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Abstract

We introduce a novel classifier, called max residual clas-

sifier (MRC), for learning a sparse representation jointly

with a discriminative decision function. MRC seeks to

maximize the differences between the residual errors of the

wrong classes and the right one. This effectively leads to a

more discriminative sparse representation and better classi-

fication accuracy. The optimization procedure is simple and

efficient. Its objective function is closely related to the deci-

sion function of the residual classification strategy. Unlike

existing methods for learning discriminative sparse repre-

sentation that are restricted to a linear model, our approach

is able to work with a non-linear model via the use of Mer-

cer kernel. Experimental results show that MRC is able to

capture meaningful and compact structures of data. Its per-

formances compare favourably with the current state of the

art on challenging benchmarks including rotated MNIST,

Caltech-101, Caltech-256, and SHREC’11 non-rigid 3D

shapes.

1. Introduction

Sparseness has proven to be a valuable property in sta-

tistical signal processing. A random variable is sparse if

it is active more rarely compared to Gaussian random vari-

able of the same variance. Common measures of sparseness

are convex functions such as kurtosis and ℓ1-norm. This

comes from the property that expectation of convex func-

tion is large if data is concentrated in the extremes, which

are near zero and very far from zero. The ℓ0-norm is an-

other effective measure of sparseness. Optimization using

ℓ0-norm is proven equivalent to using ℓ1-norm under certain

assumptions [6]. Interestingly, maximization of sparseness

is also equivalent to maximization of independence if data

have a super Gaussian distribution, which is often the case

for natural images [14].

It has been conjectured that biological systems make use

of sparse coding strategy for representing visual and au-

ditorial inputs [26, 2]. These arguments are supported by

several theoretical, computational, and experimental stud-

ies which suggest that brains encode sensory information

using a small number of active neurons at any given point of

time [9, 37]. Sparse coding can confer several advantages

including higher storage efficiency and better energy con-

sumption. Although the connection between sparseness and

the underlying mechanism of biological systems is still be-

ing investigated, sparse coding has been found to work well

in practice. It leads to the emergence of new theories like

compressive sensing. Also, it significantly outperforms the

traditional approaches in many practical applications rang-

ing from compression, denoising, recognition, etc.

These merits of sparseness have result in recent explo-

sion of activities in modelling a signal using sparse repre-

sentation. This approach is further corroborated by the ob-

servation that most signals encountered in practical appli-

cations are compressible. In other words, their sorted mag-

nitudes in some basis obey power law decay. As a result,

a signal can be well approximated by linear combinations

of a few atoms taken from an appropriate basis or a dictio-

nary D. The choice of basis depends on the nature of data

and the task at hand. For example, predefined basis such as

wavelets or Fourier basis are the most common among the

traditional choices for signal compression.

In recent years, numerous papers have shown the benefits

of learning the basis directly from the data [7, 32, 34, 40].

This approach was first introduced in [26] which shows

that biologically plausible features similar to Gabor wavelet

can be learned from natural images. In its most basic

form, a basis is learned by minimizing the reconstruction er-

rors [1, 23]. This gives rise to a simple classification scheme

called the residual classifier. In particular, a novel signal

is assigned to the class with the smallest residual error re-

sulting from a sparse approximation. The residual classifier

works surprisingly well and, in many cases [35, 41], outper-

forms sophisticated classifiers like support vector machine

(SVM) [38]. One of the main reasons behind the successes

is the highly compact and robust data representation.

Margin classifiers and residual classifier represent two

different approaches to classification. The first one focuses

on learning a good decision function that maximizes the dis-

crimination, while the second one seeks a compact basis
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to represent the data. Over-fitting often happens to mar-

gin classifiers when heavy noise and high redundancies are

present within the input signals. The residual classifier is

more robust, however, is not optimal for classification since

no discriminative information is taken into account during

the training process. There have been several attempts to

enhance the discriminant power of the residual classifier

[25, 45]. However, they are mostly restricted to a linear

model with rather involved optimization procedures.

