensionalities of the two domains are the same (e.g. N = M ).

This work was extended in [43] by Kulis et al. to the more general case where the domains are not

restricted to be the same dimensionality and arbitrary asymmetric transformations can be learned. Their

method can deal with more general types of domains shift and changes in feature type and dimension.

Furthermore, they show that the method in [41] is a special case of their general formulation, producing

symmetric positive definite transformations [43]. It was shown that asymmetric indefinite transformations

are more flexible for a variety of adaptation tasks than the symmetric transformations.

Recently, a low-rank approximation based approach for semi-supervised domain adaptation was pro-

posed in [44]. The basic goal of this method is to map the source data by a matrix W ∈ RN×N to an

intermediate representation where each transformed sample can be reconstructed by a linear combination

of the target data samples

WS = TlZ, (9)
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where Z ∈ RNtl×Ns is the coefficient matrix. The following formulation is proposed to solve for the

low-rank solution

(Ŵ, Ẑ, Ê) = min
W,Z,E

rank(Z) + λ‖E‖2,1,

s.t. WS = TlZ + E, WWT = I, (10)

where rank(.) denotes the rank of a matrix, λ is a parameter, E ∈ RN×Ns is the error term and the `2,1-

norm is defined as ‖E‖2,1 =
∑N

i=1

√∑Ns

j=1E
2
ij . Since the rank minimization problem (10) is NP-hard,

the rank constraint is relaxed by the nuclear norm constraint [44]. The Augmented Lagrange Multiplier

(ALM) method is proposed to solve the optimization problem.

Once the solution (Ŵ, Ẑ, Ê) is obtained, the source data is transformed to the target domain as

ŴS− Ê. (11)

The transformed source data are mixed with the target samples as the augmented training samples for

training the classifiers. The trained classifier is then used to perform recognition on the unseen test

samples in the target domain [44]. Extension of this method for the multiple source domain adaptation

problem has also been proposed in [44].

Other recent transformation-based visual domain adaptation methods include [45] and [46].

C. Parameter Adaptation Methods

Several algorithms have been proposed in the literature that investigate modifying the Support Vector

Machine (SVM) algorithms for the domain adaptation problem. In particular, Yang et al. proposed an

Adaptive SVM (A-SVM) [29] method in which the source classifier fS(x) trained on the source data

S = {(xsi , ysi )}
Ns

i=1, is adapted to a new classifier fT (x) for the unseen target data Tu = {xtui }
Ntu

i=1 . The

decision function is formulated as

fT (x) = fS(x) + δf(x), (12)

where δf(x) is the perturbation function. In was shown in [29] that the perturbation function can be

formulated as δf(x) = θTφ(x), where a feature map φ is used to project x into a high-dimensional feature

vector φ(x). The perturbation function δf(x) is learned using the labeled data Tl = {(xtli , ytli )}Ntl

i=1 from

the target domain. To learn the parameter w of the perturbation function δf(x), the following optimization
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problem is solved

min
θ

1

2
‖θ‖2 + α

Ntl∑
i=1

ξi

s.t. ξi ≥ 0,

ytli fS(xtli ) + ytli θ
Tφ(xtli ) ≥ 1− ξi, ∀(xtli , ytli ) ∈ Tl, (13)

where ξi is the penalizing variable and α is a parameter that determines how much error an SVM can

tolerate. The first term in (13) tries to minimize the deviation between the new decision boundary and

the old one, and the second term controls the penalty of the classification error over the training data in

the target domain.

This work was improved in [47] for object category detection and in [48] for visual concept classifica-

tion. Domain transfer SVM [49] attempts to reduce the mismatch in the domain distributions, measured

by the maximum mean discrepancy, while also learning a target decision function. Other SVM-based

domain adaptation methods include [50], [51], [52], [53], [54].

As discussed in previous sections, several domain adaptation methods make use of the kernel methods.

The classification performance of these kernel-based methods is highly dependent on the choice of the

kernel. Multiple Kernel Learning (MKL) can be used to combine multiple kernel functions to obtained

a better solution [55]. Multiple kernel leaning has been shown to work well in many computer vision

applications. However, these methods assume that both training and test data come from the same domain.

As a result, MKL methods cannot learn the optimal kernel with the combined data from the source and

target domains for the domain adaptation problem. Hence, training data from the auxiliary domain may

degrade the performance of MKL algorithms in the target domain. To deal with this, several cross domain

kernel learning methods have been proposed in the literature [56], [57], [58].

