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ABSTRACT

We propose a multidimensional sparse Fourier transform inspired
by the idea of the Fourier projection-slice theorem, called FPS-SFT.
FPS-SFT extracts samples along lines (1-dimensional slices from a
multidimensional data cube), which are parameterized by random
slopes and offsets. The discrete Fourier transform (DFT) along those
lines represents projections of multidimensional DFT of the data
onto those lines. The multidimensional frequencies that are con-
tained in the signal can be reconstructed from the DFT along lines
with a low sample and computational complexity provided that the
signal is sparse in the frequency domain and the lines are appropri-
ately designed. The performance of FPS-SFT is demonstrated both
theoretically and numerically. A sparse image reconstruction appli-
cation is illustrated, which shows the capability of the FPS-SFT in
solving less sparse scenarios containing non-uniformly distributed
frequencies.

Index Terms— Multidimensional signal processing, sparse
Fourier transform, Fourier projection-slice theorem, sparse image
reconstruction

1. INTRODUCTION

Conventional signal processing methods in radar, sonar, and medical
imaging systems usually involve multidimensional discrete Fourier
transforms (DFT), which can be implemented by the fast Fourier
transform (FFT). Recently, the sparse Fourier transform (SFT) [1-4]
has been proposed, which leverages the sparsity of signals in the fre-
quency domain to reduce the sample and computational cost of the
FFT. Different versions of the SFT have been investigated for sev-
eral applications including a fast Global Positioning System receiver,
wide-band spectrum sensing, radar signal processing, etc. [5-9].

In all SFT algorithms the reduction of sample and computational
complexity is achieved by reducing the data samples. This is im-
plemented via a well designed, randomized subsampling procedure,
which leverages the resulting frequency domain aliasing. The sig-
nificant frequencies contained in the original signal are then local-
ized and the corresponding DFT coefficients are estimated with low-
complexity operations. Such subsampling-localization-estimation
procedure is carried out in an iterative manner in several SFT al-
gorithms [2,4, 10, 11], while for other SFT algorithms [7-9, 12], the
localization and estimation are implemented in one-shot after gather-
ing sufficient copies of subsampled signals corresponding to differ-
ent subsampling parameters, e.g., subsample rate, offset and number
of samples. Generally, iterative SFT algorithms exhibit lower com-
plexity as compared to non-iterative SFT algorithms, since in the
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former, in each iteration, the contribution of the recovered signifi-
cant frequencies are removed from the signal, which yields a sparser
signal (an easier problem) in the next iteration.

Multidimensional signal processing requires multidimensional
SFT algorithms. Most of the existing SFT algorithms, however, are
designed for 1-dimensional (1-D) signals and their extension to mul-
tidimensional signals is typically not straightforward. Multidimen-
sional SFT algorithms are investigated in [2, 8,9]. The idea behind
those SFT algorithms is to reduce a multidimensional DFT into a
number of 1-D DFTs along lines extracted from the input multidi-
mensional data. The sample-optimal SFT (SO-SFT) achieves the
sample and computational complexity lower bounds of all known
SFT algorithms by reducing a 2-dimensional (2-D) DFT into 1-D
DFTs along columns and rows of a data matrix; in the frequency
domain, this results into projection of 2-D frequencies onto the two
axis of the matrix. Under the assumption that the frequencies are
sparse and uniformly distributed, the 2-D frequencies are not likely
to collide (more than one frequencies are projected into the same bin)
in the projection, and thus the 2-D frequencies can be effectively re-
covered from their 1-D projections (see Section 2.1 for details). The
DFT along columns and rows provides two degrees of freedom in
terms of the direction of the frequency projection; a frequency col-
lision in the column direction may not happen in the row direction
and vise versa. However, when frequencies are less sparse, it often
results in unrecoverable frequencies (see Fig. 1).

In order to reduce the chance of deadlock, the SFT of [8, 9]
extends the degrees of freedom of frequency projection by apply-
ing 1-D DFT not only along the axis of the input multidimensional
data cube, but also along a few lines of predefined and deterministic
slopes extracted form the data cube. Although employing lines with
various slopes leads to more degrees of freedom in frequency pro-
jection, the limited choice of line slopes in [8,9] is still an obstacle
in addressing less sparse signals. Moreover, the sample and compu-
tational complexity of SFT of [8, 9] are higher than that of SO-SFT,
as the former method applies the one-shot based architecture while
the latter follows the iterative approach.