Our paper makes the following contributions:

• Proposes a novel framework for learning the sparse

representation jointly with discriminative classifier.

• Develops a simple and efficient optimization proce-

dure; Investigates the connection to margin-classifier.

• Provides an extension of our approach to the non-linear

case via the Mercer kernel.

• Presents numerous experimental results and discus-

sions to evaluate the proposed algorithm.

The rest of our paper is organized as follows. Section 1.1

summarizes the related efforts. Section 1.2 defines nota-

tions used through out the paper. Section 2 briefly explains

the necessary background on residual classification. Sec-

tion 3 introducesMRC formulation. Section 4 elaborates on

the optimization procedures. Section 5 interprets the MRC

formulation from the perspective of margin classifiers. Sec-

tion 6 presents an extension of MRC for handling non-linear

data. Section 7 discusses experimental results on challeng-

ing datasets such as rotatedMNIST and Shrec 3DNon-rigid

shapes. Finally, section 8 concludes the paper.

1.1. Related Work

Unsupervised dictionary learning has been used for the

classification of audio signals [13, 31], human faces [41],

and general images [30, 17, 43]. Shortly after, various

discriminative dictionary learning methods have been pro-

posed in the literature [24, 29, 47, 31, 45, 35]. In [24], a

multiclass version of the logistic function on the residual

errors is used to control the trade-off between reconstruc-

tion and discrimination. In contrast, [29] learns sparse rep-

resentation jointly with a linear classifier by maximizing the

discrimination of the sparse coefficients. In a similar vein,

[47] directly incorporates the labels in the dictionary up-

dating stage to enhance the discrimination of sparse coeffi-

cients in the context of a linear classifier. Inspired by the

fact that the accuracy of sparse coding stage depends on the

incoherence between the dictionary atoms, [31] adds a term

that promotes incoherence between dictionaries of different

classes. [45] has proposed combining both residual errors

and sparse coefficients for classification.

1.2. Notations

Vectors are denoted by bold lower case letters and ma-

trices by bold upper case letters. The ℓ0-pseudo-norm

‖.‖0 is defined as the number of non-zero elements in a

vector. The ℓ1-norm of an n dimensional vector x =
[x1, · · · , xn]T is defined as ‖x‖1 =

∑

i |xi|. The Frobe-

nius norm of a matrix X ∈ R
n×m is defined as ‖X‖F =

(
∑n

i=1

∑m
j=1 X(i, j)2)1/2. The total number of classes is

C. The dimension of input signal is denoted by n, output

signals by d, dictionary size by {Kc}C
c=1. The pair (y, ℓ)

denotes a training sample drawn from X , where y ∈ R
n

is an input signal and ℓ ∈ {1, . . . , C} is the corresponding
class label. Sc ∈ X denote the set of training samples from

c-th class (i.e. ℓ = c). Nc is the number of samples in Sc.

Yc ∈ R
n×Nc is the matrix formed by horizontal concate-

nation of column signals in Sc. Y = [Y1 . . .YC ] ∈ R
n×N

is formed by the concatenation of all signals, where N =
∑C

c=1 Nc is the total number of training from all classes.

2. Classification Using Residual From Sparse

Representation

Residual classifier comprises of two main stages. First,

class-specific dictionariesDc ∈ R
n×Kc are learned by min-

imizing the reconstruction errors:

{D∗
c ,X

∗
c} = argmin

Dc,Xc

‖Yc −DcXc‖2F (1)

subject to: ‖Xc(:, i)‖0 ≤ T0, ∀i ∈ {1, . . . , Nc}, (2)

where Xc(:, i) denote the i-th column of Xc ∈ R
Kc×Nc .

Note that the ℓ0-norm constraint can be replaced with an

ℓ1-norm constraint. This replacement does not affect the

development of our framework.