In [56], adaptive multiple kernel learning is utilized to learn a kernel function based on multiple base

kernels. In [57], a kernel function and a classifier are simultaneously learned by minimizing both the

structural risk functional and the distribution mismatch between the labeled and unlabeled samples from

the auxiliary and target domains. It was shown in [56], [57] that these domain adaptive MKL methods

can significantly outperform traditional MKL and cross-domain learning methods.

There are some limitations of the feature-based and parameter transfer-based visual domain adaptation

methods reviewed in this survey. For instance, the transform-based approaches discussed in [41], [43],

[45], [46] are based on some notion of closeness between the transformed source samples and target

samples. They do not optimize the objective function of a discriminative classifier directly. Also, the
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computational complexity of these methods is highly dependent on the total number of samples used

for training. On the other hand, parameter adaptation-based methods such as [29], [48] optimize the

classifier directly but they are not able to transfer the adapted function to novel categories. To deal with

this problem, several methods have been developed in the literature that attempt to optimize both the

transformation and classifier parameters jointly [59], [60], [61].

In particular, Max-Margin Domain Transfer (MMDT) method was recently proposed by Hoffman et

al. in [60] which uses an asymmetric transform W to map target features to a new representation where

they are maximally aligned with the source and learns the transform jointly on all categories for which

target labels are available. It provides a way to adapt max-margin classifiers in a multi-class setting, by

learning a common component of the domain shift as captured by W.

The goal of this method is to jointly learn affine hyperplanes that separate the classes in the source

domain and a transformation from the points in the target domain into the source domain, such that the

transformed target data lie on the correct side of the learned source hyperplanes. For simplicity, let us

consider the optimization for the binary problem [60]

min
W,θ,b

1

2
‖W‖2F +

1

2
‖θ‖2F

s.t ysi


 xsi

1

T  θ

b


 ≥ 1 ∀i ∈ {1, · · · , Ns}

ytli


 xtli

1

T WT

 θ

b


 ≥ 1 ∀i ∈ {1, · · · , Ntl}, (14)

where θ denotes the normal of the affine hyperplane and b is the bias term. This formulation can be easily

extended to the multi-class case by adding a sum over the regularizers on all class-specifics parameters

and adding the constraints for all categories. The resulting optimization problem is not convex. As a

result, it is solved by alternating minimization on W and (θ, b) [60]. This work was extended in [61] to

include Laplacian regularization using instance constraints that are encoded by an arbitrary graph.

Another approach to simultaneous learning of domain-invariant features and classifiers was proposed

by Shi and Sha in [59]. Their framework is based on the notion of discriminative clustering in which

both the source and target domains are assumed to be tightly clustered and clusters are assumed to

correspond to class boundaries. It is assumed that for the same class, the clusters from the two domains

are geometrically close to each other. Their formulation of learning the optimal feature space is based on

maximizing the domain similarity that makes the source and the target domains look alike and minimizing
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the expected classification error on the target domain. An information theoretic framework is proposed

for solving their formulation [59].

D. Dictionary-based Approaches

The study of sparse representation of signals and images has attracted tremendous interest over the last

few years. This is partly due to the fact that signals or images of interest, though high dimensional, can

often be coded using few representative atoms in some dictionary. Olshausen and Field in their seminal

work [62] introduced the idea of learning dictionary from data instead of using off-the-shelf bases. Since

then, data-driven dictionaries have been shown to work well for both image restoration and classification

tasks [63], [64]. The efficiency of dictionaries in these wide range of applications can be attributed to the

robust discriminant representations that they provide by adapting to particular data samples. However,

the learned dictionary may not be optimal if the target data has different distribution than the data used

for training. Several dictionary learning-based methods have been proposed in the literature to deal with

this domain shift problem [65], [66], [67], [68].

A function learning framework for the task of transforming a dictionary learned from one visual

domain to the other, while maintaining a domain-invariant sparse representation of a signal was proposed

in [65]. Domain dictionaries are modeled by a linear or non-linear parametric function. The dictionary

function parameters and domain-invariant sparse codes are then jointly learned by solving an optimization

problem. Motivated by the manifold-based incremental learning work of Gopalan et al. [33], [34], Ni et

al. [67] proposed an unsupervised domain adaptive dictionary learning framework by generating a set of

intermediate dictionaries which smoothly connect the source and target domains. One of the important

properties of this approach is that it allows the synthesis of data associated with the intermediate domains

while exploiting the discriminative power of generative dictionaries. The intermediate data can then be

used to build a classifier for recognition under domain shifts.

