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Abstract—We have recently proposed a sparse Fourier trans-
form based on the Fourier projection-slice theorem (FPS-SFT),
which is an efficient implementation of the discrete Fourier
transform for multidimensional signals that are sparse in the
frequency domain. For a K-sparse signal, FPS-SFT achieves
sample complexity of O(K) and computational complexity of
O(K logK). While FPS-SFT considers the ideal scenario, i.e.,
exactly sparse data that contain on-grid frequencies, in this
paper, we propose a robust FPS-SFT (RFPS-SFT), which applies
to noisy signals that contain off-grid frequencies; such signals
arise in radar applications. RFPS-SFT employs a windowing step
and a voting-based frequency decoding step; the former reduces
the frequency leakage of off-grid frequencies below the noise
level, thus preserving the sparsity of the signal, while the latter
significantly lowers the frequency localization error stemming
from the noise. The performance of the proposed method is
demonstrated both theoretically and numerically.

Index Terms—Multidimensional signal processing, sparse
Fourier transform, automotive radar, projection-slice theorem.

I. INTRODUCTION

With the rapid development of advanced driver-assistance
systems (ADAS) and self-driving cars, automotive radars play
an increasingly important role in providing multidimensional
information about the dynamic environment to the control
unit of the car. Traditional automotive radars use frequency
modulation continuous waveforms (FMCW) to measure range
and range rate (Doppler) of targets, such as cars, pedestrians
and obstacles. A digital beamforming (DBF) automotive radar
[1] can provide target angular information both in azimuth and
elevation [2], which is desirable in the ADAS and self-driving
applications.

A typical DBF automotive radar uses a uniform linear
array (ULA) as receive array. For such configuration and
under the narrow-band signal assumption, each radar target can
be represented by a D-dimensional (D-D) complex sinusoid
[3], whose frequency in each dimension is related to target
range, Doppler and direction of arrival (DOA). Simultaneous
multidimensional parameter estimation of a DBF automotive
radar requires intensive computations. The conventional imple-
mentation relies on a D-D discrete Fourier transform (DFT),
which can be implemented by the fast Fourier transform
(FFT). The sample complexity of the FFT is O(N), where
N =

∏D−1
i=0 Ni is the number of samples in the D-D data

cube with Ni the sample length for the i-th dimension. For
N a power of 2, the computational complexity of the FFT

is O(N logN). Since N is typically large, the processing via
FFT is still demanding for real-time processing.

The recently proposed sparse Fourier transform (SFT) [4]–
[6] leverages the sparsity of signals in the frequency domain
to reduce the sample and computational complexity of DFT.
Different versions of the SFT have been investigated in various
applications including medical imaging [7], and radar signal
processing [8]. In radar signal processing, the number of radar
targets, K, is usually much smaller than N , which makes the
radar signal sparse in the D-D frequency domain. Hence, it is
tempting to replace the FFT with SFT in order to reduce the
complexity of radar signal processing. However, most of the
SFT algorithms are designed for 1-dimensional (1-D) signals,
while their extension to multidimensional signals is usually
not straightforward. This is because the SFT algorithms are not
separable in each dimension since operations such as detection
within an SFT algorithm must be considered jointly for all the
dimensions [8].

Multidimensional SFT algorithms are investigated in [7],
[9], [10]; those algorithms share a the same idea, i.e., reduction
of a multidimensional DFT into a number of 1-D DFTs. The
SFT of [9] achieves the sample and computational complexity
lower bounds of all known SFT algorithms by reducing a
2-dimensional (2-D) DFT into 1-D DFTs, computed along
a few rows and columns of a data matrix. However, such
algorithm requires a very sparse frequency domain signal,
whose frequencies are uniformly distributed. Such limitation
stems from the restriction of applying DFT only along axes
of the data matrix; this corresponds to projecting the 2-D
DFT onto its two axes. In [7], [10], the multidimensional
DFT is implemented via 1-D DFTs taken on samples along
a few lines extracted from the multidimensional data; those
lines are parameterized by predefined, deterministic slopes.
Although employing lines with various slopes leads to more
degrees of freedom for frequency projection of the DFT
domain, the limited choice of line slopes in [7], [10] is still
an obstacle in addressing less sparse signals. Moreover, the
localization of frequencies in [7], [10] is not as efficient as
that of [9]. The latter recovers the significant frequencies in an
iterative manner; the contribution of the recovered frequencies
is removed from the signal, creating a sparser signal for the
future iterations, while the former recover all frequencies in
one-shot based on a voting procedure, which involves higher
complexity.