Second, given a novel sample (y, ℓ), sparse codes are
obtained for each class-specific dictionary using pursuit al-

gorithms like orthogonal matching pursuit (OMP) [27]:

xc = argmin
x

‖y−Dcx‖2F s.t. ‖x‖0 ≤ T0. (3)

Alternatively, one can also perform sparse coding in a col-

laborative manner in which the class-specific dictionaries

are concatenated together:

xcon = argmin
x

‖y−Dconx‖2F s.t. ‖x‖0 ≤ T0, (4)

where xcon = [xT
1 . . .xT

C ]T , Dcon = [D1 . . .DC ], and T0

is the chosen sparsity constant. The residual vector resulting

from the sparse approximation of y usingDc is simply

r(y, c) = y −Dcxc. (5)

In both cases, classification is done by assigning the

novel sample to the class of smallest residual errors mea-

sured by the magnitude of the residual vector:

ℓ̂ = argmin
c

‖r(y, c)‖2. (6)



3. Max Residual Classifier (MRC)

The residual classification strategy yields state-of-the-art

performances for many practical computer vision tasks [13,

31, 41, 30, 17, 43]. However, it is not optimal for classi-

fication since discriminative information is not considered

during training. It is also unable to transform data to a latent

space to deal with intra-class variation and non-linearity of

data like in SVM. In this section, we develop an alternative

learning framework to mitigate these drawbacks.

An important property of the residual classifier is its sole

dependence on the total differences of residual errors de-

fined as:

∆(y, c) =

C
∑

i=1

(

‖r(y, c)‖2 − ‖r(y, i)‖2
)

. (7)

Then the classification rule in (6) is equivalent to:

ℓ̂ = argmin
c

∆(y, c). (8)

This property constitutes the main intuition behind our ap-

proach. It suggests that the discriminative power of residual

classifier can be improved simply by minimizing:

E[∆(y, ℓ)] =

∫

(y,ℓ)∈X

∆(y, ℓ) dP (y, ℓ), (9)

where P (y, ℓ) is the joint probability distribution of input
signals and their corresponding labels. The minimization

of (9) promotes the reduction of residual errors for the right

classes, and the amplification of it otherwise. The objective

function can not be minimized directly since we often do

not have prior knowledge about P (y, ℓ). A common prac-

tice is minimizing the empirical estimation of the objective

function given a set of training samples:

Eemp[∆(y, ℓ)] =

C
∑

c=1

∑

(y,ℓ)∈Sc

∆(y, ℓ). (10)

Signals are usually assumed to lie on a low-dimensional

manifold embedded in a high dimensional space. Dealing

with the high-dimension is not practical for both learning

and inference tasks. To this end, we allow the transforma-

tion of signals to a latent space where representations are

more compact and the residual errors are more separated.

For notational simplicity, we first consider the case of lin-

ear transformation. The extension to non-linear case will

be presented in later section. Let W ∈ R
d×n denote the

desirable linear operator, whose rows are orthogonal and

normalized to unit-norm to prevent degenerated solutions.

The complete description of MRC is as follows:

{W∗,D∗
c ,X

c∗
con} = argmin

W,Dc,Xc

con

Eemp[∆(Wy, ℓ)] s.t (11)

WWT = I and ‖Xc
con(:, j)‖0 ≤ T0, ∀c = 1, . . . , C.

Here, we enforce sparseness in a collaborative manner.

Xc
con is the sparse coefficients associated with the c-th

class, resulting from approximating WYc using Dcon =
[D1 . . .DC ]. Xc(:, j) is the j-th column ofXc

con. The joint

sparsity constraint allows inter-class competition among

dictionary atoms and practically leading to better perfor-

mances. More explanation is provided in the next section.

4. Optimization Procedure

First, we expand the objective function in (11) to a more

useful form for optimization:

Eemp[∆(Wy, ℓ)] =
C
∑

c=1

∑

(y,ℓ)∈Sc

∆(Wy, ℓ) =

C
∑

c=1

C
∑

i=1

(

‖WYc −DcX
c
c‖2F − ‖WYc −DiX

c
i‖2F

)

, (12)

where Dc ∈ R
d×Kc is now the dictionary in the latent

space, and Xc
i is the sparse codes of WYc over Di. In

connection to (11), the joint sparse codes can be expressed

as Xc
con = [Xc

1
T . . .Xc

C
T ]

T
. The first term and the sec-

ond term of (12) are residual errors of the true classes and

the wrong ones, respectively. In order to solve (11), we

restrict the solution of Dc to the linear subspace spanned

by the input signals. It can be shown that most, if not all,

dictionary learning algorithms satisfy this condition. They

include MOD [8], KSVD [1], and their variants [23]. Un-

der this condition, we introduce a proposition to facilitate

the development of the optimization algorithm.

