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Abstract

In this paper, we address the problem of quickly detecting
intrusions with lower false detection rates in mobile Active
Authentication (AA) systems. Bayesian and Minimax ver-
sions of the Quickest Change Detection (QCD) algorithms
are introduced to quickly detect intrusions in mobile AA sys-
tems. Furthermore, we introduce a new evaluation metric
for comparing the performance of different AA systems. Ef-
fectiveness of the proposed framework is demonstrated us-
ing three publicly available unconstrained AA datasets. It
is shown that the proposed QCD-based intrusion detection
method can perform better than many traditional AA meth-
ods in terms of latency and low false detection rates.

1. Introduction

Modern smartphone devices have revolutionized the
consumer lifestyle in the span of the last decade. With the
services they provide in communication, networking, enter-
tainment, education, finance and even in navigation, it has
become the indispensable human companion. As a result,
modern mobile devices contain agglomeration of personal
user information ranging from personal photographs, con-
tacts, banking information to passwords. Therefore, mod-
ern mobile devices hold a substantial intangible value in
terms of content in addition to their physical value. In this
context, information security in mobile devices has become
a key concern for the consumers. According to [11], one
third of smartphone users are likely to pay up to $1,000 to
retrieve stolen phone data alone. This amount is a reflection
of the value of the sensitive information modern mobile de-
vices hold.

In order to overcome this issue of security and privacy of
mobile devices, many smartphone device vendors have in-
troduced a remotely operable kill switch that can wipe out
data from the mobile memory [6]. However, in the case of
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Figure 1. The problem of quick intrusion detection in face-based
AA systems. (A-I) show the genuine user with varying facial ex-
pressions. An intrusion occurs starting from (J). Active authen-
tication systems should be able to detect intrusions as quickly as
possible without causing too many false detections.

a stolen device, there is no guarantee that information theft
wouldn’t occur by the time when the kill switch is operated.
On the other hand, mobile devices needn’t necessarily be
stolen for information theft to take place. Information theft
could take place when an intruder or attacker has physical
access to the device; typically when the device is left be-
hind in public places or during a burglary even without the
attention of the owner [11]. Therefore, it is important to ac-
tively monitor the possibly of an intrusion to reduce the risk
of information theft in mobile devices.

To deal with this issue, Active Authentication (AA),
where users’ identity is continuously monitored and veri-
fied, has emerged as a promising solution for the informa-
tion security problem in mobile devices [15]. Recently pro-
posed AA systems rely on various sensor information to
arrive at physiological and behavioral profiles of the gen-
uine user to continuously verify his/her identity. For exam-
ple, a user’s face, which is a physiological biometric, can
be captured using the front-facing camera of a mobile de-
vice and can be used to continuously authenticate a mobile
device user [9], [13], [4], [7], [16]. On the other hand, sen-
sors such as gyroscope, touchscreen and accelerometer can
be used to measure behavioral biometric traits such as gait
[23], [10], touch gestures [8], [17], [22] and hand move-
ment [19] transparently. It should be noted that most of
these works concentrate on producing features and classi-
fiers that produce higher intrusion detection rates.

However, to the best of our knowledge, how fast an AA
system could detect an attacker has not been widely studied
in the literature. Yet, it remains to be an important feature
of an AA system. For example, if an AA system requires 3-



Figure 2. An overview of the proposed QCD-based AA method.

4 minutes to detect an intrusion successfully, it would grant
an intruder plenty of time to extract required information
prior to the lock down. Hence, unless intruder detection is
sufficiently fast, the AA system would hold a little value in
practice no matter how high its detection accuracy is. For
example, consider a series of observations captured from
the front-facing camera of a mobile device as shown in Fig-
ure 1. Frames (A-I) in Figure 1 belong to the genuine user
of the device. From frame J onwards an attacker starts to op-
erate the device. In this scenario, frame J signifies a change
point (i.e. an intrusion). The main objective of an AA sys-
tem is to detect intrusions with a minimal delay while main-
taining a low rate of false detections. For instance, note the
changes in facial expression of the genuine user in frames
(D-F). While having a fast response, an AA system ideally
should not falsely interpret this expression change as an in-
trusion.