We have recently proposed FPS-SFT [11], a multidimen-



sional, Fourier projection-slice based SFT, which enjoys low
complexity while avoiding the limitations of the aforemen-
tioned algorithms, i.e., it can handle less sparse data in the
frequency domain, with frequencies that are non-uniformly
distributed. FPS-SFT uses the low-complexity frequency lo-
calization framework of [9], and extends the multiple slopes
idea of [7], [10] by using lines of randomly runtime-generated
slopes. The randomly selected line slopes enables large de-
grees of freedom in frequency projection in FPS-SFT. Thus,
less sparse, non-uniformly distributed frequencies can be effec-
tively resolved. Employing random lines is not trivial, since
the line parameters, including line length and set of slopes
should be carefully designed to enable orthogonal and uniform
frequency projection (see Lemmas 1 and 2 in [11]). FPS-SFT
can be viewed as a low-complexity, Fourier projection-slice
approach for signals that are sparse in the frequency domain.
In FPS-SFT, the DFT of an 1-D slice of the D-D data is the
projection of the D-D DFT on that line. While the classical
Fourier projection-slice based method reconstructs the fre-
quency domain representation of the signal via interpolation of
frequency-domain slices, the FPS-SFT aims to reconstruct the
frequency-domain signal directly based on frequency domain
projections; this is achieved by leveraging the sparsity of the
signal in the frequency domain.

FPS-SFT of [11] considers the case with exactly sparse
data containing frequencies on the grid, while suffers from
frequency leakage when the data contains off-grid frequencies.
Also, its frequency localization, based on the so-called OFDM-
trick [4], is prone to errors when the signal contains noise. We
propose robust FPS-SFT (RFPS-SFT), a scheme that addresses
both aforementioned shortcomings, therefore, makes the FPS-
SFT more applicable to realistic radar applications where the
radar signal contains off-grid frequencies and noise.

The off-grid frequencies are also addressed in [8], where
we proposed a robust multidimensional SFT algorithm, i.e.,
RSFT. In RSFT, the computational savings are achieved by
folding the input D-D data cube into a much smaller data
cube, on which a reduced sized D-D FFT is applied. Although
the RSFT is more computationally efficient as compared to the
FFT-based methods, its sample complexity is the same as the
FFT-based algorithms. Essentially, the high sample complexity
of RSFT is due to its two stages of windowing procedures,
which are applied to the entire data cube to suppress the fre-
quency leakage. Inspired by RSFT, the windowing technique
is also applied in the RFPS-SFT to address the frequency
leakage problem, caused by off-grid frequencies. However,
instead of applying the multidimensional window on the entire
data as in the RSFT, the window is still designed for the full-
sized data, but is applied only on samples along lines; this
does not cause overhead in sample complexity. To address the
frequency localization problem in FPS-SFT stemming from
noise, RFPS-SFT employs a voting-based frequency local-
ization procedure, which significantly lowers the localization
error. The performance of RFPS-SFT is demonstrated both
theoretically and numerically, and the feasibility of RFPS-SFT
in automotive radar signal processing is shown via simulations.