Proposition 1. There exists an optimal solution W∗ and

D∗
c to (11) that has the following form:

W∗ = (YA)T , D∗
c = ATKBc (13)

for someA ∈ R
N×d, someBc ∈ R

N×Kc , andK = YT Y.

As a corollary of the above proposition, W and Dc can

be found by optimizingA andBc. There are several advan-

tages for doing this. First, we can jointly updating both the

transformation and the dictionaries via A. Second, operat-

ing onA andBc permits an easy extension to the non-linear

case via Mercer kernels, which will be explained in details

later. The above proposition elucidates the effect of trans-

formation W on dictionaries. In particular, columns of W

define the subspace that dictionary atoms live in.

Solving forA: First, we fixBc and the associated sparse

coefficients Xc
con in order to solve for A. Substituting (13)

into (12) together with some simple algebraic manipula-



tions, we arrive at an elegant form of the objective function:

Eemp[∆(Wy, ℓ)] = tr
(

AT (R1 −R2)A
)

, (14)

R1 = (C − 1)

C
∑

c=1

(Kc −KBcX
c
c)(Kc −KBcX

c
c)

T , (15)

R2 =

C
∑

c=1

C
∑

i=1,i6=c

(Kc −KBiX
c
i )(Kc −KBiX

c
i )

T . (16)

where Kc = YT Yc ∈ R
N×Nc . R1 and R2 indicate how

well samples are approximated using dictionaries from their

own classes and from the other classes, respectively. The

solution of A is given by an eigendecomposition. In par-

ticular, columns ofA are the eigenvectors corresponding to

the smallest eigenvalues of (R1 −R2).
Solving for (Bc,X

c
con): We fix A in order to solve

for Bc. This can be done by first solving for Dc. Then

from (13)Bc is obtained by taking the pseudo-inverse:

Bc = (AT K)†Dc. (17)

where the (.)† denotes the Moore-Penrose pseudo-inverse.

Note that this operation is exact since we can show that Dc

is in the row subspace of A. Unfortunately, the direct opti-

mization of (11) over Dc is difficult. We instead minimize

its upper bound given by the following proposition.

Proposition 2. The objective function in (11) is upper

bounded by the following function:

L = (C − 1)C

C
∑

c=1

(

‖ATKc −DconXc‖2F (18)

+α

C
∑

i=1,i6=c

‖DiX
c
i‖2F − β‖ATKc‖2F

)

, (19)

where Dcon = [D1, . . . ,Dc], Kc = YT Yc, α = C
C−1 ,

and β = 1
2C .

The last term on the right hand side of (19) is indepen-

dent of Dc, therefore, can be discarded. The minimization

of (19) requires the joint dictionary to represent data from

all classes well (first term of L), and the representational

power from the wrong class to be small (second term of L).
This implicitly requires the residual magnitudes from the

wrong classes to be as large as possible. The upper bound

turns out to have an interesting connection to FDDL [45]. In

particular, the first two terms of L is similar to the first term

in the objective function of FDDL up to a scaling constant.

However, [45] does not provide any explicit connection be-

tween their objective function and the residual classifier. In

addition, FDDL does not allow the transformation of data

to a latent space in order to better deal with intra-class vari-

ations and non-linearities of data.