Most of the existing AA systems rely on a single obser-
vation to determine the authenticity of the user [16], [8],
[7]. Intruder detection scheme proposed in [21] uses a sin-
gle step time series along with a time decaying function to
update the belief on the user’s authenticity. A false accept
rate (FAR) based mapping function is summed with a de-
caying function in [4] to produce a score which is used to
detect intrusions through thresholding. All of these meth-
ods are ad-hoc in nature and do not generalize well to more
practical and generic setups.

In this paper, we propose Quickest Change Detection
(QCD), which is a well-studied problem in statistical signal
processing and information theory, for the purpose of in-
trusion detection in mobile AA systems. Figure 2 gives an
overview of the proposed method. As opposed to a conven-
tional AA system, the proposed system utilizes all past ob-
servations along with distributions of match and non-match
data of the genuine user to arrive at a decision. The pro-
posed method does not require a specific feature nor a spe-
cific classifier; therefor it can be built upon any existing AA
system to enhance prevailing performance. Furthermore,
we introduce a set of parameters that can be used to evalu-
ate the performance of the intruder detection scheme of an
AA system.

Remainder of the paper is organized as follows. Sec-
tion 2 describes the quality measures for intruder detection
in AA. In Section 3, we first briefly introduce the idea be-
hind QCD and then present our proposed framework for

QCD-based intrusion detection in mobile AA systems. Ex-
perimental results are presented in Section 4 and Section 5
concludes the paper with a brief summary and discussion.

2. Intruder Detection in AA
A typical AA system consists of several stages as illus-

trated in Figure 3. Initially, sensor data of the genuine user
is obtained through an enrollment phase and a set of sig-
natures are constructed using features of the enrolled data.
These set of signatures serve as the gallery at the matching
stage. When a probe is present, the same set of features as
before are obtained from the sensor data and are compared
against the gallery using a matching rule. At the end of the
comparison phase, a match score xi is obtained. At the nth

time instance based on previously observed matched scores
x1, x2, ..., xn, a decision is made as to whether an intrusion
has occurred or not. If an intrusion has occurred, the phone
is locked and the user is prompted to enter a password. Oth-
erwise the user is allowed to continue with the device until
the next sensor observation.

Figure 3. An overview of a typical AA system.

The score distribution obtained as explained for the gen-
uine user is henceforth referred to as the match score dis-
tribution (f0). Similarly, score distribution of non-genuine
users (intruders or attackers in this context) is referred to
as the non-match distribution (f1). Hence, when an intru-
sion occurs, the distribution of observations changes from
being match to non-match. Therefore, an intrusion point
is treated as a change point. With this background, we use
the words pre-change distribution and match distribution in-
terchangeably. Similarly, post-change distribution and non-
match distribution are used interchangeably. If the match
distribution has considerable overlap with the non-match
distribution, then the detection results tend to be poor. This
is typically the case in mobile devices where sensor data ac-
quisition appears in an unconstrained setup. For example,
in the case of face-based AA, face images captured by the
front-facing camera contain profile faces, tilted faces as well
as partial faces. Therefore, the resulting match score distri-
bution tends to be broad. On the other hand, usage of more
sophisticated tools that provides better separation between
the two distributions are not preferred for mobile applica-
tions due to hardware limitations of the device. As a result,
match and non-match distributions tend to overlap consid-



erably. In this context, a more scientific approach backed by
a theoretical reasoning is essential to perform the detection
of the change. To this end, we propose the use of statistical
QCD to detect intrusions in the mobile AA systems.

In the following subsections, we identify two essential
characteristics such an AA system needs to possess in order
for it to be useful in practice.