Notation: We use lower-case (upper-case) bold letters to
denote vectors (matrix). [·]T denotes the transpose of a vector.
The N -modulo operation is denoted by [·]N , while the 1-
modulo operation is denoted by [·]1. [S] refers to the integer
set of {0, ..., S−1}. The cardinality of set S is denoted as |S|.
The DFT of signal x is denoted by x̂. ‖W‖1, ‖W‖2 are the
l1 and l2 norm of matrix W, respectively.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a radar configuration that employs a ULA
as the receive array. Assume that the ULA has N1 half-
wavelength-spaced elements. The radar transmits a FMCW
waveform with repetition interval (RI) Tp. We assume that
there exist K targets in the radar coverage. After de-chirping,
sampling and analog-to-digital conversion for both I and Q
channels, the received signal within an RI can be expressed
as a superposition of K 2-D complex sinusoids in noise [3],
i.e.,

r(n) = y(n) + n(n) =
∑

(a,ω)∈S

aejn
Tω + n(n), (1)

where n , [n0, n1]
T ∈ X , [N0] × [N1] is the sampling

grid and N0 is the number of samples within an RI. y(n) ,∑
(a,ω)∈S ae

jnTω is the signal part of the received signal;
(a,ω) represents a 2-D frequency, whose complex amplitude
is a, and it holds that 0 < amin ≤ |a| ≤ amax; the 2-D
frequency ω , [ω0, ω1]

T ∈ [0, 2π)2 represents the normalized
radian frequencies corresponding to targets’ range and DOA,
respectively. The set S, with |S| = K contains all the 2-D
frequencies. The noise, n(n), is assumed to be i.i.d., circularly
symmetric Gaussian, i.e., CN (0, σn). The SNR of a sinusoid
with amplitude a is defined as SNR , (|a|/σn)2.

The target’s range r, Doppler fd and DOA θ are related to
ω as ω0 = 2π(2ρr/c + fd)/fs, ω1 = π sin θ, where ρ, c, fs
are the chirp rate, speed of wave propagation and sampling
frequency, respectively; the chirp rate is defined as the ratio
of the signal bandwidth and the RI. Thus, the target parameters
are embedded in frequencies ω0, ω1, which can detected in the
2-D N0 ×N1-point DFT of the windowed r(n) [3], i.e.,

r̂(m) ,
1

N

∑
n∈X

w(n)r(n)e
−j2π

(
m0n0
N0

+
m1n1
N1

)
,

= ŷ(m) + n̂(m), m , [m0,m1]
T ∈ X ,

(2)

where w(n) is a 2-D window, introduced to suppress fre-
quency leakage generated by off-grid frequencies; N = N0N1;
and ŷ(m), n̂(m) are the DFTs of the windowed y(n) and
n(n), respectively. Assuming that the peak to side-lobe ra-
tio (PSR) of the window is large enough, such that the
side-lobe of each frequency in S can be neglected in the
DFT domain, the signal contribution in the DFT domain
can be viewed as a set of on-grid frequencies, i.e., S′ ,
{(a,ω) : ω , [2πm0/N0, 2πm1/N1]

T , [m0,m1]
T ∈ X} with

K < |S′| << N . Hence, x(n), the sample domain signal



component associated with the window w(n) and S′ can be
approximated by

x(n) ,
∑

(a,ω)∈S′
ae
j2π

(
m0n0
N0

+
m1n1
N1

)
, [n0, n1]

T ∈ X . (3)

Note that since the windowing degrades the frequency reso-
lution, each continuous-valued frequency in S is related to a
cluster of digital frequencies in S′; S′ can be estimated from
the DFT of the signal, and then lead to the frequencies in S
via quadratic interpolation [12].

The state-of-the-art DBF automotive radars also measure
target Doppler fd by processing a 3-dimensional (3-D) data
cube, generated based on N2 consecutive RIs [3]. The normal-
ized radian frequency ω2 in the Doppler dimension is related
to the Doppler as ω2 = 2πfdTp. The DBF automotive radars
that also measure elevation DOA introduce a 4-th dimension of
processing [2]; the DOA measurement in elevation is similar
to that of the azimuth DOA dimension. In those cases, the
proposed RFPS-SFT algorithm can be naturally extended to
multidimensional cases, where the reduction of complexity of
the signal processing algorithms is more significant.