In this work we propose FPS-SFT, a multidimensional, Fourier
projection-slice based SFT, which enjoys low complexity while
avoiding the limitations of the aforementioned algorithms, i.e., it
can handle less sparse data in the frequency domain, and accommo-
date frequencies that are non-uniformly distributed. FPS-SFT uses
the low-complexity framework of SO-SFT, and extends the multiple
slopes idea of [8, 9] by using lines of randomly generated slopes.
The abundance of randomness of line slopes enables a large number
of degrees of freedom in frequency projection. Thus, less sparse,
non-uniformly distributed frequencies can be effectively recovered.

FPS-SFT can be viewed as a low-complexity, Fourier projection-
slice approach for signals that are sparse in the frequency domain.
In FPS-SFT, the DFT along a 1-D slice (discrete line) of the multidi-



mensional data is the projection of the multidimensional DFT of the
data to such line. While the classical Fourier projection-slice based
method either reconstructs the frequency domain of the signal via
interpolation of frequency-domain slices, or reconstructs the time-
domain samples via solving linear equation systems that relate the
DFT along projections and the time-domain samples, the proposed
FPS-SFT aims to reconstruct the signal directly based on frequency
domain projections; this is achieved by leveraging the sparsity of the
signal in the frequency domain.

Notation: We use lower-case bold letters to denote vectors. [-]7 de-
notes the transpose of a vector. The N-modulo operation is denoted
by [-]~. [S] refers to the integer set of {0, ..., S —1}. The cardinality
of set S is denoted as |S|. The DFT of signal z is denoted by Z.

2. THE FPS-SFT ALGORITHM

Let us consider the following 2-D signal model, which is a superpo-
sition of K 2-D complex sinusoids, i.e.,
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where No, N1 denote the sample length of the two dimensions, re-
spectively. (a,w) represents a 2-D frequency whose amplitude is a
with a € C,a # 0 and frequency is w 2 [wo,w1]” with wy, =
omi,mu € [Ni],k € {0,1}. The set S with [S| = K includes
all the 2-D frequencies. We assume that the signal is sparse in the
frequency domain, i.e., K << N £ NyN;. We are interested in
the recovery of all the frequencies from samples of z(n). While we
consider 2-D signals here, the generalization to higher dimensions,
i.e., D-D cases with D > 2, is straightforward.

2.1. SO-SFT

In SO-SFT, 1-D DFTs are applied on a subset of columns and rows
of the data. The No-point DFT of the i-th, ¢ € [/N1] column of the
data equals
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where 0(+) is the Dirac delta function. Hence ¢&;(mo) can be viewed
as the summation of modulated amplitudes of the 2-D sinusoids,
whose row frequency indices equal to mo. Hence & (m), m € [N1]
is a projection of the 2-D spectrum, &(mo, m1), [mo, ml]T € X,
onto the column. Similarly, the /N;-point DFT applied on a row of
(1) is a projection of the 2-D spectrum on the row.

Since the signal is sparse in the frequency domain, if |&; (m)| #
0, with high probability, there will be only one significant frequency
projected to the frequency bin of m; in other words, the frequency
bin is a ‘l-sparse’, and é;(m) is reduced to & (m) = é&(mo) =
ae’ R The amplitude, a, can be determined by the mo-th entry
of the DFT of the 0-th column, i.e., a = é(mo), and the other fre-
quency index, mi, is ‘coded’ in the phased difference between the
mo-th entries of the DFTs of the 0-th and the 1-st columns, which

can be decoded by m1 = ¢ (é1(mo)/éo(mo)) 5%, where ¢(z) is
the phase of z. Note that the 1-sparsity of the m-th bin can be effec-
tively tested by comparing |éo(m)| and |é1(m)[; é(m) is 1-sparse
when |éo(m)| = |é1(m)|. Such frequency decoding technique is
referred to as OFDM-trick [1]. The contribution of the recovered si-
nusoids is removed from the signal, so that the following processing
can be applied on a sparser signal. A frequency bin that is not 1-
sparse based on column processing might be 1-sparse based on row
processing. Also, the removal of sinusoids related to the recovered
frequencies in the previous column (row) processing may cause bins
in the row (column) processing to be 1-sparse. SO-SFT runs itera-
tively and alternatively between columns and rows, and stops after a
finite number of iterations.

SO-SFT succeeds with high probability only when the frequen-
cies are very sparse, and requires that either a row or a column of
the DFT contains a 1-sparse bin. However, in many applications,
the signal frequency exhibits a block sparsity pattern [13], i.e., the
significant frequencies are clustered. In those cases, even when the
signal is very sparse, 1-sparse bin may not exist; this is referred to as
a ‘deadlock’ case [2].