2.1. Average Detection Delay (ADD)

The primary goal of an AA system is to promptly de-
tect intrusion when the intruder attempts to access the de-
vice. Therefore, detection delay of intruder attempts is an
important characteristic of a mobile AA system. If the sys-
tem requires large number of sensor samples to identify an
intrusion, there is a possibility that information theft has al-
ready occurred by the time intrusion was detected. Hence,
from the point view of security [3], it is more desirable to
have an AA system with a low intrusion detection delay.

2.2. Probability of False Detections (PFD)

On the other hand, if an AA system generates large num-
ber of false intruder detections, it would reduce the usability
[3] of the user. For example, consider the system shown in
Figure 3. The AA system prompts the user to enter a pass-
word every time AA fails. If the AA system consistently
generates false intruder detection alarms, the user will be
prompted to enter the password regularly - thereby greatly
degrading consumer experience (usability).

As a consequence, Average Detection Delay (ADD) and
Probability of False Detections (PFD) play a vital role in
any AA system. If T is the real change point, mathemati-
cally ADD and PFD at time τ are defined as follows

ADD(τ) = E[(τ − T )+]

PFD(τ) = P [τ < T ], (1)

whereE[.] and P [.] are the expectation and probability with
respect to τ , respectively and [(x)+] denotes the positive
part of x.

From these definitions, one can see that there is an in-
verse correlation between these two quantities. Generally,
obtaining more sensor samples enhances the chance of mak-
ing a more accurate decision on whether an intrusion has oc-
curred or not. However, this can only be done at the cost of
having a relatively larger intrusion detection delay. There-
fore, there is always a trade-off between intrusion detection
delay and false intruder detection rate. Since, the relation-
ship between ADD and PFD characterizes the performance
of an AA system, we propose using the ADD-PFD graph
as a tool to compare the performance of different AA sys-
tems. Shown in Figure 4 is a typical ADD-PFD plot drawn
for a non-sequential AA system. As expected, in order to
obtain very accurate detections (corresponding to a lower

Figure 4. A typical PFD-ADD curve.

PFD), more samples are required to be processed. More-
over, according to Figure 4, making a decision based on
fewer samples are prone to more false intruder detections.

Adhering to security and usability principles [3], the ob-
jective of an AA system is to be able to detect intrusions
while ensuring probability of false intruder detection is very
low. Therefore, the AA systems should operate in a region
where both ADD and PFD are lower. Based on this ratio-
nale, operable area of an AA system is the shaded area as
shown in Figure 4.

3. Quickest Change Detection

Quickest Change Detection is a branch of statistical sig-
nal processing that thrives to detect the change point of sta-
tistical properties of a random process [20], [1], [2]. The
objective of QCD is to produce algorithms that detect the
change with a minimal delay (ADD) while adhering to false
alarm rate constraints (PFD). Consider a collection of ob-
tained match scores, x1, x2, · · · , xn, from the AA system
shown in Figure 2. Assuming that individual scores are mu-
tually independent, QCD theory can be used to determine
whether a change has occurred before time n or not. In the
following subsections we present two main formulations of
QCD.

3.1. Bayesian QCD (BQCD)

In the Bayesian setting [20], it is assumed that the time τ
when the change occurs is distributed according to a ge-
ometric distribution, Geometric(ρ). Here, the value of ρ
is the probability of a change occurring (an intrusion in
this context). Conditioned on the change point τ , obser-
vations obtained before and after the change follows two
distinct distributions, f0 and f1. At each time n, based on
πi = P{τ = n} for all i < n, a decision is made as to
whether a change has occurred or not. Based on this formu-



lation, ADD and PFD can be redefined as

ADD(τ) = E[(τ − T )+] =

n∑
i=0

πnEn[(τ − T )+] (2)