III. THE RFPS-SFT ALGORITHM

The FPS-SFT algorithm proposed in [11] applies to mul-
tidimensional data of arbitrary size that is exactly sparse in
the frequency domain. In the 2-D case, FPS-SFT implements
a 2-D DFT as a series of 1-DFTs on samples taken along
lines, with each line being parameterized by the random
slope parameters α , [α0, α1]

T ∈ X and delay parameters
τ , [τ0, τ1]

T ∈ X . The signal along such line can be
expressed as

s(α, τ , l) , x([α0l + τ0]N0 , [α1l + τ1]N1)

=
∑

(a,ω)∈S′
ae
j2π

(
m0[α0l+τ0]N0

N0
+
m1[α1l+τ1]N1

N1

)
, l ∈ [L].

(4)

Taking an L-point DFT on (4), for m ∈ [L], we get

ŝ(α, τ ,m) ,
1

L

∑
l∈[L]

s(α, τ , l)e−j2π
lm
L

=
1

L

∑
(a,ω)∈S′

ae
j2π

(
m0τ0
N0

+
m1τ1
N1

) ∑
l∈[L]

e
j2πl

(
m0α0
N0

+
m1α1
N1
−mL

)
.

(5)

Let us assume that for all m ∈ [L], [m0,m1]
T ∈ X ,

f̂(m) ,
1

L

∑
l∈[L]

e
j2πl

(
m0α0
N0

+
m1α1
N1
−mL

)
∈ {0, 1}. (6)

This holds when m0α0

N0
+ m1α1

N1
− m

L is multiple of 1/L, which
requires the line length L to be the least common multiple
(LCM) of N0, N1 (see Lemma 1 of [11]).

When f̂(m) = 1, i.e.,[
m0α0

N0
+
m1α1

N1
− m

L

]
1

= 0, [m0,m1]
T ∈ X , (7)

(5) can be simplified as ŝ(α, τ ,m) =∑
(a,ω)∈S ae

j2π
(
m0τ0
N0

+
m1τ1
N1

)
.

The solutions of (7) with respect to m are equally spaced
points [m0,m1]

T that lie on a line with slope −α0N1/(α1N0)
in the N0 ×N1-point DFT domain (see the proof of Lemma
2 in [11]), and it holds that

m0 = [m′0 + kα1L/N1]N0
,m1 = [m′1 − kα0L/N0]N1

, k ∈ Z,
(8)

where [m′0,m
′
1]
T ∈ X is one of the solutions of (7).

Hence each entry of the L-point DFT of the slice taken
along a time-domain line with slope α1/α0 represents a
projection of the 2-D DFT along the line with slope
−α0N1/(α1N0), which is orthogonal to the time-domain line.
This is closely related to the Fourier projection-slice theorem.
In fact, FPS-SFT can be viewed as a low-complexity, Fourier
projection-slice based multidimensional DFT. This is achieved
by exploring the sparse nature of the signal in the frequency
domain, as explained in the following.

We apply the assumption that the signal is sparse in
the frequency domain; specifically, we assume that |S′| =
O(L). Then, if |ŝ(α, τ ,m)| 6= 0, with high probability,
the m-th bin is 1-sparse, and it holds that ŝ(α, τ ,m) =

ae
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, (a,ω) ∈ S′. In such case, the 2-D fre-

quency, (a,ω), can be ‘decoded’ using three lines of the same
slope but different offsets, i.e., τ , τ0 , [[τ0+1]N0 , τ1]

T , τ1 ,
[τ0, [τ1 + 1]N1 ]

T , respectively. Such design allows the fre-
quencies to be decoded independently in each dimension.
The frequency corresponding to the 1-sparse bin, m, can be
decoded as

m0 =

[
N0

2π
φ

(
ŝ(α, τ0,m)

ŝ(α, τ ,m)

)]
N0

,

m1 =

[
N1

2π
φ

(
ŝ(α, τ1,m)

ŝ(α, τ ,m)

)]
N1

,

a = ŝ(α, τ ,m)e−j2π(m0τ0/N0+m1τ1/N1).