In [66] Shekhar et al. proposed a semi-supervised domain adaptive dictionary learning framework for

learning a single dictionary to optimally represent both source and target data. As the features may not be

correlated well in the original space, they propose to project data from both the domains onto a common

low-dimensional space while maintaining the manifold structure of the data. They argue that learning

the dictionary on a low-dimensional space makes the algorithm faster and irrelevant information in the

original features can be discarded. Moreover, joint learning of dictionary and projections ensures that the

common internal structure of data in both the domains is extracted, which can be represented well by

sparse linear combinations of dictionary atoms. Fig. 4 shown an overview of this method [66].
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Fig. 4: Overview of the domain adaptive latent space dictionary learning framework [66].

Given source and target domain data S ∈ RN×Ns and Tl ∈ RM×Ntl , respectively, Shekhar et al. learn

a shared K atom dictionary, D ∈ Rl×K and mappings W1 ∈ Rl×N and W2 ∈ Rl×M onto a common

low-dimensional space, which will minimize the representation error in the projected space. Formally,

the following cost is minimized

C1(D,W1,W2,X1,X2) = ‖W1S−DX1‖2F+

‖W2Tl −DX2‖2F

subject to sparsity constraints on X1 ∈ RK×Ns and X2 ∈ RK×Ntl . It is assumed that rows of the

projection matrices, W1 and W2 are orthogonal and normalized to unit-norm. This prevents the solution

from becoming degenerate, leads to an efficient scheme for optimization and makes the kernelization of

the algorithm possible. Note that this method does not require the data to be of same dimension in source

and target domains. As a result, this method is applicable to heterogeneous domain adaptation problems

[32].

In order to make sure that the projections do not lose too much information available in the original

domains after projecting onto the latent space, a PCA-like regularization term is added which preserves

energy in the original signal, given as

C2(W1,W2) = ‖S−WT
1 W1S‖2F+

‖Tl −WT
2 W2Tl‖2F .
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It is easy to show that the costs C1 and C2, after ignoring the constant terms in Y, can be written as

C1(D,W̃, X̃) = ‖W̃Ỹ −DX̃‖2F , (15)

C2(W̃) = −trace((W̃Ỹ)(W̃Ỹ)T ) (16)

where,

W̃ = [W1 W2], Ỹ =

 S 0

0 Tl

 , and X̃ = [X1 X2].

Hence, the overall optimization is given as

{D∗,W̃∗, X̃∗} = argmin
D,W̃,X̃

C1(D,W̃, X̃) + λC2(W̃)

s.t. WiW
T
i = I, i = 1, 2 and ‖x̃j‖0 ≤ T0,∀j (17)

where, λ is a positive constant. An efficient two-step procedure is proposed for solving this optimization

problem in [66]. Furthermore, this method has been extended to multiple domains and kernelized in [66].

Once the projection matrices and the dictionary are learned, given a novel test sample form the target

domain, it is first projected onto the latent domain using W2 and classified using a variation of the Latent

Sparse Embedding Residual Classier (LASERC) algorithm proposed in [69].

E. Domain Resampling

An unsupervised domain adaptation method was recently proposed in [70], [71] based on the notion

of landmarks. Landmarks are a subset of labeled data instances in the source domain that are distributed

most similarly to the target domain [70]. The key insight of their method is that not all instances are

created equally for adaptation. As a result, they pick out and exploit the most desirable instances to

facilitate adaptation. An overview of this method is shown in Fig. 5.

A variant of Maximum Mean Discrepancy (MMD) is used to select samples from the source domain

to match the distribution of the target domain. To identify landmarks, Ns indicator variables α = {αi ∈

{0, 1}} are used, one for each data point in the source domain. If αi = 1, then xsi is regarded as a

landmark. The vector α is identified by minimizing the MMD metric, defined with a kernel mapping

function φ(x),

min
α

∥∥∥∥∥∥ 1∑
i αi

∑
i

αiφ(xsi )−
1

Ntu

∑
j

φ(xtuj )

∥∥∥∥∥∥
2

H

s.t.
1∑
i αi

∑
i

αiyic =
1

Ns

∑
i

yic, (18)
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Fig. 5: An overview of the landmark-based method proposed in [70]. (a) The original domain adaptation

problem where instances in red are from the target and in blue from the source. (b) Landmarks, shown

inside the green circles, are data instances from the source that can be regarded as samples from the target.

(c) Multiple auxiliary tasks are created by augmenting the original target with landmarks, which switches

their color from blue to red. Each task gives rise to a new feature representation. These representations are

combined discriminatively to form domain-invariant features for the original domain adaptation problem

[70].

where yic is the indicator variable for yic = c. The right hand side of the constraint is simply the prior

probability of the class c, estimated from the source domain.