2.2. FPS-SFT

SO-SFT reduces a 2-D DFT into 1-D DFTs of the columns and rows
of the input data matrix. The columns and the rows can be viewed as
discrete lines of the input data matrix with slopes co and 0, respec-
tively. In this section, by proposing FPS-SFT, we reduce the 2-D
DFT into 1-D DFTs of the data along discrete lines with random
slopes and offsets; this results into random directions of frequency
projection, and thus offers a high probability of creating more 1-
sparse bins, which resolves the deadlocks encountered by SO-SFT.
This is illustrated in Fig. 1, where the 4 2-D frequencies in the 8 x 8-
point DFT domain form a deadlock, as neither a row DFT nor a
column DFT creates a 1-sparse bin. However, the DFT along the di-
agonal, corresponding to the projection of the 2-D DFT of data onto
the diagonal, produces 4 1-sparse bins, avoiding a deadlock.
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Fig. 1. Demonstration of projection of 2-D frequencies onto 1-D.
The colored blocks mark significant frequencies.

FPS-SFT is an iterative algorithm; each iteration returns a sub-
set of recovered 2-D frequencies. After 1" iterations, the FPS-SFT
returns a set, S, which is an estimate of S of (1). The frequencies
recovered in previous iterations are passed to the next iteration, and
their contributions are removed from the signal.

Within each iteration of FPS-SFT, the signal of (1) is sampled
along a line with slope a1 /o and offset T, with o, 7 € X, where
a 2 [a,a1]”, T £ [10,71]". The sampled signal can be expressed
as
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Taking an L-point DFT on (3), for m € [L], we get
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Let us assume that for all m € [L], [mo, m1]” € X,
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requires the line lengt(il L and siope o satisfying Lemma 1.
When f(m) = 1, ie.,
moQo mio m T
- — X
No N, L 0, [mo, mi1]" € X, (©6)

1

where [-]1 is modulo of 1, (4) can be simplified as §(a, 7,m) =
Z(a w)ES aejzﬂ—(m]g‘:o + m]\grl ) .

As it can be shown by the proof of Lemma 2, the points
(mo, m1) satisfying (6) lie on a line with slope —ao N1 /(a1 No) in
the No x Np-point DFT domain, i.e.,
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where [mg, mi]T € X is one of the solutions of (6). Hence, the
time domain line and the corresponding frequency domain line are
orthogonal to each other.

Each entry of the L-point DFT of samples along a time-domain
line with slope a1 /o represents a projection of the 2-D DFT along
the line with slope —ao N1 /(1 Np) in the Ny x Ni-point DFT do-
main, which is orthogonal to the time-domain line. This is closely
related to the Fourier projection-slice theorem, which states that the
Fourier transform of a projection is a slice of the Fourier transform
of the projected object. While the classical projection is in the time
domain and the corresponding slice is in the frequency domain, in
the FPS-SFT case, the projection is in the DFT domain and the cor-
responding slice is in the sample (discrete-time) domain. The im-
portant difference between the Fourier projection-slice theorem and
FPS-SFT is that while the former reconstructs the frequency domain
of the signal via interpolation of frequency domain slices, the latter
efficiently recovers the significant frequencies of the signal directly
based on the DFT of time-domain 1-D slices, i.e., samples along
random lines, which involves lower complexity. The efficiency of
FPS-SFT is achieved by exploring the sparsity nature of the signal
in the frequency domain, which is explained in the following.

We apply the assumption that the signal is sparse in the fre-
quency domain; specifically, we assume that |S| = O(L). Then,
if |$(a, 7,m)| # 0, with high probability, the m-th bin is 1-sparse,

o (moT ., Moy
and it holds that §(ax, 7,m) = ae??m (R + ),(a,w) € S.

In such case, the 2-D frequency, (a,w), can be ‘decoded’ using
three lines of the same slope but different offsets, i.e., 7,79 £
[[7o + 1wy, 71]%, 71 £ [70, [11 + 1]a, ], respectively. Such design
allows the frequencies to be decoded independently in each dimen-
sion. The frequency corresponding to the 1-sparse bin, m, can be

decoded as
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In order to recover all the frequencies in S efficiently, each it-
eration of FPS-SFT adopts a random choice of line slope (see
Lemma 2) and offset. Furthermore, the contribution of the re-
covered sinusoids in the previous iterations is removed via a
construction-subtraction approach so that the signal becomes
sparser in future iterations. Specifically, assuming that for the
current iteration the line slope and offset parameters are o, T,
respectively, the recovered 2-D frequencies are projected into L fre-
quency bins to construct the DFT along the corresponding line, i.e.,

R . 7n070 miTy
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M ) m € [L], where
Zm,m € [L] represent the subsets of the recovered frequencies,
ie., Zm 2 {(a,w) : [m;\),j“ + m]{[‘fl -2 =0, [mo, m1])T €
X}, m € [L]. Next, the L-point inverse DFT (IDFT) is applied on
$r(a, 7,m),m € [L], from which the line, s.(a,7,1),l € [L]
due to the previously recovered frequencies is constructed. Subse-
quently, the line points are subtracted from the signal samples of the
current iteration.