(9)

In order to recover all the frequencies in S′ efficiently, each
iteration of FPS-SFT adopts a random choice of line slope
(see Lemma 2 of [11]) and offset. Furthermore, the contri-
bution of the recovered sinusoids in the previous iterations
is removed via a construction-subtraction approach so that
the signal becomes sparser in future iterations. Specifically,
assuming that for the current iteration the line slope and
offset parameters are α, τ , respectively, the recovered 2-D
frequencies are projected into L frequency bins to construct
the DFT along the corresponding line, i.e., ŝr(α, τ ,m) ,∑

(a,ω)∈Im ae
j2π

(
m0τ0
N0

+
m1τ1
N1

)
, m ∈ [L], where Im,m ∈ [L]

represent the subsets of the recovered frequencies, i.e., Im ,
{(a,ω) : [m0α0

N0
+ m1α1

N1
− m

L ]1 = 0, [m0,m1]
T ∈ X},m ∈

[L]. Next, the L-point inverse DFT (IDFT) is applied on
ŝr(α, τ ,m),m ∈ [L], from which the line, sr(α, τ , l), l ∈ [L]
due to the previously recovered frequencies is constructed.
Subsequently, the line points are subtracted from the signal
samples of the current iteration.



A. RFPS-SFT

FPS-SFT [11] is developed for data that is exactly sparse
in the frequency domain. Also, the frequencies are assumed
to be on the DFT grid. In the radar application however, the
radar signal contains noise. Also, the discretized frequencies
associated with target parameters are typically off-grid. In the
following, we propose RFPS-SFT, which employs the window-
ing technique to reduce the frequency leakage produced by the
off-grid frequencies and a voting-based frequency localization
to reduce the frequency decoding error due to noise.

1) Windowing: To address off-grid frequencies we apply
a window w(n),n ∈ X on the signal of (1). The PSR
of the window, ρw, is designed such that the side-lobes of
the strongest frequency are below the noise level, hence the
leakage of the significant frequencies can be neglected and
the sparsity of the signal in the frequency domain can be
preserved to some extend. The window design requires the
knowledge of the SNR of the strongest sinusoids contained
in the signal, which can be assumed a priori or obtained
via estimation in real-life applications. The following lemma
reflects the relationship between ρw and the maximum SNR
of the signal.

Lemma 1. (Window Design): Consider (2), which is the N0×
N1-point DFT of signal of (1). Let W ∈ RN0×N1 be the matrix
generated by the window function w(n),n ∈ X . The PSR of
the window, ρw, should be designed such that

ρw >
2‖W‖1√
π‖W‖2

√
SNRmax, (10)

Where SNRmax , a2max/σ
2
n.

Note that unlike the RSFT that applies windows on the
entire data cube, in RFPS-SFT, while the window is still
designed for the entire data cube, the windowing is applied
only on the sampled locations. Thus, the windowing does not
increase the sample and computational complexity of RFPS-
SFT.