The upper-bound L is a convex function with respect to

Dc when W and Xk
c are fixed, which can be reduced to:

α

C
∑

k=1,k 6=c

‖DcX
k
c‖2F +

C
∑

k=1

‖Ek
c −DcX

k
c‖2F , (20)

where Ek
c = AT Kk −

C
∑

j=1,j 6=c

DjX
k
j . (21)

Ek
c is the approximation error when using all dictionaries

exceptDc to approximate signals from class k. The optimal

Dc is obtained simply by:

Dc = McV
†
c , where Mc =

C
∑

k=1

Ek
cX

k
c

T
, (22)

Vc = (1 + α)

C
∑

k=1,k 6=c

Xk
cX

k
c

T
+ Xc

cX
c
c
T
. (23)

The minimization of the upper bound L over Xc
con re-

duces to minimizing:

‖ATKc −DconX
c
con‖2F + α

C
∑

k=1,k 6=c

‖DkX
c
k‖2F (24)

subject to: ‖Xc
con(:, j)‖0 ≤ T0

Xc can be solved using any greedy algorithms. In this

paper, we use the orthogonal matching pursuit (OMP) al-

gorithm due to its high efficiency. The objective function

in (24) can be rewritten in a more OMP-friendly form:

‖Zc −Dc
expX

c
con‖2F , (25)

where Zc and Dc
exp are defined as follows:

Zc =
(

(AT Kc)
T

0 . . . 0

)T

, (26)

Dc
exp =















D1 D2 . . . DC

γ1D1 0 . . . 0
0 γ2D2 . . . 0
...

...
. . .

...

0 0 . . . γCDC















, (27)

γi =

{√
α, if i 6= c

0 if i = c
, ∀i ∈ {1, . . . , C}. (28)

The computation of OMP performed on the expanded

dictionary Dc
exp is only twice the computation of the OMP

performed on the original Dcon. This is because each col-

umn of Dc
exp contains at most 2d non-zero coefficients.

When the ℓ1-norm is used for measuring sparseness instead

of ℓ0-norm, the updating ofX
c
con can be done by algorithms

such as FISTA [3] and Iterative Projective Method [33].



5. Interpretation

For simplicity of notations, we consider a two-class

problem, i.e. C = 2. The generalization to C > 2 is

straight forward. Given a novel test signal z ∈ R
n with

an unknown label, the classification is done by considering

the expression in (29). In particular, the classifier predicts

class 1 if ∆(Wz, 1) ≤ 0 and class 2 otherwise, where:

∆(Wz, 1) = ‖r(Wz, 1)‖2 − ‖r(Wz, 2)‖2 =

d
∑

i=1

〈

vec(wT
i wi), vec

(

δ1δ
T
1 − δ2δ

T
2

)〉

(29)

where δi = z−YBixi, ∀i = [1, 2].

Here, vec(.) is the vectorization of a matrix, 〈., .〉 denote a
dot product between two vectors, and wi is the i-th row of

W. One can think of δi as the residual vectors in the input

space (Rn).
This is indeed a margin-classifier whose separating hy-

perplane specified by the normal vector
∑d

i=1 vec(w
T
i wi),

and input feature by vec
(

δ1δ
T
1 − δ2δ

T
2

)

. First, note that

the normal vector is a sum of d vectors. Each of which

constructs a simple classifier whose separating hyperplane

has only n degree of freedom instead of n2. The overall

decision function is equivalent to average pooling of d sim-

ple classifiers together for making a decision. Second, note

that the input feature contains second-order interactions be-

tween elements of residual vectors δi. This is similar to

classification using the residual vectors δi with a second-

degree polynomial kernel. The decision function in (29)

inherits the discriminative nature from margin-classifier as

well as the robustness from sparse representation.

6. Kernel Max Residual Classifier

Non-linearities arise in many practical applications of

computer vision. For example, popular descriptors such

as spatial pyramid and region of covariance both have

non-linear distance measures. Non-linear structure in data

can be exploited by transforming the data into a high-

dimensional feature space where they might exist as a sim-

ple Euclidean geometry. In order to avoid the computational

issues related to high-dimensionalmapping, Mercer kernels

are often used to carry out the mapping implicitly. We adopt

Mercer kernels for extending MRC to the non-linear case.