PFD(τ) = P [τ < T ] =

n∑
i=0

πnPn[τ < T ], (3)

where, for a Geometric(ρ) distribution,

πn = P{τ = n} = (1− ρ)n−1ρ

for 0 < ρ < 1 and n > 0. Then the Bayesian QCD becomes
an optimization problem where the requirement is to min-
imize ADD subjected to a constraint on PFD. If the class
of stopping times adhering to the constrain α on PFD is de-
fined as Cα = {τ : PFD(τ) < α}, then the QCD problem
takes the form of Shiryaev’s formulation [18], [20]. Ob-
jective of the Bayesian QCD formulated by Shiryaev is to
obtain a stopping time τ ∈ Cα to minimize ADD(τ ) for a
given α. If pn is the posterior probability that a change has
occurred at time n given observations up to time n

pn = P [T 6 n|Xn],

where Xn = (x1, x2, ..., xn), then using the Bayes rule, it
was shown in [20] that pn follows a recursive formula as
follows

pn+1 = Φ(xn+1, pn),

where

Φ(xn+1, pn) =
p̃nL(xn+1)

p̃nL(xn+1) + (1− p̃n)
.

Here, p̃n = pn + (1− pn)ρ and

L(xn+1) =
f1(xn+1)

f0(xn+1)

is the likelihood ratio with p0 = 0.
From Theorem 3.1 in [2], this recursive formula provides

an optimal solution for the problem in hand with a stopping
time of τs = inf{n > 1 : pn > Aα} if A ∈ (0, 1) can be
chosen such that PFD(τs) = α. This method is known as
the Shiryaev test and its proof can be found in [18], [2].

3.2. MiniMax QCD (MQCD)

In most of the practical AA systems, probability of in-
trusion is not known in advance. Therefore, it is important
to study QCD in a non-Bayesian setting. MiniMax QCD
formulation treats the change point τ as an unknown deter-
ministic quantity [1], [2]. However, as earlier, it is assumed
that pre-change distribution, f0, and post-change distribu-
tion, f1, are known. Due to the absence of prior knowledge

on the change point, a reasonable measure of PFD is the
reciprocal of mean time to a false detection as follows

PFD(τ) =
1

E∞[τ ]
.

Based on this definition of PFD, Lorden proposed a min-
imax formulation for QCD [12], [1]. Consider the set of
stopping times Dα for a given constraint α such that

Dα = {τ : PFD(τ) 6 α}.

Adhering to this constraint, Lorden’s formulation optimizes
a cost function to solve the minimax QCD problem. In par-
ticular, the cost function is the supremum of the average
delay conditioned on the worst possible realizations as fol-
lows

WADD(τ) = sup
n>1

ess supEn[(τ − n)+|Xn].

Lorden’s formulation tries to minimize the worst possible
detection delay subjected to a constraint on PFD [12]. It was
shown in [2], that the exact optimal solution for Lorden’s
formulation of QCD can be obtained using the CumSum
algorithm [14].

3.3. CumSum Algorithm

Define the statistic W (n) such that

W (n) = max
16k6n+1

n∑
i=k

log(L(xi)),

and W0 = 0, where L(Xn) = f1(Xn)/f0(Xn) is the log
likelihood ratio. It can be shown that the statistic W (n) has
the following recursive form

Wn+1 = (Wn + log(L(Xn+1))+).

Time at which a change occured (τ ) is chosen such that

τc = inf{n > 1 : Wn > b},

where b is a threshold. More details about the CumSum
algorithm can be found in [14], [1], [2], [20].

3.4. Proposed Algorithm

Based on the Bayesian and MiniMax QCD algorithms,
we propose an authentication algorithm to detect intrusions
in an AA system. Essentially, our proposal is independent
of all other base elements of an AA system (Figure 3).
Therefore, existing AA systems can easily be extended to
incorporate the proposed QCD method.

