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Abstract—In synthetic aperture radar (SAR) systems the
antenna size needs to meet a minimum requirement in order
for range and azimuth ambiguities to be avoided. This paper
demonstrates that, by using random or jittered undersampling in
the slow-time axis followed by sparse signal recovery techniques,
one can reduce the SAR antenna size beyond that minimum re-
quirement without significant loss target estimation performance.
In other words, compressive sampling can enable compression of
the physical interface in addition to the well cited benefits for
data reduction.

I. INTRODUCTION

Synthetic aperture radar (SAR) is a coherent radar imaging
system, which utilizes the flight path of the platform to
simulate an extremely large aperture and thus generate high-
resolution images of terrain and targets [1], [2]. One of
the main advantages of SAR is its ability to operate in all
weather conditions. There are essentially three main types of
SAR - spotlight mode, stripmap mode and scan mode. In
spotlight mode SAR, the radar sensor steers its antenna beam
to continuously illuminate the terrain patch of interest. SAR -
spotlight mode can provide higher resolution than stripmap
and scan mode SAR because it maps a scene at multiple
viewing angles during a single pass [2]. For example, one
can achieve a spatial resolution of 0.05 meters by operating
in spotlight mode using a 3GHz bandwidth signal.

When designing a SAR system, antenna size (height and
width) is an important parameter. In order to avoid range and
azimuth ambiguities, a minimum SAR antenna area constraint
is imposed [4]–[6]. Meeting that size constraint comes at high
hardware cost. As an example, the spaceborne SAR antennas
are typically large 9−15 m in width (azimuth dimension) and
0.6− 4 m in height (elevation dimension) which are costly to
build and deploy [6].

In recent years, compressive sampling (CS) methods [7], [8]
have been applied to SAR imaging in which the sparsity of
targets in the range-azimuth domain is exploited to reduce the
sampling rate in slow and/or fast time [3], [10], [11], [17].
In particular, random and jittered slow-time undersampling
methods were proposed in [3] for compressive SAR imaging.
It was shown in [3] that this undersampling scheme may not
only produce high quality images, but can also enable imaging
of much wider swaths, and reduction of storage requirements.
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Fig. 1: An imaging geometry for a spotlight mode SAR.

In this paper we consider a spaceborne SAR system operat-
ing in spotlight mode with wideband waveforms. Using the CS
methods proposed in [3], we show that one can decrease the
SAR antenna size beyond what is required by the minimum
antenna area constraint without significant loss in the signal-
to-noise ratio (SNR). More specifically, we show that by
manipulating the pulse repetition frequency (PRF) of the radar,
one can decrease the SAR antenna height by the average slow-
time undersampling factor.

The remainder of this paper is organized as follows. Section
II, presents the SAR ambiguity analysis in terms of PRF and
minimum antenna area constraint. In Section III, we describe
how CS can be used to reduce the minimum SAR antenna size
in detail. Numerical simulations are provided in Section IV.
Finally, Section V concludes this paper with a brief summary
and discussion.

II. AMBIGUITY ANALYSIS

A spaceborne SAR antenna of width W and height H ,
traveling at a constant velocity v in a straight path, pointed
orthogonal to the flight path illuminates the ground region
with the range swath length SR, as shown in Fig. 1. The SAR
generates linear frequency modulation (LFM) beams whose
angular range 3dB beamwidth of antenna and azimuth 3dB
beamwidth of antenna are θR and θA, respectively.

The radar beam intercepts the ground at near range Rn and



far range Rf , giving the ground range swath

SR ≈
Rf −Rn

sin(θ)
, (1)

where θ denotes the angle of incidence [4]. To avoid range
ambiguity, it is required that the earliest possible echo from
any point within the illuminated scene due to the nth pulse
transmission is received after the last possible echo due to the
n− 1th pulse transmission [12], i.e.,

2Rf
c
≤ 2Rn

c
+ PRI, (2)

where PRI denotes the pulse repetition interval, which equals
the inverse PRF, and c is the speed of light. Combining (1)
and (2), we can lower-bound the PRI by

PRI ≥ 2(Rf −Rn)

c
=

2SR sin(θ)

c
. (3)

The 3dB range angular beamwidth is defined as θR = λ
H [5],

and can be approximated as

λ

H
= θR ≈

SR cos(θ)

Rm
, (4)

where λ is the wavelength and SR denotes the range swath.
Combing (3) and (4), we can achieve a new lower bound for
the PRI as

PRI ≥ 2λRm sin(θ)

cH cos(θ)
. (5)

The 3dB azimuth angular beamwidth is defined as θA =
λ
W , the synthetic aperture length is Ls = θARm = λ

WRm
and the synthetic aperture time is Ts = Ls

v . With the doppler
frequency rate equal to fr = 2v2

λRm
and the azimuth bandwidth

Ba = frTs = 2v
W , the azimuth resolution is given Ra = v

Ba
=

W
2 . Thus, to avoid the azimuth ambiguities, the PRF needs to

satisfy
PRF ≥ v

Ra

which gives the upper bound of the PRI

PRI ≤ W

2v
. (6)