The geodesic flow kernel computed between the source S and the target Tu is used to compose the

kernel mapping function φ(x) [70]

φ(xi)
Tφ(xj) = K(xi,xj)

= exp{−(xi − xj)
TG(xi − xj)/σ

2}, (19)

where G is computed using the singular value decomposition of ST1 S2. Here, S1 and S2 are the matrices

obtained by applying PCA on S and Tu, respectively [37].

A set of factors {σi ∈ [σmin, σmax]}Qi=1 is used to select the scale factor σ in (19). For each σi, (18)

is solved to obtain the corresponding landmarks Li whose αi is equal to 1. For each set of landmarks, a

new domain pari is constructed by moving the landmarks from the original source to the target domains.

It was argued that each auxiliary task is easier to adapt than the original pair S and Tu [70].

The final kernel is then learned as a convex combination of all the kernels from the auxiliary tasks

F =
∑
i

βiGi s.t. βi ≥ 0 and
∑
i

βi = 1. (20)

October 1, 2014 DRAFT



20

The coefficients βi are optimized on a labeled training set
∑

i Li composed of all landmarks selected

at different granularities. Finally, F is used in a SVM classifier whose accuracy is optimized with the

standard MKL algorithm to learn βi [70], [71]. Since
∑

i Li consists of landmarks that are distributed

similarly to the target, it is expected that the classification error on
∑

i Li to be a good proxy to that of

the target domain [70].

F. Other Methods

Deep neural networks have had tremendous success achieving state-of-the-art performance on a number

of machine learning and computer vision tasks [72]. This is due in part to the fact that deep networks are

able to learn extremely powerful hierarchical non-linear representations of the inputs [73], [74]. Motivated

by recent works on deep learning, several hierarchical domain adaptation approaches have been proposed

in the literature [75], [76]. [77], [78], [79].

In [78], multiple intermediate representations are explored along an interpolating path between the

target and source domains. Starting with all the source data samples S, intermediate sampled datasets are

generated. For each successive dataset, the proportion of samples randomly drawn from T is increased

and the proportion of samples drawn from S is decreased. Let i ∈ [1, · · · , k] be an index set over k

intermediate datasets. Then, Si = S for i = 1, Si = T for i = k. For i ∈ [2, · · · , k − 1], datasets Si and

Si+1 are created in a way so that the proportion of samples from T in Si is less than in Si+1. Each of

these datasets can be thought of as a single point on a particular kind of interpolating path between S

and T .

For each intermediate dataset Si, a deep non-linear feature extractor is trained. Once feature extractors

corresponding to all points on the path are trained, any input sample can be represented by concatenating

all the outputs from the feature extractors together to create path features for the input. The hope is that

this path representation will be more effective at domain adaptation because it is constructed to capture

information about incremental changes between the source and target domains similar to [33], [37]. After

creating the path representation of the inputs, a classifier is trained on the data generated from the source

domain data by minimizing an appropriate loss function [78].

Another recent work for visual domain adaptation using hierarchical networks was recently proposed

by Nguyen et al. in [77]. Their method jointly learns a hierarchy of features together with transformations

that address the mismatch between different domains. This method was motivated by [80] in which multi-

layer sparse coding networks are proposed for building feature hierarchies layer by layer using sparse

codes and spatial pooling. Fig. 6 shows an overview of the sparse hierarchical domain adaptation method
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[77]. The network contains multiple layers, each of which contains 3 sub-layers. The first sub-layer

performs contrast-normalization and dimensionality reduction on the input data. Sparse coding is carried

out in the second sub-layer. In the final sub-layer, adjacent features are max-pooled together to produce a

new features. Output from one layer becomes the input to the next layer. This method can be viewed as

a generalization of the domain adaptive dictionary learning framework [66] using hierarchical networks.

Extension of this method to multiple source domains has also been presented in [77].

Fig. 6: An illustration of Domain Adaptation using a Sparse and Hierarchical Network (DASH-N)

algorithm [77]. The source domain is RGB images and the target domain is halftone images. First,

images are divided into small overlapping patches. These patches are vectorized while maintaining their

spatial arrangements. (a) Performing contrast-normalization and dimensionality reduction using PS for

source images and PT for target images. The circular feedbacks between PS and PT indicate that these

two transformations are learned jointly. (b) Otaining sparse codes using the common dictionary D1. (c)

Performing max pooling. The process then repeats for layer 2 (d & e), except that the input is the sparse

codes from layer 1 instead of pixel intensities. At the final stage, spatial pyramid with max pooling are

used to create image descriptors. Classification is done using linear support vector machine.

Visual attributes are human understandable properties to describe images such as blue, dark, two-legged.

