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ABSTRACT

In this paper, we present an approach that simultaneoussterk
database members and learns dictionaries from the clustere
method learns dictionaries in the Radon transform domatmilew
clustering in the image domain. The main feature of the ppegd@p-
proach is that it provides rotation invariant clusteringethis useful
in Content Based Image Retrieval (CBIR). We demonstratautijit
experimental results that the proposed rotation invariéugtering
provides better retrieval performance than the standalbGaased
method that has similar objectives.

Index Terms— Radon transform, rotation invariance, cluster-

ing, dictionary learning, CBIR.

1. INTRODUCTION

In recent years, sparse representation has emerged as #yowe

tool for efficiently processing data in non-traditional wayThis is
mainly due to the fact that signals and images of interest teren-
joy the property of being sparse in some dictionary [1]. Bdistio-

naries are often learned directly from the training datehakk been
observed that learning dictionaries directly from exaraplsually
leads to improved results in many practical image procgssapli-

cations such as restoration and classification [2]. One efstm-
plest algorithms for learning dictionaries is the K-SVD a@ighm

[2]. Given a set of image$x; };—;, K-SVD seeks a dictionar{p

that provides the sparsest representation for each imageltayng

the following optimization problem

(D,T) = argr}r)lilgl [X — DI||% subject toVi ||v;[lo < To, (1)

where~, represents thé'” column of ', X is the matrix whose
columns arex; and 7y is the sparsity parameter. HeileA ||r de-

notes the Frobenius norm defined|jgs|| r = \/Zij A?;. The K-
SVD algorithm alternates between sparse-coding and dityoup-

date steps. In the sparse-coding si@ps fixed and the representa-

tion vectorsy,s are found for each examptg. Then, the dictionary
is updated atom-by-atom in an efficient way.

While these dictionaries are often trained to obtain goadme
struction, training dictionaries with a specific discriraiive crite-
rion has also been considered. For instance, linear dis@aimhanal-
ysis (LDA) based basis selection and feature extractioorékgn for
classification using wavelet packets was proposed by Etérand
Chellappa [3] in the late nineties. Recently, similar aitjons for
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Fig. 1. Left: Kimia's database. Right: Smithsonian isolated leaf
database with rotated images.

simultaneous sparse signal representation and disctiginhave
also been proposed [4], [5], [6] ,[7], [8], and [9]. Additiahtech-
nigues may be found within these references.

Dictionary learning techniques for unsupervised clustghiave
also gained some traction in recent years. In [10], a metbodif
multaneously learning a set of dictionaries that optimedigresent
each cluster is proposed. To improve the accuracy of spase ¢
ing, this approach was later extended by adding a block erestte
term in the optimization problem [11]. Some of the other sjiqar
motivated subspace clustering methods include [12], [13].

Rotation invariance is an important property in many agplic
tions such as image classification and retrieval where omgsaa
classify or retrieve images having same content but diffeseenta-
tion. For instance, in content based image retrieval (CBIRages
are retrieved from a database using features that bestilukedhe
orientation of objects in the query image. Due to the abiityGa-
bor filters to capture directional information, they aresafused to
extract features for retrieval. However, the chosen divestof Ga-
bor filters may not correspond to the orientation of the catritethe
guery image. Hence, a feature extraction method that ipertent
of orientation in the image is desirable. Fig. 1 shows somepsa
images from the Kimia’s object dataset and Smithsoniardatgfset,
where the presence of orientation is clearly seen in theésnag

In this paper, we present a rotation invariant clusteringho,
extending the dictionary learning and sparse representétame-
work for clustering of data. Given a database of images} .,
and the number of cluster®’, we learnK dictionaries for repre-
senting the data. The dictionaries are learnt in the Radorstorm



domain which ensures that the clustering is rotation inddpet.
We demonstrate the effectiveness of our approach in ratréper-
iments, where significant improvements are shown.

The organization of the paper is as follows. Our rotatioraiiv
ant clustering framework is detailed in Section 2. We derrates
experimental results in Section 3 and Section 4 concludepdper
with a brief summary and discussion.

2. SIMULTANEOUS CLUSTERING AND DICTIONARY
LEARNING

In this section, we present our rotation invariant clusigrinethod.
We first discuss how Radon transform is used to detect rotatio
present in an image.