Let Φ : R
d → H be a mapping from the input space to

the reproducing kernel Hilbert spaceH. Let κ : R
n×R

n →
R be the kernel function associated with Φ. The mapping
M from the input space to the latent space is no longer lin-

ear. It, however, can be characterized by a compact, lin-

ear operator W : H → R
d that maps every input sig-

nal z ∈ R
n to WΦ(z) ∈ R

d. Following a similar spirit

with the proposition 1, by letting K = 〈Φ(Y), Φ(Y)〉H =

Input: Kernel matrix {Kc}C
c=1, sparse setting T0, dic-

tionary size {Kc}C
c=1, output dimension d.

Task: Find A∗ and {B∗c}C
c=1 by solving (11).

Initialize:

- Set iteration J = 1. Set columns of A to d dominant

eigenvectors of K. Set {Bc}C
c=1 to random matrices.

Stage 1: Sparse Coding

- Solve for Xc
con as in (25) using the OMP algorithm,

∀c = {1, . . . , C}
Stage 2: Dictionary Update

- Solve for Dc as in (22), ∀c ∈ {1, . . . , C}
- Update Bc = (AT K)†Dc, ∀c ∈ {1, . . . , C}
Stage 3: Transformation Update

- Compute R1 as in (15), and R2 as in (16)

- Perform eigendecomposition of (R1 −R2) = UΛUT

- SetA = U(:, IJ ), where IJ is the index set of d small-

est eigenvalues of (R1 −R2)
- Increment J = J + 1. Repeat from stage 1 until stop-

ping conditions reached.

Output: A, {Bc}C
c=1 and {Xc

con}C
c=1.

Figure 1. The MRC algorithm for both linear and non-linear cases.

[κ(yi,yj)]
N
i,j=1, we can show that:

W
∗ = AT Φ(Y)T ; D∗

c = AT
KBc. (30)

Using (30), we can re-write the mappingM explicitly as:

M : z ∈ R
n →WΦ(z) =

AT 〈Φ(Y), Φ(z)〉H = AT [κ(y1, z), . . . , κ(yN , z)]T (31)

LetKc = 〈Φ(Y), Φ(Yc)〉H. The non-linearMRC is equiv-

alent to minimization of the following objective function:

C
∑

c=1

C
∑

i=1

(

‖AT
Kc −DcX

c
c‖2F − ‖AT

Kc −DiX
c
i‖2F

)

(32)

We notice that the objective function does not explicitly de-

pend on Φ(.), but the kernel matrices Kc. The optimal A

and Bc can be solved in exactly the same way as in the lin-

ear case withKc replaced byKc. Note that in the non-linear

Figure 2. Sample digits from the rotated MNIST dataset. (a) Digits

with random rotations, (b) Digits with random rotations and image

backgrounds, (c) Digits with random backgrounds.



case, the dimension of the latent space can be higher than

the dimension of the input space and is only upper bounded

by the number of training samples. Figure 1 summarizes

the MRC algorithm for both linear and kernel cases.

7. Experimental Results

In this section, we evaluate our proposed algorithm

on several challenging datasets including rotated MNIST

digits [19], Caltech-101 objects [28], Caltech-256 [12],

SHREC’11 non-rigid 3D shapes [22]. Given a novel test

sample z ∈ R
n, we transform it to the latent space us-

ing (31). The classification is done as explained in section 2.

In particular, sparse coding is performed on the transformed

signal separately using class-specific dictionaries {Dc}C
c=1.

The test sample is classified to the class with the smallest

residual error. We also analyse and compare our method

with the state-of-the-art. For all the experiments in this

section, the maximum number of iteration in Figure 1 is

set to 80. Parameters selection is done by a 5-fold cross-

validation.

7.1. Rotated MNIST

The rotated MNIST benchmark [19] contains gray scale

images of hand-written digits of size 28 × 28 pixels. The

images were originally taken from the MNIST dataset in-

troduced in [21], and transformed in several ways to cre-

ate more challenging classification problems. In the first

dataset, called the mnist-rot, digits are rotated by ran-

dom angles generated uniformly between 0 and 2π radians.