They are valuable as a semantic cue in various vision problems. Recent research explores a variety of

applications for visual attributes including face verification [81], object recognition [82], [83], [84] and

facilitating transfer learning [85]. Existing methods [85], [82], [84] assume that one model of an attribute

is sufficient to capture all user perceptions. However, there are some real perceptual differences between

annotators. Consider the example shown in Fig. 7, five users confidently declared the shoe on the left

is formal, while five confidently declared the opposite. These differences stem from several factors such
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as the words for attributes are imprecise, their meaning often depends on context and culture and they

often stretch to refer to quite distinct object categories [86].

(a) (b)

Fig. 7: Virtual attribute interpretations vary slightly from viewer to viewer. For instance, five viewers

confidently declare the shoe as formal (a) or more ornamented (b), while five others confidently declare

the opposite. Attribute adaptation models are proposed to take these differences in perception into account

[86].

In order to capture the inherent differences in perception, [86] proposes to model attributes in a user-

specific way. In particular, attribute learning is posed as an adaptation problem. First, they leverage any

commonalities in perception to learn a generic prediction function using a large margin learning algorithm

and data labeled with majority vote from multiple annotators. Then, they use a small number of user-

labeled examples to adapt the parameters of the generic model into a user-specific prediction function,

while not straying too far from the prior generic model. Essentially this amounts to imposing regularizers

on the learning objective favoring user-specific model parameters that are similar to the generic ones,

while still satisfying the user-specific label constraints [86]. The impact of this attribute adaptation work

is that one can capture a user’s perception with minimal annotation effort. It was shown that the resulting

personalization can make attribute-based image search more accurate [86].

Tommasi and Caputo [87] very recently proposed a Naive Bayes Nearest Neighbor (NBNN)-based

domain adaptation method that iteratively learns a Mahalanobis class specific metric, while inducing for

each sample a large margin separation among classes. Both semi-supervised and unsupervised domain

adaptation scenarios are presented.

In [88] Jain and Farfade proposed an approach for adapting a cascade of classifiers to perform

classification in a similar domain for which only a few positive examples are available. A cascade

of classifiers is a classifier f that is composed of m stage classifiers {f1, · · · , fm} that are applied in a

sequential manner. They are commonly used for anomaly detection and one-class classification. It was

shown that by adapting adapting classification cascades to new domains one can obtain huge gains in

performance in detecting faces of human babies and human-like characters from movies.

October 1, 2014 DRAFT



23

IV. APPLICATIONS

In this section, we illustrate through different application examples the use and capabilities of various

visual domain adaptation methods. In particular, we focus on object recognition and face recognition

applications.

A. Face Recognition

Face recognition is a challenging problem that has been actively researched for over two decades [89].

Current systems work very well when training and test images are captured under controlled conditions.

However, their performance degrades significantly when the test images contain variations that are not

present in the training images. One of these variations is change in pose. Along with the frontal images

with different illumination (source images), if we are also given a few images at different poses (target

images), then the resulting face recognition problem can be viewed a domain adaptation problem [66],

[65], [90].

Face recognition experiments were conducted on the CMU Multi-PIE dataset [91] with images of

129 subjects in frontal pose as the source domain, and five other off-frontal poses as the target domain.

Images under five illumination conditions across source and target domains were used for training with

which images from remaining 15 illumination conditions in the target domain were recognized. Results

provided in Table I show that the dictionary-based adaptation method [66] compares favorably with some

of the recently proposed multi-view recognition algorithms [10] as well as many other non-adaptation

techniques, and gives the best performance on average. Note that the discriminative dictionary learning

algorithm, FDDL [92] does not provide the best results here as it is not able to efficiently represent the

non-linear changes introduced by the pose variation.

Furthermore, the learned dictionaries were also used for pose alignment where the goal is to align

faces from one pose to a different pose. This is a challenging problem since actual pose variations are

three dimensional whereas the image evidence one has is two dimensional. Sample results are shown

in Figure 8. One of the interesting features of the dictionary-based adaptation methods is that they

allow the synthesis of data associated with different domains while exploiting the generative power of

dictionary-based representations. This is essentially what is highlighted in the last two rows of Figure 8.

The dictionary-based method is robust at high levels of noise and missing pixels. It produces denoised

and inpainted synthesized images. Additional results on various face recognition tasks using domain

adaptation can be found in [65] and [67].
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Method
Probe pose

Average
15o 30o 45o 60o 75o

PCA 15.3 5.3 6.5 3.6 2.6 6.7

PLS [27] 39.3 40.5 41.6 41.1 38.7 40.2

LDA 98.0 94.2 91.7 84.9 79.0 89.5

CCA [27] 92.1 89.7 88.0 86.1 83.0 83.5

GMLDA [10] 99.7 99.2 98.6 94.9 95.4 97.6

FDDL [92] 96.8 90.6 94.4 91.4 90.5 92.7

SDDL [66] 98.4 98.2 98.9 99.1 98.8 98.7

TABLE I: Comparison of various algorithms for face recognition across pose [66].