2.3. Analysis of FPS-SFT

In this section, we provide the design details of the critical param-
eters in FPS-SFT, i.e., line length and slope; those parameters are
designed such that the projections in the frequency domain are or-
thogonal and uniform. The orthogonality is necessary for the pro-
jected multidimensional frequencies and the corresponding DFT co-
efficients to be exactly recoverable. The uniformity of the projection
means that the DFT coefficients of N grid locations of the N x ;-
point DFT are uniformly projected to the L entries of the L-point
DFT along a line. Compared with a non-uniform projection, the uni-
form projection creates more 1-sparse bins, which allows for fewer
iterations of FPS-SFT to exactly reconstruct the signal.

Lemma 1. (Line Length): Let s(x, T,1) = z([aol + 7o) Ny, [l +
miny) with 1 € [L],a 2 [ag,a1]T,7 £ [r0,11]" € X be
a discrete line extracted from the signal model of (1). Then
$(a, 7,m), m € [L] is the orthogonal projection of &(m),m € X
onto such line when L is the least common multiple of No, N1, i.e.,
L = LCM(No, N1). Moreover, L is the minimum length of a line
to allow orthogonal projections in the DFT domain with arbitrary
choice of v € X.

Lemma 2. (Line Slope): Let s(c, T,1) = x([aol + 0] Ny, [@1l +
71Ny ) with 1 € [L], L = LCM(No, N1), ¢ £ [ag, 01" € A C
X, 7T 2 [r0,71)T € X be a discrete line extracted from the signal
model of (1), where A = {a : a € X, (ap, a1), (a0, c1), (a1, co)
are co-prime}, where co = L/No,c1 = L/Ni. Then each entry
of 8(a,T,m),m € [L] is the projection of N/L distinct sam-
ples of Z(m ) m € X, which locate in Pm = {[mo,m1]"
N“ ag + 2 = la; — 21 = 0, [mo,ml]T € X}. Moreover,
|77m\ = N/L,Pp, N Ppr = 0 for m # m/,m,m’ € [L]. Thus,
#(m), m € X is uniformly projected to §(ct, T,m), m € [L].

Multidimensional extension: For the D-D case with the data
cube size of Ny X N; X ---Np_1, the line length can be set



as L = LCM(No,---,Np_1); the slope and offset parame-
ters [ao, -+ ,ap—_1]7,[r0, -+ ,7p—1]T is randomly taken from
Xp = [No] x [N1] X ---[Np—1]. Each iteration extracts D + 1
L-length lines with a same random slope but different offsets from
the D-D data cube. The 0-th line offset is set to be [7o, - - , Tp—_1]"
while for the (¢ + 1)-th line with 0 < ¢ < D — 1, the offset for the
i-th dimension is set to be [7; + 1]n,. With such offset parameters,
the frequencies can be decoded independently for each dimension.

s

Complexity analysis: The FPS-SFT executes 7T iterations; in the 2-
D case, each iteration uses 3L samples, since 3 L-length lines, with
L = LCM(No, N1) are extracted in order to decode the two fre-
quency components of a 2-D sinusoid (see (8)). Hence, the sample
complexity of FPS-SFT is O(3T'L) = O(L). The core processing
of FPS-SFT is the L-point 1-D DFT, which can be implemented by
the FFT with the computational complexity of O(L log L). The L-
point IDFT in the construction-subtraction procedure can also be im-
plemented by the FFT. In addition to the FFT, each iteration needs to
evaluate O(K) frequencies. Hence the computational complexity of
FPS-SFT is O(Llog L + K). Assuming that K = O(L), then the
sample and computational complexity can be simplified as O(K)
and O(K log K), respectively, which achieves the lowest sample
and computational complexities, respectively, of known state-of-the-
art SFT algorithms [2,4]. Generally, in the D-D case, it is easy to
see that the sample and computational complexity of FPS-SFT are
O(DK) and O(DK log(DK)), respectively, when K = O(L).