2.1. Estimating the rotation present in images

The Radon transform of a sufficiently regular continuous diom
two variable functionz is defined as

oo

- |

where(t, 0) € (—oo,00) x [0, 7). If Z is the rotated copy aof by

@)

z(tcos — ssinb, tsin 6 + s cosb)ds,
oo

an angled, then a simple proof shows that their Radon transforms

are related as
RoZ(t) = Ry, gx(t), Vt,0. 3)
The variancer, of the Radon transform is found [14] to be useful
in estimating the presence of angle in images. Therefovenghe
imagez, one may estimate from the following formula
2

(52)

d6?
An application of properties of the Fourier transforms ieptthat)
can be estimated from the following simple formula

0 = arg min
0

4)

2 00
6 = arg mein(% /700 Xz(s cos #, ssin O)ds), 5)
where X is the Fourier transform af. In all practical situations,
for an image of sizen x n, the Radon transform is represented
as a matrix[Ry, f(tm)], called sinogram. Usually, one takes
0 = LT | = 0,1,...,n — 1L andt, = or(k — 2),k
0,1,...,m — 1, wheredr is the radial sampling, which is chosen to
avoid aliasing error in the reconstruction.

The second image shown on the first row of Figd.ig a rotated
copy of the firstimage bg0°. The plots on the second row are the
second derivatives of variances of Radon transform of tHemay
be noted that the difference between the points of globaimarof
both curves is 30, coinciding with the rotation present ie ftec-
ond image. Consequently, the estimate presented in (5gfslua
estimating the presence of rotation in the images.

m

2.2. Proposed algorithm

Let {x,;}}_, be the database of images aRtbe the number of
clusters. Defind = [Dy,...,Dg] as the concatenation of dictio-
naries corresponding t& clusters. LetC; be the matrix containing
images as columns corresponding to clugter Equipped with the
above notation and motivated by dictionary learning mestjafl we
realize our objective in two steps

Lhttp://www.flowersofpictures.com/wp-content/uplo@f/1/07/Lily-
Flowers.jpg
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Fig. 2. For the rotated images present on the first row, the plots on
2

the second row are theﬂ'de#. The second row plots indicate that

the difference between the points of global minimum of battves

preserves the rotation present in the second image.

e Cluster assignment: We start with arbitrary dictionar{p =
[D4,...,Dgk]. Given an imagex; and its estimated orien-

tation 6; which is calculated from the discretized version of
(5), we useRéj x; to denote the Radon transform matrix of
the rotated version of the image by —0;. In other words,
R %; is an aligned Radon transform matrixf. It is ob-
tained by left shifting columns of the original Radon trans-

form matrix ofx; by éj. Our approach considers obtaining
the sparsest representatiorR);j x; in an appropriate dictio-

naryD; from

o’ = arg min HRéij —Duwl|3 s.t. |wllo < To,
w

) . . (6)
i = argmin Ry x; = Dai(a)|5 j =1, N,

thenx; is set to belong tC;. In (6), é; is a characteristic
function that selects the coefficients associated withithe

dictionary.
e Dictionary update: Having obtained the initial clusters
C4,Cs,...,Ck, we update the dictionarie®; using the

K-SVD approach described in the previous section. The new
dictionaries are obtained by solving the following optiaiz
tion problem

(Di, 1) = arg min ||C; — D,T||7 s:tVi [|lv;llo < To,

satisfyingC; = D,I, i=1,2,..., K.
We repeat the cluster assignment and dictionary update silép
there is no significant change @;. It may be noted here that the
dictionaries are learnt in the Radon domain, while clusteis done
in the image domain. The clustering methodology presertede
may be summarized in terms of the following optimizationipem

K
min E E min R
D;,C; 4 0
i=1 xeC;
)

wherey, 1 > 0. Here,oy is the variance of the first column &, x.
The last term in (7) estimates the presence of rotation irgésa

d’og

{IRox = D)3 + sl + 4] S22




We refer to our rotation invariant clustering and dictionbrarning
method as RICD.

2.3. Application to CBIR

Once the dictionaries have been learnt for each class inrRddo
main, given a query imag&,, we estimated, and then project
Réqxq onto the span of the atoms in eabh using the orthogonal
projector

Projp, = Di(D{ D) 'D;. (8)

The approximation and residual vectors can then be caéxlibx
R; x, = Projp, (Ry, xq), 9
and

r'(Ry xq) = Ry xq — qu xq = (I - Projp, )Ry xq, (10)

respectively, wherd is the identity matrix. Since the dictionary

learning step in our algorithm finds the dictionay,, that leads
to the best representation for each membe€ pin Radon domain,
we suspecfiR; ;x,|2 to be small ifx, were to be relevant to the

i*" cluster and large for the other clusters. Based on this, if

d=arg min 'Ry ;xq)ll2,
we search for the relevance xf in Cg.

3. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our method, we prespet-e
imental results on various datasets [15], [16],[17]. Welusiz the
performance of our method using precision-recall curves arer-
age retrieval performance [18]. Recall and precision afinele as

Number of relavant images retrieved

Recall = , (11

Total number of relevant images

.. Number of relavant images retrieved
Precision =

Total number of images retrieved (12)
Recall is the portion of total relevant images retrieved nghs pre-
cision indicates the capability to retrieve relevant omhages. An
ideal retrieval should give precision rate which alwaysatgu for
any recall rate. Given a certain number of retrieved imatiesav-
erage retrieval performance is defined as the average nuwhbelr

evant retrieved images over all query images of a partictlkEss.

We compare the performance of our method with that of modified:

Gabor-based approach [18] and [10]. Note that [18] usesifesit
that are rotation invariant and the method presented in (i$6f a
discriminative dictionary learning approach to clustgriiwe refer
to the method presented in [10] as dictionary-based cingtéDC).
In all the experiments, the dictionaries are initializedrapdomly
partitioning the Radon transformed data iftosubsets.

3.1. Kimia database

This database consists of 216 images of 18 shapes.

90%. The modified Gabor-based method'’s precision goes down to
50% at approximately half recall rate. It is clearly seen frore th
figure that the performance of our method is better than therot
methods. Fig. 3(b) shows 18 clusters obtained using ouradeth

few atoms from the learned dictionaries from each shapeteners

in Fig. 3(c).
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Fig. 3. Resu?ts) on Kimia’s database. ((a) Precision-rec(aﬁ grafif)s
Clustering results. (c) Associated learned dictionaries.

The original Kimia's dataset contains various shapes withls
rotation. In order to create a more challenging dataset,elexted
one representative image from each of the 18 shapes. Forseach
lected shape, we created 11 in-plane rotated images witoltbe/-
ing angles:

18°,36°, 54°,72°,90°, 108°, 126°, 144°, 162°, 180°, 198°.

The resulting dataset (shown in Fig. 4(a)) is more challeggi
than the original Kimia’s dataset as it contains in-plantexd im-
ages with various angles. The precision-recall curves laoa/s in

Fig. 4(b) for 18 query images belonging to different shapég. 4(c)
shows the total average retrieval performance over allesha®n
average our method obtained 4.4907 out of 8 retrieved impges
shape. Whereas the DC method and Gabor-based method dbtaine
2.0926 and 1.2778, respectively. As can be seen from thesfigur
our method performed the best.
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Fig. 4. Results on in-plane rotated Kimia's database. (a) Databas
(b) Precision-recall curves. (c) Average retrieval perfance.

3.2. Smithsonian isolated leaf database

The original Smithsonian isolated leaf database consi€3 differ-

Each shagm leaves [16]. We selected one representative image femim @&f

has 12 different images. Fig. 1(a) shows sample images fnign t the last 18 leaves. As before, for each representative imegere-

database. The images were resized@0 x 80. The precision-
recall curves are shown in Fig. 3(a) for 18 query images tugtan
to different classes. Our Radon transform-based appraaahlé to

ated 11 in-plane rotated images with the same angles asdeoedi
in the previous experiment. Fig. 1(b) shows the resultinglozse
containing 18 different leaves with rotated images. Thegiesavere

maintain precision rate abo@d% even when the recall rate reaches resized to100 x 80. This database is more challenging than the



Kimia database as more shape similarities can be easilylfanmong
different leaves (for instance, 5th and 6th rows; 9th anth t6s;
11th and 13th rows in Fig. 1(b).) Fig. 5(a) shows the perforoezof
different methods on this database. Fig. 5(b) shows théaetamage
retrieval performance over all shapes. On average our rathe
tained 5.7083 out of 8 retrieved images per shape. Whered3¢h

method and Gabor-based method obtained 2.9630 and 2.5824, r

spectively. Even on this difficult dataset, our method penfobetter
than the other methods.
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Fig. 5. Experime(nz with in-plane rotated Sr%i?hsonian isolated le
database. (a) Precision-recall graphs. (b) Average vatrjgerfor-
mance.