Fig. 8: Examples of pose-aligned images. Synthesis in various conditions demonstrate the robustness of

the domain adaptive dictionary learning method [66].

B. Object Recognition

In this section, we compare the performance of various visual domain adaptation methods on a

benchmark object recognition dataset which was introduced in [41]. The dataset consists of images from

three sources: Amazon (consumer images from online merchant sites), DSLR (images by DSLR camera)

and Webcam (low quality images from webcams). In addition, algorithms are tested on the Caltech-256
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dataset [93], taking it as the fourth domain. Fig. 9 shows sample images from these datasets, and clearly

highlights the differences between them.

Fig. 9: Example images from KEYBOARD and BACK-PACK categories in Caltech-256, Amazon,

Webcam and DSLR. Caltech-256 and Amazon datasets have diverse images, Webcam and DSLR are

similar datasets with mostly images from offices [66].

Three set-ups are followed for comparing the performance of various algorithms. In the first set-

up, 10 classes: BACKPACK, TOURING-BIKE, CALCULATOR, HEADPHONES, COMPUTER- KEYBOARD,

LAPTOP-101, COMPUTER- MONITOR, COMPUTER-MOUSE, COFFEE- MUG, AND VIDEO- PROJECTOR,

common to all the four datasets are used. In this case, there are a total of 2533 images. Each category

has 8 to 151 images in a dataset. In the second set-up, all 31 classes from Amazon, Webcam and DSLR

are used to evaluate various algorithms. Finally, in the third set-up, methods for adaptation are evaluated

using multiple domains. In this case, the first dataset is used and methods are tested on all the 31 classes

in it. For both the cases, we use 20 training samples per class for Amazon/Caltech, and 8 samples per

class for DSLR/Webcam when used as source, and 3 training samples for all of them when used for

target domain. Rest of the data in the target domain is used for testing. The experiment is run multiple

times for random train/test splits and the result is averaged over all the runs. For the unsupervised case,

the same setting as semi-supervised adaptation described above is followed but without using any labeled
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data from the target domain2.

1) Semi-supervised Adaptation Results using Single Source: The semi-supervised adaptation recogni-

tion results of different algorithms on 8 pairs of source-target domains and on all 31 classes are shown

in Table II and Table III, respectively. Baseline results obtained using the Hierarchical Matching Pursuit

(HMP) method [80] as well as the Fisher Discrimination Dictionary Learning (FDDL) method [92] which

learn the dictionaries separately for the source and target domains without performing domain adaptation

are also included.

Methods C → A C → D A → C A → W W → C W → A D → A D → W

Metric [41] 33.7± 0.8 35.0± 1.1 27.3± 0.7 36.0± 1.0 21.7± 0.5 32.3± 0.8 30.3± 0.8 55.6± 0.7

SGF [33] 40.2± 0.7 36.6± 0.8 37.7± 0.5 37.9± 0.7 29.2± 0.7 38.2± 0.6 39.2± 0.7 69.5± 0.9

GFK [37] 46.1± 0.6 55.0± 0.9 39.6± 0.4 56.9± 1.0 32.8± 0.1 46.2± 0.6 46.2± 0.6 80.2± 0.4

FDDL [92] 39.3± 2.9 55.0± 2.8 24.3± 2.2 50.4± 3.5 22.9± 2.6 41.1± 2.6 36.7± 2.5 65.9± 4.9

HMP [80] 67.7± 2.3 70.2± 5.1 51.7± 4.3 70.0± 4.2 46.8± 2.1 61.5± 3.8 64.7± 2.0 76.0± 4.0

SDDL [66] 49.5± 2.6 76.7± 3.9 27.4± 2.4 72.0± 4.8 29.7± 1.9 49.4± 2.1 48.9± 3.8 72.6± 2.1

DASH-N [77] 71.6± 2.2 81.4± 3.5 54.9± 1.8 75.5± 4.2 50.2± 3.3 70.4± 3.2 68.9± 2.9 77.1± 2.8

TABLE II: Semi-supervised domain adaptation results of different approaches on four domains with 10

common classes (C: Caltech, A: Amazon, D: DSLR, W: Webcam).