The second dataset, called the mnist-rot-back-image, is

created by inserting random backgrounds into mnist-rot

dataset. The mnist-back-rand dataset is created by insert-

ing random backgrounds in the original MNIST digit im-

ages. For all 3 datasets, there are 10000, 2000, and 50000

images for training, validation, and testing, respectively.

Figure 2 shows sample images from the above datasets.

We learn MRC using all the training images and valida-

tion images. The parameters setting is as follows: d = 200,
T0 = 15,Kc = 500 ∀c ∈ {1, . . . , C}. Figure 3 displays the
transformations learned by MRC on the mnist-rot dataset

using a linear kernel. Each subplot of Figure 3 corresponds

to a row of the matrix W = AT YT . They have a strong

similarity to circular harmonic functions, thus, can capture

more rotational invariant features. These transformations

make a good sense given that the dataset consists a lot of

variation along the circular direction. A polynomial ker-

nel of degree 4 is used for classification since it usually

gives about 2% improvement over the accuracy of the lin-

ear MRC. Classification performances and comparison are

shown in table 1.

In all cases, MRC performances compare favourably to

the state-of-the-art. MRC performs significantly better than

all other methods for the last two datasets. While SRC does

Figure 3. Example of transformations learned by the max residual

classifier from the rotated MNIST dataset.

reasonably well for the first dataset, it performs poorly on

the last two datasets which contain backgrounds. This is be-

cause it operates on the original data which are heavily cor-

rupted by the insertion of backgrounds. In contrast, MRC

works better because it can captures the discriminative and

compact structure of data that are more robust against noise.

Dataset SVM [38] SRC[41] KSVD [1] FDDL [45] MRC

(a) 88.89 85.05 86.74 89.42 88.94

(b) 44.82 29.52 42.62 44.18 45.25

(c) 85.42 72.41 82.94 85.89 87.25

Table 1. Comparison of recognition accuracy (%) on the rotated
MNIST datasets: (a) mnist-rot, (b) mnist-rot-back-image, (c)

mnist-back-rand.

7.2. Caltech-101

We perform the second set of experiments on the

Caltech-101 dataset [28]. This dataset consists of 101 ob-

ject classes, and 1 background class collected from Internet.

The database contains a diverse and challenging set of im-

ages from buildings, musical instruments, animals and nat-

ural scenes, etc. A combination of 39 descriptors as in [10]

is used to represent an image. We follow the suggested pro-

tocol in [20, 15], namely, we train onm images, wherem ∈
{5, 10, 15, 20, 25, 30}, and test on the rest. The correspond-
ing parameters settings of MRC are: T0 = {3, 4, 5, 7, 8, 9},
d = {5, 10, 15, 20, 25, 30}, Kc = d ∀c = {1, . . . , C}. To
compensate for the variation of the class size, we normalize

the recognition results by the number of test images to get

per-class accuracies. The final recognition accuracy is then

obtained by averaging per-class accuracies across 102 cat-

egories. Table 2 shows our classification accuracy in com-

parison with the state-of-the-art.

This dataset is challenging because the number of train-

ing samples is small, making it more difficult for learn-

ing, especially when signals are high-dimensional. This

is because, with a fixed number of training sample, the

generalization of learning reduces as the dimension in-

creases. In contrast to other discriminative sparse repre-



# train samples 5 10 15 20 25 30

Irani [5] - - 65.0 - - 70.4

Griffin [12] 44.2 54.5 59.0 63.3 65.8 67.6

Lazebnik [20] - - 56.4 - - 64.6

Malik [46] 46.6 55.8 59.1 62.0 - 66.2
Yang [44] - - 67.0 - - 73.2

Wang [39] 51.15 59.77 65.43 67.74 70.16 73.44

SRC [41] 48.8 60.1 64.9 67.7 69.2 70.7

KSVD [1] 49.8 59.8 65.2 68.7 71.0 73.2

D-KSVD [47] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD [16] 54.0 63.1 67.7 70.5 72.3 73.6

MRC 54.5 64.1 69.3 73 75.8 77.5

Table 2. Comparison of recognition accuracy (%) on Caltech-101.

sentation methods, MRC allows transformation of data to

a low-dimensional latent space to deal with this problem.