With (5) and (6), to avoid the range and azimuth ambigui-
ties, the PRI is constrained by the following inequalities

2λRm sin(θ)

cH cos(θ)
≤ PRI ≤ W

2v
. (7)

The minimum size of the antenna can thus be obtained as

Amin = WH ≥ 4vλRm sin(θ)

c cos(θ)
. (8)

For a given azimuth bandwidth B, based on the Nyquist
sampling theorem and to avoid aliasing, the following has to
hold

B ≤ 1

2Ti
=

1

2vPRINYQ
, (9)
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Fig. 2: A ground-plane geometry for a spotlight mode SAR.

where Ti denotes the sampling interval in azimuth and
PRINYQ the Nyquist PRI, which satisfies

PRINYQ ∈
[

2λRm sin(θ)

cH cos(θ)
,
W

2v

]
. (10)

Since PRFNYQ = 1
PRINY Q

, from (10) the height of the SAR
antennas array is constrained by

H ≥ 2λRmPRFNYQ sin(θ)

c cos(θ)
. (11)

In other words, the minimum of the array height is propor-
tional to the radar PRF.

In the next section, we will show how CS can be used to
reduce the SAR antenna size by lowering the average radar
PRF.

III. ANTENNA SIZE REDUCTION BASED ON CS

The ground-plane spotlight mode SAR geometry corre-
sponding to Fig. 1 is shown in Fig. 2. In the spotlight mode,
the SAR steers at a fixed scene as the radar sensor traverses
the straight path. The transmitted pulse is the real part of

f(t) = exp
(
j(ω0t+ βt2/2)

)
rect(t), (12)

where ω0 and β denote the pulse carrier frequency and
chirp rate, t is the fast-time variable in range direction and
rect(t) equals one in [−Tc/2, Tc/2] and zero elsewhere with
Tc denoting the pulse duration. The return echoes from the
scene patch with range and azimuth swath SR and SA is first
multiplied by the delayed in-phase and quadrature versions of
f(t) and then passed through low-pass filters. Assume Rm,
which is the range distance between the radar antenna and
the center of the swath, is much larger than SR and SA and
neglect the residual video phase term. Then, the demodulated
received echoes which is also known as the phase histories, is
given by

sθ(t) =

∫ ∫
Γ

σ(x, y) exp{−jΩ(t)(x cos(θ)+y sin(θ))}dxdy,
(13)

where θ is the angle of incidence,

Γ =

{
(x, y)|4x

2

S2
R

+
4y2

S2
A

≤ 1

}
, (14)



Ω(t) = 2
c

(
ω0 + β(t− 2Rm

c )
)
, and σ(x, y) ∈ CNs×Nr is the

reflectivity profile in which Ns and Nr denote the number
of discretized slow-time and fast-time samples, respectively
[13]. It can be observed that sθ(t) in (13) represents the finite
projection slice through the 2-D Fourier transform of σ(x, y)
at angle θ [13], [18].

One can formulate the above described imaging problem as

s = Cσ, (15)

where s = [sθ1 , sθ2 , ..., sθNs
]T , sθi is the fast-time samples

at the observation angle θi, σ ∈ CNsNr×1 is the lexico-
graphically vectorized discrete reflectivity profile σ(x, y) and
C = [Cθ1 ,Cθ2 , ...,CθNs

]T is the discrete realization of the
observation kernel based on (13) [3]. Note that the SAR
observation matrix can be specifically written as

Cm,q
θi

= exp{−jΩ(tm)(xq cos θi + yq sin θi)}, (16)

where tm is the mth, m = 1, 2, ..., Nr, sampling instance of
the fast-time t and, xq and yq denotes the Cartesian coordinates
of the qth, q = 1, 2, ..., NsNr, element of σ [14].

In many SAR imaging applications, such as detection of
ships or targets on the ocean, the illuminated target scene
can be considered sparse. That is, only a small number of
pixels in the SAR image have large values and those pixels
correspond to targets of interest. With recent developments
in the theory and applications of CS, the number of samples
needed to reconstruct the target scene can be much lower than
the samples that satisfy the Nyquist sampling theorem [3],
[17]. Let Φ denote the restriction operator that selects the
phase histories, s. In the presence of noise η, one can write
the compressive SAR observation model as

s̃ = Φs + η = ΦCσ + η. (17)

Assume that σ has a sparse representation (or is compressible)
in some basis Ψ, so that σ = Ψα, where α is the sparse
coefficient vector corresponding to s in the basis Ψ. With this,
the CS SAR observation model (17) can be rewritten as

s̃ = ΦCΨα+ η = Θα+ η, (18)

where Θ = ΦCΨ is the resulting sensing matrix. Then, the
SAR reflectivity map σ can be recovered via α by solving the
following `1 optimization problem

min
α
µ‖α‖1 +

1

2
‖s̃−Θα‖22, (19)

provided that certain conditions are met [3], [8], where µ > 0
is a regularization parameter.