2) Voting-based frequency decoding: When the signal is
approximately sparse, i.e., the signal spectrum is dominated by
K,K << N frequencies, the frequencies decoded by (9) are
not integers. Since we aim to recover the gridded frequencies,
i.e., S′ of (3), the recovered frequencies are rounded to the
nearest integers. When the SNR is low, the frequency decoding
could result into false frequencies; those false frequencies
enter the future iterations and generate more false frequencies.
To suppress the false frequencies, motivated by the classical
m-out-of-n radar signal detector [13], RFPS-SFT adopts an
nd-out-of-ns voting procedure in each iteration. Specifically,
within each iteration of RFPS-SFT, ns sub-iterations are ap-
plied; each sub-iteration adopts randomly generated line slope
and offset parameters and recovers a subset of frequencies,
Si, i ∈ [ns]. Within those frequency sets, a given frequency
could be recovered by n out of ns sub-iterations. For a true
significant frequency, n is typically larger than that of a false
frequency, thus only those frequencies with n ≥ nd are
retained as the recovered frequencies of the current iteration.

When (ns, nd) are properly chosen, the false frequencies can
be reduced significantly.

3) Lower bound of the probability of correct localization
and convergence of RFPS-SFT: The probability of decoding
error relates to the SNR, signal sparsity and choice of (ns, nd)
in RFPS-SFT. In the following, we provide the lower bound
for the probability of correct localization of the significant
frequencies for each iteration of RFPS-SFT, from which one
can derive the number of iterations of RFPS-SFT in order to
recover all the significant frequencies of sufficient SNR.

According to Section II, a 2-D sinusoid (a,ω) ∈ S of (1)
is associated with a cluster of 2-D sinusoids S0 ⊆ S′ of (3),
whose frequencies are on the grid of the N0×N1-point DFT.
Let us assume that the sinusoid (ad, 2π[m0/N0,m1/N1]

T ) ∈
S0 with [m0,m1]

T ∈ X has the largest absolute amplitude
among the sinusoids in S0. Assuming that the SNR of (a,ω)
is sufficiently high, the probability of correctly localizing
[m0,m1]

T in each iteration of RFPS-SFT is lower bounded
by

Pd ,
ns∑

n′
d=nd

(
ns
n′d

)
(P1Pw)

n′
d(1− P1Pw)

ns−n′
d , (11)

where P1 , (1 − |S′′|/N)N/L−1 with L = LCM(N0, N1) is
the probability of a sinusoid in S′′ being projected to a 1-sparse
bin, and S′′ with S′′ ⊆ S′ represents the remaining sinusoids
to be recovered in the future iterations of RFPS-SFT; Pw ,
(1−Pu)(1−Pv) is the lower bound of the probability of correct
localization for a 2-D sinusoid that is projected into a 1-sparse
bin for one sub-iteration of RFPS-SFT; Pu, Pv are the upper
bounds of the probability of localization error for the two
frequency components, m0,m1, respectively, which is defined
as Pu ,

(
σp(1− f|an|(δu))

)2
, Pv ,

(
σp(1− f|an|(δv))

)2
,

where δu , aπ‖W‖1/(2NN0), δv , aπ‖W‖1/(2NN1),
with W ∈ RN0×N1 the window that is applied on the data;
σp with 1

2 ≤ σp ≤ 1
2π is the parameter determined by

the phases of the error vectors contained in the 1-sparse
bin; f|an|(x) is the cumulative distribution function (CDF)
of the Rayleigh distribution, which is defined as f|an|(x) ,

1− e−x
2/(2σ2

a′n
)
, x > 0, where σ2

a′n
, σ2

n‖W‖22/(2NL). The
Rayleigh distribution arises from the amplitude of the complex
Gaussian noise.

Essentially, (11) represents the complementary cumulative
binomial probability resulted from the nd-out-of-ns voting
procedure, where the success probability of each experi-
ment, i.e., localizing (ad, 2π[m0/N0,m1/N1]

T ) in each sub-
iteration of RFPS-SFT is P1Pw. When |S′| is known, (11)
can be applied to estimate the largest number of iterations
(the upper bound) of RFPS-SFT in order to recover all the
significant sinusoids in S′ since the least number of recovered
sinusoids in each iteration can be estimated by |S′′|Pd.

4) Multidimensional extension: The multidimensional ex-
tension of RFPS-SFT is straightforward and similar to that of
FPS-SFT (See Section 2.3 of [11] for details).