3. NUMERICAL RESULTS

Comparison to SO-SFT: The length of the two dimensions are set
to No = N1 = 256. We simulate two scenarios, when frequen-
cies are uniformly distributed and when they are clustered. For the
clustered case, we consider clusters of 9 and 25 frequencies. When
No = Ni, the line length, L, of FPS-SFT equals Ny, and each
iteration of FPS-SFT uses 3/No samples. We limit the maximum it-
erations to Tz = N/(3L) = 85; this corresponds to roughly
100% samples of the input data. Fig. 2 (a) shows the probability
of exact recovery versus level of sparsity for FPS-SFT and SO-SFT.
When the signal is very sparse, i.e., K = Np/2, SO-SFT has high
probability of exact recovery, while it fails when the sparsity is mod-
erately large, i.e., K = 2Ny. Moreover, SO-SFT only works for
the scenario in which frequencies are distributed uniformly, while
it fails when there exists even a single frequency cluster. On the
contrary, FPS-SFT applies to signals with a wide range of sparsity
levels. For instance, the success rate of FPS-SFT is approximate
97% when K = 5Np. In all cases, the success rates drop to 0
when K = 6N, since we set Tnqe = 85. To achieve an exact
recovery, the FPS-SFT needs to run for roughly 100 iterations when
K = 6Ny. Fig. 2 (b) shows the ratio of samples used by the FPS-
SFT for exact recovery to the total number of data sample N versus
different sparsity level for the uniform and clustered cases; the re-
sult for SO-SFT is also shown. The figure shows that the sparser the
signal, the fewer samples are required by the FPS-SFT. For exam-
ple, when K = Ny, only 5.9% of the signal samples are required in
the uniform-distributed frequency case or the clustered case. In the
case of SO-SFT, in principle, SO-SFT only needs two rows and two
columns of the data matrix to process in a very sparse case, which
is only 1.6% of the signal samples. However, when the frequency
is less sparse or non-uniformly distributed, the SO-SFT fails. Fig.
2 also shows that the performance of FPS-SFT is similar for both
uniform-distributed and clustered frequency cases at the same spar-
sity level. The good performance of FPS-SFT arises because the

randomized projections can effectively isolate the 2-D frequencies
into 1-sparse bins, even when the signal is less sparse (K is large)
and the frequencies are clustered.
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Fig. 2. Compared to SO-SFT, FPS-SFT can achieve exact recov-
ery of less sparse data of non-uniformly distributed frequencies with
high probability. The clustered frequency cases for SO-SFT is not
shown as the SO-SFT fails in such cases. (a) Probability of exact
recovery versus sparsity level, K. (b) Ratio of samples (the aver-
aged number of samples used by FPS-SFT over V) needed for exact
recovery versus K.
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Sparse image reconstruction: Due to the duality of the time and
frequency, the FPS-SFT is able to reconstruct a signal that is sparse
in the time (spatial) domain using the samples in the frequency do-
main. Here we demonstrate the ability of FPS-SFT to recover im-
ages that are sparse in the pixel domain. Such sparse image recov-
ery problem arises in the MRI applications [14]. In MRI, samples
are directly taken from the frequency domain, from which the im-
ages reflecting the inner structure of the examined objects are recon-
structed. Fig. 3 (a) shows a 512 x 576-pixel brain MRI image [14].
This image is sparsified by applying thresholding on the original im-
age. Next, we convert the sparsified images in the frequency domain
via a 512 x 576-point DFT, on which the 2-D FPS-SFT is applied to
reconstruct the images. Figs. 3 (b), (c) and (d) show that the images
with 2.85%, 4.48% and 6.61% of non-zero pixels can be perfectly
reconstructed by FPS-SFT using 14.0%, 23.4%, and 70.3% samples
in the frequency domain, respectively.

(@) ()
Fig. 3. Image reconstruction. (a) Raw image. (b) 2.9%-sparse, K =
8411. (¢) 4.5%-sparse, K = 13219. (d) 6.6%-sparse, K = 19506.

(@

4. CONCLUSION

We have proposed the FPS-SFT, a low-complexity, multidimen-
sional SFT algorithm based on the idea of the Fourier projection-
slice theorem. Theoretical and numerical results of FPS-SFT have
been provided. While FPS-SFT has achieved good performance
on the ideal signal, i.e., exactly sparse signal containing on-grid
frequencies, the real-life signals are typically noisy and contain off-
grid frequencies. The noise introduces difficulties in the frequency
decoding of FPS-SFT, and the leakage generated by the off-grid
frequencies destroys the sparsity in the frequency domain. In our
future research, we will develop an extension of FPS-SFT to deal
with these cases.
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