Training: In the training phase, the user is asked to perform
a wide variety of tasks and sensor data are obtained. Pre-
determined features are then evaluated from the obtained



sensor data. Part of the obtained features are stored in mem-
ory to serve as the gallery in the AA system. The remaining
features are compared against chosen signatures to build a
match distribution. In addition, the same set of signatures
are used to construct a non-match distribution based on the
non-user features as illustrated in Figure 2. For the experi-
ments conducted in this paper, a sample of other class data
was used to model the non-match distribution. In practice,
a common set of pre-obtained sensor data specific for the
device can be used for this purpose. For example, face
images of different users obtained from the same device
can be made available in a cloud storage system for training.

input : Detection score of most recent iteration
score, match score xn, match distribution
f0, non-match distribution f1, parameter ρ,
Threshold

output: Detection of an intrusion (Boolean)

//If it’s the initial iteration set score to be zero;
if isempty(score) then

score = 0 ;
else
end
//Calculate likelihood ratio;
L = log(f1(xn)/f0(xn));
p̃n = score+ (1− score)ρ;
score← p̃nL

p̃nL+(1−p̃n) ;
if score > Threshold then

Detect = True;
else

Detect = False;
end
Return (Detect);

Algorithm 1: Bayesian QCD-based intrusion detection.

Testing: The proposed testing phase takes in to consider-
ation a sequence of past observations when making a de-
cision. At time n, the same set of sensor data and cor-
responding features gn of the probe is collected as in the
enrollment phase. Obtained features are compared against
the signatures to obtain a score value xn. A decision is
made based on scores corresponding to all past observations
x1, x2, · · · , xn and the match distribution f0 and non-match
distribution f1. Algorithm 1 and Algorithm 2 explain how
decision making is done using the Bayesian QCD and the
Minimax QCD, respectively.

Illustrated in Figure 5 is the variation of detection scores
when Minimax QCD is used for the video shown in Fig-
ure 1. Detection scores values increase when there is sig-
nificant variation in the expression. However, they decrease
again once the neutral expression is returned. Since the in-

input : Detection score of most recent iteration
score, match score xn, match distribution
f0, non-match distribution f1, Threshold

output: Detection of an intrusion (Boolean)

//If it’s the initial iteration set score to be zero;
if isempty(score) then

score = 0 ;
else
end
//Calculate likelihood ratio;
L = log(f1(xn)/f0(xn));
score← score+ L;
if score < 0 then

score = 0 ;
else
end
if score > Threshold then

Detect = True;
else

Detect = False;
end
Return (Detect);

Algorithm 2: Minimax QCD-based intrusion detection.

trusion occurs in Frame 151, the score value is seemed to be
monotonically increasing. In this specific example, the like-
lihood ratio becomes infinity after the change point. There-
fore, according to Algorithm 2, the score is increasing by
the assigned constant C. It should be noted that, slope of
the curve could be increased by selecting a higher value for
C in Algorithm 2. By the time the score passes the prede-
termined threshold, it is declared that an intrusion has oc-
curred. For the set threshold in Figure 5, detection occurs
with a delay of 5 samples.

Figure 5. Variation of Minimax QCD scores for the video shown
in Figure 1.

4. Experimental Results
We evaluated the performance of the proposed QCD

methods using three publicly available unconstrained AA



datasets - Touchalytics [8], MOBIO [13], and UMDAA-01
[7]. The following three previously proposed AA methods
are used as the benchmark for comparisons.
Single score-based authentication (SSA): The present
score value xn alone is used to authenticate the user. If
the score value is above a predetermined threshold, user is
authenticated otherwise treated as an intrusion.
Time decay fusion (Sui et al.) [21]: In this method, two
score samples fused by a linear function is used along with a
decaying function to determine the authenticity of a user as,
sn = wxn−1 +(1−w)xn×eτδt, where, w, τ are constants
and δt is the time elapsed since the last observation.
Confidence functions (Crouse et al.) [4]: A sequential
detection score Slogin is calculated by incorporating time
delay since the last observation and a function of the present
score xn. The detection score is evaluated as, Slogin,n =

Slogin,n−1+fmap(xn)+
∫ tnow

tprev
fdecdt. See [4] for the exact

definitions of fmap and fdec.
The PFD-ADD curves, introduced in Section 2, are used

to compare the performance of different methods. The
PFD-ADD plot for the BQCD and MQCD methods can
be obtained by varying the parameter Threshold and plot-
ting the ADD values corresponding to different PFD values.
Similarly, the ADD-PFD curves for SSA and the methods
proposed by Sui et al. [21] and Crouse et al. [4] are obtained
by varying the decision making threshold.