It was shown in [3] that the design of a CS undersampling
scheme for SAR entails the selection of phase histories such
that the mutual coherence of Θ is small. Since truly random
undersampling of the phase histories is not practical, two
slow-time undersampling schemes were introduced in [3] by
essentially modifying the PRF of the radar. These slow-time
undersampling schemes were random slow-time undersam-
pling and jittered slow-time undersampling. In jittered slow-
time undersampling, the slow-time samples are undersampled

uniformly over a rectilinear subspace [15]. The exact position
of the respective sample in each rectilinear subspace varies
randomly. Specifically, the time jitter in which the nth sample
is jittered by an amount ζn occurs at time nTjitter + ζn,
where Tjitter is the jittered sampling period and ζn are
uncorrelated [3]. The jittered slow-time undersampling via CS
enables the reduction of the average PRF compared to the
Nyquist sampling.

Suppose we apply jittered undersampling in the slow-time
axis which is at an average rate 1

D times the Nyquist rate,
which suggests

PRFCS =
1

D
· PRFNYQ, (20)

where PRFCS denotes the average value of the compressive
pulse repetition frequency. In the case of CS, (11) can be
rewritten as

H ≥ 2λRmPRFCS sin(θ)

c cos(θ)
(21)

=
1

D

(
2λRmPRFNYQ sin(θ)

c cos(θ)

)
. (22)

This means one can reduce the antenna height by a factor of
D, and be able to reconstruct the image without significant
loss of fidelity when using CS for SAR imaging. This has
significant impact on the design of various SAR systems.

However, as stated in the radar equations [12], the receive
power is proportional to the product of the transmit and receive
gains, which is proportional to the power of the antenna size,
i.e.,

Pr ∝ GtGr ∝ A2 ∝ H2,

where Gt and Gr are the transmit and receive gains and Pr
is the receiving power.

Thus, the reduction of the antenna size leads to the diminish-
ing of the receive power which implies the decrease in SNR. In
other words, to validate the feasibility of the proposed antenna
size reduction method, we need to compare the imaging results
with the results at lower SNR scenarios.

IV. NUMERICAL SIMULATIONS

In order to validate the feasibility of the proposed antenna
size reduction method, we evaluate the performance of the CS
SAR imaging algorithms based on jittered slow-time under-
sampling at different SNRs. As discussed earlier, the slow-
time undersampling rate D results in the reduction in antenna
size by 1

D . This results in the loss of SNR by 10 log10D
2dB.

For example, if we reduce the antenna size by half, then we
will approximately loose 6dB in SNR.

We use a point target and two closely point targets to
generate the phase histories for two simulations. We used the
following parameters corresponding to spaceborne SAR in our
both simulations: speed of light, c = 3 × 108 m/s, center
frequency, fc = 109 Hz, bandwidth, B = 6 × 108 Hz, radar
vehicle speed, v = 7000 m/s, elevation angle, θ = 30◦, the
illuminated integration angle, M θ = 0.5◦, the distance from
the initial position of the radar sensor to the center of the



CS based imaging result, SNR=-10dB
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Fig. 3: For a simulated single point target at zero azimuth and range, the first column shows the CS-based imaging results with
50% slow-time undersampled data for SNR=-10dB, SNR=0dB and SNR=10dB. The second column shows the corresponding
range profile, and the third column the azimuth profile. The forth column shows the CS-based imaging results with 50%
slow-time undersampled data for two very closely simulated point targets at SNR=-10dB, SNR=0dB and SNR=10dB

swath, Rm = 105 m and the number of discretized fast-time
and slow-time samples, Nr = Ns = 101.

The CS-based imaging results for single simulated point
target with 50% (D=2) slow-time undersampled data at SNR=
−10dB, SNR= 0dB and SNR= 10dB are shown in Fig. 3(a),
Fig. 3(e) and Fig. 3(i), respectively. It can be clearly seen from
these figures that the point target can be very well focused
when the SNR is above 0dB. Even at very low SNR (e.g.
−10dB) the point target is still focused only with the peak
side-lobe a little higher than that at 0dB. The imaging results
for two very closely spaced simulated point targets also with
50% (D=2) slow-time undersampled data at SNR= −10dB,
SNR= 0dB and SNR= 10dB are shown in Fig. 3(d), Fig.
3(h) and Fig. 3(l), respectively. It can be observed that for
two very closely spaced simulated point targets the imaging
results are still good even at low SNRs. It can be concluded
from these simulations that the CS-based imaging algorithm
can tolerate the noise to a large extent and it can still perform

well in the low SNR scenarios. Therefore, it is feasible to
reduce the antenna size using CS methods to a certain scale
(i.e. reducing it to the half of its original size as shown in this
example).

V. CONCLUSION

In this paper, we developed a method based on CS that
allows one to reduce the SAR antenna size beyond what
is required by the Minimum SAR Antenna Area Constraint
and be able to reconstruct the SAR image without significant
loss of fidelity. In particular, we utilized the jittered slow-
time random sampling scheme which can reduce the average
radar PRF, analyzed the minimum antenna size constraint and
verified the feasibility of the antenna size reduction when CS
methods are used for SAR imaging.

In the future, we will further analyze how the new antenna
design affects swath width, azimuth resolution, range and
azimuth ambiguity level, and clutter-and signal-to-noise ratios.
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