5) Complexity analysis: The RFPS-SFT executes T it-
erations; within each iteration, ns sub-iterations with ran-



domized line parameters are invoked. The samples used in
each sub-iteration is 3L, since three L-length lines, with
L = LCM(N0, N1) are extracted to decode the two frequency
components in the 2-D case. Hence, the sample complexity of
RFPS-SFT is O(3TnsL) = O(L).

The core processing of RFPS-SFT is the L-point DFT,
which can be implemented by the FFT with computational
complexity of O(L logL). In addition to the FFT, each sub-
iteration needs to evaluate O(|S′|) frequencies. Hence the
computational complexity of RFPS-SFT is O(L logL+ |S′|).
Assuming that |S′| = O(L), the sample and computational
complexity can be simplified as O(|S′|) and O(|S′| log |S′|),
respectively. Furthermore, since K = O(|S′|), the sample
and computational complexity of RFPS-SFT can be further
simplified as O(K) and O(K logK), respectively.

Generally, in the D-D case, according to the multidi-
mensional extension, it is easy to see that the sample and
computational complexity of RFPS-SFT are O(DK) and
O(DK log(DK)), respectively, when K = O(L).

IV. NUMERICAL RESULTS

Effect of windowing on frequency localization: For the data
that contains off-grid frequencies, the PSR of the required
window is given in Lemma 1. However, the larger the PSR, the
wider the main-lobe of the window, which results into larger
frequency clusters in the DFT domain and thus larger |S′| (see
(3)), i.e., a less sparse signal. Moreover, the larger the PSR,
the smaller the SNR of the windowed signal, which leads to
larger frequency localization error. Hence, for a signal with
known maximum SNR, SNRmax, there exists a window with
the optimal PSR in terms of frequency localization success
rate, i.e., ratio of number of correctly localized frequencies
to the number of significant frequencies, which is |S′| in one
iteration of RFPS-SFT. Fig. 1 shows the numerical evaluation
of such optimal windows for signals for various values of
SNRmax and sparsity level, i.e., K = |S|. According to
(10), for signals with SNRmax equal to 20dB and 30dB,
the PSR of the window should be larger than 56dB and
60dB, respectively. The corresponding optimal PSR for the
Dolph-Chebyshev windows appear to be 60dB and 70dB,
respectively. Fig. 1 shows the success rate of the first iteration
of RFPS-SFT, which is the lowest success rate of all the
iterations.

Fig. 2 demonstrates localization of off-grid 2-D frequencies
of RFPS-SFT using Dolph-Chebyshev window for various
values of PSR. A windows with insufficient PSR leads to
miss detections and false alarms (see Fig. 2 (a)), while a
window with sufficiently large PSR yields good performance
in frequency localization, with a trade-off of causing larger
frequency cluster sizes (see Fig. 2 (b)).
Effect of voting on frequency localization: The nd-out-of-
ns voting in frequency decoding procedure of RFPS-SFT can
significantly reduce the false alarm rate. A low false alarm
rate in each iteration of RFPS-SFT is required since the false
frequencies would enter the next iteration of RFPS-SFT, which
creates more false frequencies. For a fixed ns, the larger the
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Fig. 1. Frequency localization success rate of the first iteration of RFPS-SFT
versus window PSR. The Dolph-Chebyshev windows with various PSR is
applied. N0 = N1 = 256; (ns, nd) = (3, 2). The results are averaged based
on 100 iterations of Monte Carlo simulation.
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Fig. 2. 2-D frequency recovery with different window. K = 10, σn =
1, amin = amax, SNRmax = 30dB, (ns, nd) = (3, 2), T = 30.
Dolph-Chebyshev windows with various PSR are adopted. The ground truth
represents S′ of (3), which relates to the window. (a) ρw = 45dB. (b)
ρw = 70dB.

nd/ns is, the smaller the false alarm rate is. However, this
involves a trade-off between false alarm rate and complexity;
specifically, the smaller the false alarm rate, the larger the
number of the iterations required to recover all the significant
frequencies.