The measure of ADD signifies the latency of detecting an
attack. On the other hand, PFD is a measure of false detec-
tions. A practical AA system should have a low latency in
decision making as well as low false detection rate. There-
fore, better AA systems are expected to have low ADD and
PFD values. Hence, they should operate towards the lower
left corner of the PFD-ADD curve, as illustrated in Figure 4.
As a result, AA methods with very low operating values in
the PFD-ADD plot are better in terms of their performance.

(a) (b)
Figure 6. Sample detected face images from (a) the MOBIO
dataset and (b) the UMDAA-01 dataset.

4.1. Protocol

In the absence of a proper mobile dataset with intrusions,
experimental data was obtained in the following manner for
all datasets considered. For each dataset, all possible pairs
of users were considered at a time. For each pair of users,
full length signals (e.g. touch gestures or detected faces) of
considered pair of users were merged to obtain a trial with

a single intrusion. As a result, only one intruder/attacker
was presented at each trial. Shown in Figure 1 is a sam-
ple trial obtained in this manner. Frames A to I correspond
to the enrolled images of the genuine user. An intruder is
presented at frame J and onwards. The intrusion point de-
pends on the length of the samples corresponding to the first
(genuine) user and therefore is not pre-determined. Each
trial was tested using before mentioned methods to deter-
mine detection delay and probability of false detections un-
der each method.

4.2. UMDAA-01 Dataset

The UMDAA-01 dataset [7] consists of images of 50 in-
dividuals taken from an iPhone 5 device across three ses-
sions performing five tasks including an enrollment task.
Both face images as well as touch gestures are simultane-
ously captured in this dataset. Sample detected face images
from this dataset are shown in Figure 6(b). As suggested in
[7], enrollment data was used as gallery and data from the
other sessions was used as probes. In addition 20 number
of instances from the probe session was used to obtain the
match score distribution. When testing, 33 % of the remain-
ing subjects excluding the probe class and the target class
were randomly chosen to obtain the non-match distribution.
Results on the Face Data: Face images of the user were
normalized and image regions corresponding to eyes, nose,
lips and eyebrows were extracted. The HOG features [5]
were extracted on each facial component. These features
were concatenated to obtain the resulting feature for the
given face. Cosine distance is used to generate score val-
ues by matching enrollment data with probes. Figure 7
shows the ADD-PFD plot corresponding the UMDAA-01
face data. From this figure, it can be seen that both BQCD
(ρ = 0.001) and MQCD outperform the other methods. This
can be seen by comparing their performances in the low
PFD region.
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Figure 7. Performance curves obtained on the UMDAA-01 face
dataset.

Results on the Touch Data: From each swipe data, a 27-
dimensional feature vector is extracted using the method
described in [8]. A single class SVM with RBF kernel
was used to generate matching scores. Figure 8 shows
the ADD-PFD curves corresponding to different methods



on this dataset. It should be noted that there exists a con-
siderable similarity between single touch swipes of differ-
ent users. Therefore, from Figure 8, methods that rely on
data of single or two swipes have performed poorly. It can
be seen that BQCD, MQCD and the method proposed by
Crouse et al. [4] that uses information from pre and post
change distributions have performed reasonably well. In
general, the MQCD method yields faster detection rates and
low false detections compared to the other methods.
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Figure 8. Performance curves obtained on the UMDAA-01 touch
dataset.