3.3. PIE database

Even though, our method can provide rotation invarianttehiisg, it

can be generalized to handle other variations present iddteby

using appropriate features. To illustrate this, we condide frontal

face images of the CMU PIE dataset. Our objective is to sheveth
fectiveness of our approach in retrieving face images iptesence
of various illumination conditions. We use the principlemqmonent
analysis (PCA) features for this experiment. This datalcassists
of 68 subjects, each of which contains 21 images under \&ilou
lumination conditions. Eighteen subjects from this datase used
for this experiment. All images are resizeddt® x 40. Fig. 6 shows

the retrieval results of our method. The top row shows 18\yjuer

images from 18 different subjects. For each query imagecdtine
responding column shows the first six retrieved images. aleef
retrievals are marked with red boxes. As can be seen fronfithis
ure, there is no false retrieval from the first rank up to thedtrank

matches. In this experiment, the average retrieval pedona is

(1 - 135) x 6 = 5.5556 out of 6 images.

Wi ) Y- .1

=} e e
sults on the PIE database.

4. CONCLUSION

In this paper, we have proposed a rotation invariant clirsjeal-
gorithm suitable for such applications as content basedjéma-

trieval. With a view to achieving rotation invariance in sfaring, the
method learns dictionaries in the Radon transform domaingh,
the simultaneous clustering is done in the image domain. &ieod-
strated the effectiveness of the proposed method for CBfRcap
tions.

5. REFERENCES
[1] P. J. Phillips, “Matching pursuit filters applied to fa@entification,”
|EEE Trans. Image Process., vol. 7, no. 8, pp. 150-164, 1998.

M. Aharon, M. Elad, and A. M. Bruckstein, “The k-svd: argatithm
for designing of overcomplete dictionaries for sparse esentation,”
|EEE Trans. Sgnal Process., vol. 54, no. 11, pp. 4311-4322, 2006.

K. Etemand and R. Chellappa, “Separability-based recdiie basis se-
lection and feature extraction for signal and image clasgitin,”|IEEE
Transactions on Image Processing, vol. 7, no. 10, pp. 1453-1465, Oct.
1998.

F. Rodriguez and G. Sapiro, “Sparse representationsniage clas-
sification: Learning discriminative and reconstructivensgarametric
dictionaries,"Tech. Report, University of Minnesota, Dec. 2007.

(2]

(3]

(4]

(5]

K. Huang and S. Aviyente, “Sparse representation fonaliglassifica-
tion,” NIPS vol. 19, pp. 609-616, 2007.

Q. Zhang and B. Li, “Discriminative k-svd for dictionarkearning
in face recognition,”Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 2691-2698, 2010.

M. Ranzato, F. Haung, Y. Boureau, and Y. LeCun, “Unsujser learn-
ing of invariant feature hierarchies with applications ezt recogni-
tion,” Proc. |EEE Conf. Computer Vision and Pattern Recognition, pp.
1-8, 2007.

J. Mairal, F. Bach, J. Pnce, G. Sapiro, and A. Zisserm@iscrimi-
native learned dictionaries for local image analysifc. of the Con-
ference on Computer Vision and Pattern Recognition, Anchorage, AL,
June 2008.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserrtfanpervised
dictionary learning,”Advances in Neural Information Processing Sys-
tems, Vancouver, B.C., Canada, Dec. 2008.

(6]

[7]

(8]

9]

[10] P. Sprechmann and G. Sapiro, “Dictionary learning goarse coding

for unsupervised clustering,” ftCASSP, march 2010, pp. 2042 —2045.

I. Ramirez, P. Sprechmann, and G. Sapiro, “Classificatind clus-
tering via dictionary learning with structured incohererand shared
features,” inCVPR, june 2010, pp. 3501 —3508.

E. Elhamifar and R. Vidal, “Sparse subspace clusteringCVPR, june
2009, pp. 2790 —2797.

S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentatieia ro-
bust subspace separation in the presence of outlying, ipleten or
corrupted trajectories,” i€VPR, june 2008, pp. 1 -8.

[11]

(12]

(13]

[14] K. Jafari-Khouzani and H. Soltanian-Zadeh, “Radomsfarm orien-
tation estimation for rotation invariant texture analysi€EEE Trans.
Pattern Analysis and Machine Intelligence, vol. 27, no. 6, pp. 1004—

1008, 2005.

T. B. Sebastian, P. N. Klein, and B. B. Kimia, “Recoguitiof shapes by
editing their shock graphslEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 26, no. 5, pp. 550-571, 2004.

H. Ling and D. W. Jacobs, “Shape classification using itheer-
distance,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 29, no. 2, pp. 286299, 2007.

S. Baker, “The cmu pose, illumination, and expressiBhE) database
(http://www.ri.cmu.edu/projects/projeet18.html).”

C. S. Sastry, M. Ravindranath, A. K. Pujari, and B. Déeltslu, “A
modified Gabor function for content based image retrievajttern
Recognition Letters, pp. 293-300, 2007.

[15]

[16]

[17]

(18]