Figs. 3 and Fig. 2 (b) show the examples of 2-D fre-
quency recovery using different (ns, nd). In Fig. 3 (a), we set
(ns, nd) = (1, 1), which reduces to the frequency localization
in FPS-SFT, i.e., without voting. In this case, one can see that
many false frequencies are generated. Figs. 3 (b) and Fig. 2
(b) show the frequency localization result with (ns, nd) equal
to (3, 1) and (3, 2), respectively; while the former generates
large amount of false frequencies, the latter exhibits ideal
performance.
Effect of the SNR and the sparsity level on the number of
iterations of RFPS-SFT: The number of iterations of RFPS-
SFT to recover all the significant frequencies is affected by the
SNR and the sparsity level of the signal. A low SNR and less
sparse signal requires large number of iterations. As discussed
in Section III-A3, we are able to estimate the largest number of
iterations that recovers S′. Figs. 4 (a) shows the predicted and
measured number of recovered frequencies in each iteration
of RFPS-SFT for |S′| equal to 1000. Fig. 4 (b) shows the
predicted and measured number of iterations of RFPS-SFT for
signal with various SNR and sparsity level. The figure shows
that the number of iterations upper bounds are consistent with
the measurements.
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Fig. 3. Effect of voting on 2-D frequency recovery. K = 10, σn =
1, amin = amax, SNRmax = 30dB. T = 30 for (a)-(c). Dolph-
Chebyshev windows with ρw = 70dB is applied. The nd-out-of-ns voting
procedure significantly improves frequency localization performance when
(nd, ns) is properly designed. (a) (nd, ns) = (1, 1). (b) (nd, ns) = (3, 1).
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Fig. 4. Effect of SNR and sparsity level on number of iterations of RFPS-SFT.
(a) |S|′ = 1000, SNR = 30dB, σp = 1/6. (b) Comparison of predicted and
measured number of iterations for various SNR and sparsity level, |S′|.

TABLE I
RADAR PARAMETERS

Parameter Symbol Value
Center frequency fc 76GHz
Pulse bandwidth bw 200MHz

Pulse repetition time Tp 89us
Number of range bins N0 512

Number of PRI N1 256
Number of antenna elements N2 16

Maximum range Rmax 300m

Radar target reconstruction: We simulate the target re-
construction for a DBF automotive radar via RFPS-SFT and
compare with the RSFT. The main radar parameters are listed
in Table I; such radar configuration represents a typical long-
range DBF radar [3] except that we set the number of antenna
elements to be moderately large to provide a better angular
measurement performance. Fig. 5 shows the target reconstruc-
tion of 3 radar targets via 3-D FFT, RFPS-SFT and RSFT. All
the three algorithms are able to reconstruct all the targets.
Compared to the FFT and RSFT, RFPS-SFT only requires
approximately 3% of data samples, which exhibits low sample
complexity. However, we note that RFPS-SFT requires larger
SNR than the FFT and the RSFT based methods. In near
range radar applications, such as automotive radar, high SNR
is relatively easy to obtain.

V. CONCLUSION

In this paper, we have proposed RFPS-SFT, a robust ex-
tension of the SFT algorithm based on Fourier projection-
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Fig. 5. Radar target reconstruction via FFT, FPS-SFT and RSFT. (a)
Reconstruction of three targets. (b) Details of the frequency locations that
are reconstructed for one of the three targets.

slice theorem. We have shown that RFPS-SFT can address
multidimensional data that contains off-grid frequencies and
noise, while enjoys low complexity. Hence the proposed
RFPS-SFT is suitable for the low-complexity implementation
of multidimensional DFT based signal processing, such as the
signal processing in DBF automotive radar.
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