4.3. MOBIO Dataset

The MOBIO dataset [13] contains videos of 152 sub-
jects taken across two phases where each phase consists of
six sessions each. Videos in this dataset are acquired using
a standard 2008 Macbook laptop computer and a NOKIA
N93i mobile phone (See Figure 6(a)). Following the proto-
col defined in [16], video frames of the 12th session were
considered as the enrollment data and video frames of all
other sessions were used as probes. We conducted our ex-
periments on the laptop image data based on the LBP fea-
tures. Again, the cosine distance was used to generate the
match and non-match scores. Figure 9 shows the perfor-
mance curves corresponding to different methods on the
MOBIO dataset. Note that the images in this dataset are
well aligned and mostly frontal. As a result, pre-change
and post-change distributions are well separated. Hence, all
considered methods yielded relatively better performance.
However, the BQCD and MQCD methods have performed
marginally better than the other compared approaches.
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Figure 9. Performance curves obtained on the MOBIO face
dataset.

4.4. Touchalytics Dataset

The Touchalitics dataset contains touch data of 37 users
collected across 7 tasks. Similar to the UMDAA-01 touch
dataset, touch gesture features are extracted using the
method described in [8] and a single class SVM with RBF
kernel was used to generate match and non-match scores.
Figure 10 shows the performance of different methods on
this dataset. As before, making a decision based on a single
swipe or two swipes have appeared to perform poorly. The
MQCD method performs the best followed by the BQCD
method and the method of Crouse et al. [4].
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Figure 10. Performance curves obtained on Touchalytics dataset.

4.5. Discussion

From the above experiments, it can be seen that the
BQCD and MQCD methods have outperformed the other
existing AA methods. Furthermore, in all cases, the MQCD
method has performed marginally better than the BQCD
method. This is mainly due to the error induced by approx-
imating the change distribution by a Geometric (ρ) distri-
bution. The small margin of error suggests that Geomet-
ric distribution assumption is valid for practical applica-
tions. However, in practice where information on change
(intrusion) probability is unknown in advance, the MQCD
method provides more usability as opposed to the BQCD
method.

Detection delay and probability of false detections of the
proposed algorithm depend on the type of features as well
as the classifiers used for matching. The proposed method
is not restricted to any specific type of feature or a classi-
fier. Therefore, by using better features and classifiers it is
possible to obtain even lower ADD and PFD values.

Furthermore, it should be noted that, the detection de-
lay rates (ADD) shown in Figures 7, 8, 9, and 10 are highly
inflated as a result of non-detected intrusions due to the lim-
itations of the features and/or classifiers. To further elabo-
rate on this point, let us consider the implementation of the
MQCD method with a threshold chosen such that PFD is
at 5%. Tabulated in Table 1 is the distribution of detection
delay (ADD) for the tests conducted. According to Table 1,
nearly 90% of the time, an intrusion can be detected using
less than 7 samples. Therefore, the proposed method would



produce quick results for a small false detection rate in a
practical setting.

2-3 S 4-5 S 6-7 S 8-10S >10 S
UMD-Face 11.9 17.07 55.06 6.02 9.93
UMD-
Touch*

73.62 13.51 4.69 3.04 3.13

MOBIO 8.74 61.87 10.38 7.51 11.5
Touchalytics 3.65 7.23 82.23 2.94 3.94
Mean 24.47 24.92 38.09 4.87 7.12

Table 1. Percentage breakdown of delay times (in samples) for a
fixed PFD of 5% for MQCD. *3% of PFD was used instead.

5. Conclusion

We presented a method for detecting an intrusion in an
AA system with a minimal delay with a constraint on false
detection rate. Two variants of the QCD based on Bayesian
and MiniMax formulations were introduced. Performance
of the proposed method was demonstrated using three pub-
licly available datasets. It was shown that the proposed
method is effective even when there is a considerable over-
lap between pre and post change distributions.

In the future, we will study the problem of performing
QCD in mobile AA systems with constraints on the number
of observations and energy.
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