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Abstract—Active authentication (AA) refers to the problem of
continuously verifying the identity of a mobile device user for the
purpose of securing the device. We address the problem of quickly
detecting intrusions with lower false detection rates in mobile AA
systems with higher resource efficiency. Bayesian and Minimax
versions of the Quickest Change Detection (QCD) algorithms are
introduced to quickly detect intrusions in mobile AA systems.
These algorithms are extended with an update rule to facilitate
low frequency sensing which leads to low utilization of resources.
Effectiveness of the proposed framework is demonstrated using
three publicly available unconstrained face and touch gesture-
based AA datasets. It is shown that the proposed QCD-based
intrusion detection methods can perform better than many state-
of-the-art AA methods in terms of latency and low false detection
rates. Furthermore, it is shown that employing the proposed
resource efficient extension further improves the performance of
the QCD-based setup.

Index Terms—Biometrics, continuous authentication, active
authentication, fastest detection.

I. INTRODUCTION

MODERN smartphone devices have revolutionized the
consumer lifestyle in the span of the last decade.

With the services they provide in communication, networking,
entertainment, education, finance and even in navigation, it
has become the indispensable human companion. As a result,
modern mobile devices contain agglomeration of personal
user information ranging from personal photographs, contacts,
banking information to passwords. Industry surveys show that
10% of phone theft victims claim to have lost confidential
information, 9% of the victims have experienced identity theft,
and 12% of the victims have experienced fraudulent charges
on their account [1]. The total cost associated with information
theft is substantial considering that 2.1 million cases of phone
theft were reported in 2015 in the U.S. alone [2]. Therefore,
modern mobile devices hold a substantial intangible value in
terms of content in addition to their physical value. In this con-
text, mobile user authentication is paramount in safeguarding
information security of the user. However, developing such a
system has proved to be a challenging task due to the high
expectations mobile users have in terms of usability. Mobile
users prefer mobile protocols with minimum interference and
mobile services with minimal impact on battery life and
processing speed of the device [3].

Existing methods for authenticating users on mobile devices
are based on passwords, PINs, secret patterns or fingerprints.
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Recent studies have shown that about 34% of smartphone
users in the U.S. do not even secure their mobile devices
with passwords or PINs [4], [5], [6], [7]. This is mainly
due to the fact that users find entering passwords and PINs
on virtual keyboards time consuming, cumbersome and error-
prone [8]. Vulnerability of swipe pattern-based passwords has
also been widely discussed in the literature. For instance,
swipe patterns can be decoded based on the smudge patters on
the touchscreen [9] or through shoulder surfing attacks, where
an attacker attempts to memorize the swipe pattern through
line-of-sight [10]. Furthermore, as long as the mobile device
remains active, typical devices incorporate no mechanisms to
verify that the user originally authenticated is still in control
of the mobile device. Thus, unauthorized individuals may
improperly obtain access to personal information of the user
if a password is compromised or if a user does not exercise
adequate vigilance after initial authentication.

In order to overcome these issues, both biometrics and
security research communities have developed techniques for
Active Authentication (AA) on mobile devices. These methods
essentially make use of the physiological and behavioral
biometrics using built-in sensors and accessories such as
gyroscope, touchscreen, accelerometer, orientation sensor, and
pressure sensor to continuously monitor the user identity. For
instance, physiological biometrics such as face can be captured
using the front-facing camera of a mobile device and can be
used to continuously authenticate a mobile device user [11],
[12], [13], [14], [15], [16]. On the other hand, sensors such
as gyroscope, touchscreen and accelerometer can be used to
measure behavioral biometric traits such as gait, touch gestures
and hand movement transparently [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29]. Some of the
other CA methods are based on web browsing behavior [30],
behavior profiling [31], texting pattern [32], [33], and body
prints [34]. In particular, it has been shown that multimodal
biometrics-based CA methods perform better than unimodal
systems [11], [35], [36]. Note that the terms continuous
authentication [35], [37] active authentication [38], implicit
authentication [39], [40], and transparent authentication [41]
have been used interchangeably in the literature.