Compared to the metric learning-based approach [41], manifold-based feature concatenation methods

[33], [37] provide better results. This makes sense because by finding intermediate domain representations

one is able to learn a feature vector that is more robust than a feature vector that results by learning a

single transformation that minimizes the effect of the domain shift. The SDDL method can be viewed

as an extension of the FDDL method which simultaneously learns discriminative dictionaries on a latent

space where both the source and the target data are forced to have similar sparse representation. As a

result, one can clearly see the performance gain of the SDDL method over the FDDL method as well as

the manifold-based methods in Table II and Table III.

The HMP method [80] builds a feature hierarchy layer by layer using an efficient matching pursuit

encoder. It consists of three main components: batch tree orthogonal matching pursuit, spatial pyramid

matching, and contrast normalization. As a results, it is robust to some of the variations present in the

images such as illumination changes, pose variations and resolution variations. The DASH-N method

2Several recent methods explore both source and target data at once in a transductive manner rather than splitting the datasets

into multiple training/testing partitions. See [70] for details on the evaluation protocol using this setting.
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essentially extends the SDDL and HMP methods by learning features directly from data for domain

adaptation. As a result, it provides more robust and discriminative representation of the data and performs

the best on this dataset on both settings. The dictionary learning-based methods [92], [80] essentially

find the common internal structure of the data. They inherently have the denoising capability and provide

robust representation of the data. This is one of the reasons why in some cases the FDDL and the HMP

methods provide better results than metric learning and manifold-based methods.

Method A → W D → W W → D

Metric [41] 44 31 27

RDALR [44] 50.7± 0.8 36.9± 19.9 32.9± 1.2

SGF [33] 57± 3.5 36± 1.1 37± 2.3

GFK [37] 46.4± 0.5 61.3± 0.4 66.3± 0.4

HMP [80] 55.7± 2.5 50.5± 2.7 56.8± 2.6

SDDL [66] 50.1± 2.5 51.2± 2.1 50.6± 2.6

DASH-N [77] 60.6± 3.5 67.9± 1.1 71.1± 1.7

TABLE III: Single-source semi-supervised domain adaptation results on all 31 classes.

2) Semi-supervised Adaptation Results using Multiple Sources: As some of the methods reviewed

in this paper can also handle multiple domains, we report results of different algorithms on multiple-

source adaption. Table IV shows the results for three possible combinations. Again, the sparse hierarchical

network-based adaptation method [77] performs the best. Incremental learning motivated manifold method

[34] also provides good results on multi-domain adaptation using this dataset. It is interesting to see that

increasing the number of domains can be helpful, especially when compared to a single source and single

target. Many multi-domain adaptation methods in Table IV outperform a single source and a single target

in many cases, though in a small number of cases they do not outperform a single source and a single

target. As a result, a better strategy to deal with multiple domains is required in these cases.

Source Target SGF [34] SGF [33] RDALR [44] FDDL [92] SDDL [66] A-SVM [29] HMP [80] DASH-N [77]

dslr, amazon webcam 64.5± 0.3 52± 2.5 36.9± 1.1 41.0± 2.4 57.8± 2.4 30.4± 0.6 47.2± 1.9 64.5± 2.3

amazon, webcam dslr 51.3± 0.7 39± 1.1 31.2± 1.3 38.4± 3.4 56.7± 2.3 25.3± 1.1 51.3± 1.4 68.6± 3.7

webcam, dslr amazon 38.4± 1.0 28± 0.8 20.9± 0.9 19.0± 1.2 24.1± 1.6 17.3± 0.9 37.3± 1.4 41.8± 1.1

TABLE IV: Multiple-source domain adaptation results of various methods on the Amazon, Webcam and

DSLR datasets.

October 1, 2014 DRAFT



28

3) Unsupervised Domain Adaptation Results: Results on three source-target combinations of the

Amazon, DSLR, Webcam datasets are shown in Table V. The manifold-based approach [34] outperforms

the existing unsupervised domain adaptation methods in two of the three source-target combinations.

Information theoretic learning method [59] for unsupervised domain adaptation also performs well on

this dataset. By comparing results in Tables II and III, with results in Table V, we see that the semi-

supervised adaptation results are in general better than the unsupervised case. Using labels in both

intermediate data generation and classification stage generally produces better results than using labels

only during classification [34]. Also, it is interesting to see that since the introduction of this dataset in

[41], the recognition performance has significantly improved in the last few years.

Source Target SGF [34] SGF [33] RDALR [44] GFK [37] ITLUDA [59]

webcam dslr 71.2 19± 1.2 32.89± 1.2 49.7± 0.5 -

dslr webcam 68.8 26± 0.8 36.85± 1.9 44.6± 0.3 83.6± 0.5

Amazon webcam 55.6 39± 2.0 50.71± 0.8 15± 0.4 38.5± 1.3

TABLE V: Unsupervised domain adaptation results of various methods on the Amazon, Webcam and

DSLR datasets.