In addition, MRC is able to integrate multiple descriptors

with non-linear distance measures. These are the reasons

for why MRC outperforms other sparse approaches, includ-

ing SRC [41] and discriminative KSVD [47], by a signifi-

cant margin. We note that better results on this dataset was

reported in [42]. Their method uses multiple kernel learning

which can be combined with MRC to improve the results

further.

7.3. Caltech-256

We also repeated the same experiment on Caltech-256

dataset. Table 3 shows our classification results in compari-

son with the state of the art. MRC’s performances compare

favourably with other discriminative learning approaches

for all training configurations. Better results on Caltech-256

were recently reported in [4]. However, we do not compare

with these results since their method focuses on learning

rich features from image intensities using hierarchical net-

works, while our goal is to design a better classifier.

# train samples 15 30

Griffin [12] 28.3 34.1

Gemert [36] - 27.2

Yang [18] 34.4 41.2

Gehler [11] 34.6 45.8

MRC 36.2 47

Table 3. Comparison of recognition results on Caltech-256 dataset.

7.4. SHREC’11 Non-Rigid 3D Shapes

The availability of new modelling, digitizing, and visu-

alizing 3D shapes has led to an explosion of interest in 3D

shape recognition in recent years. The problem is challeng-

ing due to various factors including 3D articulation, non-

rigid deformation, and occlusion. The common choices

of 3D shape matching and retrieval algorithms are nearest

neighbor and bipartite graph matching. On one hand, the

performance of nearest neighbor is heavily dependent on

Figure 4. Sample shapes from

the SHREC’11 dataset.

Method Accuracy

(%)

SVM [38] 93.7

SRC [41] 90.2

KSVD [1] 94.9

FDDL [45] 96.3

MRC 98.8

Table 4. Comparison of recog-

nition accuracy on SHREC’11.

the quality of shape descriptors, which are often corrupted

under noise and occlusion. On the other hand, graph match-

ing is often computationally expensive. To this end, we pro-

pose the use of MRC as an efficient method for classifying

3D shapes. We evaluate the algorithm on the SHREC’11

dataset. This is a large-scale 3D dataset consisting of 600

non-rigidly deformed shapes derived from 30 different ob-

jects. Figure 4 displays sample shapes with different articu-

lations containing in this database.

We choose to represent a 3D shape using a bag of graph

distance histograms (GDH) [22]. Each GDH is computed at

a random point on the 3D shape. The histogram is formed

by quantizing graph distances from the selected point to a

set of anchor points into 100 bins. For more details on the

computation of GDH, please refer to [22]. Each shape in

SHREC’11 dataset is represented with 1000 GDHs. 3 ran-

domly selected shapes (i.e. 3000 GDHs) of each class are

used for training, and the rest for testing. The parameters

setting for learning MRC is as follows: T0 = 10, d = 400,
Kc = 500 ∀c = {1, . . . , C}, polynomial kernel of degree
4. Given a test sample, we first use MRC to classify 1000

GDHs into 30 classes. Each GDH constitutes a vote for one

class. The final label is taken as the label of the class corre-

sponding to the majority of 1000 votes. We repeat the same

experiment with SVM, SRC, KSVD, and FDDL. Table 4

shows the performance of MRC in comparison with these

classification methods.

8. Conclusion

In this paper, we introduced a simple yet efficient ap-

proach for learning discriminative sparse representation.

Our approach allows discriminative decision function and

sparse representation to be jointly optimized. Our classifier

inherits the discriminative nature of margin-classifier and

the robustness from sparse representation. Extensive exper-

imental results on both 2D and 3D datasets have demon-

strated the effectiveness of our method. Our classifier out-

performs the current state-of-the-art despite its simplicity.
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