C. Computational Complexity

The main processing steps involved in manifold-based adaptation techniques [33], [37], [34] are

computing the geodesic between the source and target domains, and then sampling points along the

geodesic to infer intermediate domains that account for the domain shift. This involves mapping entities

on the manifold to the locally Euclidean tangent plane, and warping the results from the tangent plane

back onto the manifold. Computationally efficient algorithms for these steps have been discussed in the

literature for Grassmann manifolds [94]. For orthogonal matrices of dimensions N1 ×N2, the geodesic

computation has a complexity of O(N2
1N2) along with an O(N1N2) cost for sampling each point along

the geodesic.

For deep learning approaches [77], [78], the complexity depends, among others, on the number of

layers used in the hierarchy to learn feature correlation for adaptation. While the deep network circuits

can have different architectures such as auto-encoders and restricted Boltzmann machines, there is an

active stream of work in making the training procedure of these circuits computationally tractable. See

[72] for more detailed discussion on the complexity of deep architectures.
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Major computational heavy step of dictionary-based domain adaptation methods is dominated by

sparse coding. Efficient batch methods have been proposed to learn dictionaries for large scale problems.

For instance, a batch orthogonal matching pursuit-based KSVD algorithm for learning dictionaries was

proposed in [95]. It was shown that the operation count per training iteration for learning a dictionary of

size l ×K with R number of training signals are R(T 2
0K + 2lK), where T0 is the target sparsity. One

can also adapt fast `1 solvers for sparse coding [96], [97] rather than using greedy orthogonal matching

pursuit algorithms.

For the low-rank approximation-based methods, the major computation is in finding the SVD of a

matrix. As a result, these methods tend to be time consuming if the matrix is large. However, efficient

methods do exist for finding low-rank approximation of large matrices [98], [99], [100].

Many parameter adaptation methods such as A-SVM [29] are large scale quadratic programming

problems for which efficient implementations do exist in the literature. See [101] for more details.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This article attempted to provide an overview of recent developments in domain adaptation for computer

vision, with an emphasis on applications to the problems of face and object recognition. We believe the

availability of massive data has brought substantial opportunities and challenges to the analysis of datasets

bias or covariant shifts, and domain adaptation problems. We hope that the survey has helped to guide

an interested reader among the extensive literature to some degree, but obviously it cannot cover all the

literature on domain adaptation, and we have chosen a representative subset of the latest progress made

in computer vision to focus on.

Domain adaptation promises to be an active area of research, especially as one of the possible ways to

quickly propagate semantic annotations to the large-scale visual data being acquired at every minute. In

computer vision, researchers have identified specific challenges that do not belong to machine learning:

a major question among them that is rarely addressed in traditional domain adaptation research is

one of adapting structured (non-vector) data representations. In machine learning or natural language

processing, an input sample is usually represented as a vector in Euclidean space, different samples are

treated as independent observations, and the task is typically classification. This is, however, not the

case in computer vision where the representations to be potentially adapted include shapes and contours,

deformable and articulated 2-D or 3-D objects, graphs and random fields, intrinsic images, as well

as visual dynamics, none of which is directly supported by “vectorial” domain adaptation techniques.

In addition to recognition and detection, models and algorithms for segmentation, reconstruction, and
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tracking are awaiting mechanisms that do not yet exist, to be adapted toward emerging new domains. All

of these challenges necessitate continuous efforts on characterizing visual domain shift and a paradigm

of effective and efficient adaptation methods that are dedicated to visual data.

In the meantime, it is generally accepted that domain shifts in computer vision are usually due to causes

from the imaging process that can be explained physically, such as illumination changes, sensor changes,

view point changes, etc.. We believe incorporating these physical priors into strong statistical adaptation

approaches will not only lead to performance increase, but also lead to other insights in understanding

the imaging process. This calls for a “physically-informed” adaptation paradigm that better exploits

knowledge about image formation and better integrates other domain-specific knowledge implied by the

diverse set of partial, noisy, and multi-modal “side information” accompanying the visual data, such

as imagery obtained from online social media. We hope that by appropriately incorporating physically-

informed adaptation paradigm, distributional changes across different sensors (EO/SAR, IR/SAR, Eo/IR,

etc.) can be handled.

Finally, we expect that studies on data characteristics and adaptations will produce stronger guidance

to developing more desirable datasets for evaluating research in a wider spectrum of computer vision

problems.
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