It is well known that a balance needs to be made between
security and usability of a biometrics-based AA system [5],
[42], [43]. The design of usable yet secure AA systems raises
crucial questions concerning how to solve conflicts between
mobile security and usability. In order to balance usability
and security of an AA scheme, we must address the following
fundamental challenges.

1. Accuracy : How accurately does a mobile AA system
detect an attacker or an intruder? Due to limitations of
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Fig. 1: The problem of quick intrusion detection in face-based
AA systems. (A-I) show the genuine user with varying facial
expressions. An intrusion occurs starting from (J). Active
authentication systems should be able to detect intrusions as
quickly as possible without causing too many false detections.

representation and classification models on mobile devices,
behavioral and physiological biometrics-based methods do not
provide good accuracy in practice [35], [3]. The AA system
will be of little use in terms of security if it produces a
high degree of false positives. On the other hand, a higher
false negative rate would severely degrade the usability of
the technology. Many recent approaches in the literature have
attempted to address this factor by proposing better features
and classifiers [35].

2. Latency : How long does it take to detect an attacker?
If an AA system takes too long (e.g. 1-3 minutes) to detect an
intrusion, it would grant an intruder plenty of time to extract
sensitive information prior to the lock down. Hence, unless
intruder detection is sufficiently fast, the AA system would
hold a little value in practice no matter how high its detection
accuracy is.

Consider a series of observations captured from a front-
facing camera of an Android device shown in Figure 1. Frames
(A-I) belong to the genuine user of the device. From frame
J onwards an attacker starts to operate the device. In this
scenario, frame J signifies a change point (i.e. an intrusion).
The AA system should be able to detect intrusions with a
minimal delay while maintaining a low rate of false detections.
For instance, note the changes in genuine user’s images in
frames (D-F) due to camera orientation and facial expressions.
While having a fast response, an AA system ideally should not
falsely interpret these variations as intrusions.

3. Efficiency : How much resource does the system use? By
definition, mobile AA systems are continuous processes that
run as background applications. If they consume considerable
amount of resources, memory and processing power, it could
slow down other applications and cause the battery to drain
quickly. Despite the improvements in mobile memory and
processors, battery capacity remains to be a constraint due
to limitations in heat transfer and space [44]. Therefore, it
can be expected to be the bottleneck in terms of efficiency in
years to come. If an AA application causes battery to drain
too quickly, then it is unrealistic to expect the users to use AA
technology as they would typically opt out from using such
applications [45]. Therefore, efficiency has a huge impact over
the usability of AA as a technology. Recently, [46] studied the
efficiency of a mobile AA system based on face biometric.
Experiments were conducted on a Google Nexus 5 device with
2GB of RAM and a quad core 2.2GHz CPU. It was shown
that the normal usage of the device consumes about 520 mW
of power and the facial attribute-based AA framework running
at 4 frames per second consumes about 160.8mW additional

power. It is needless to say that nearly 30% increase in power
consumption would take a toll on battery duration. A trivial
solution for this problem would be to decrease the sampling
rate of data acquisition. However, effects of such a measure
on the detection performance have not been studied in the
literature.

Many existing AA systems attempt to improve the accuracy
of the system by proposing sophisticated features and classi-
fiers. However, how fast an AA system could detect an intruder
has not been widely studied in the literature. Yet, it remains
to be an important feature of an AA system. In this paper,
we address the problem of quickly detecting intrusions with
lower false detection rates in mobile AA systems. We propose
Quickest Change Detection (QCD), which is a well-studied
problem in statistical signal processing and information theory,
for the purpose of intrusion detection in mobile AA systems.
Figure 2 gives an overview of the proposed method. As
opposed to a conventional AA system, the proposed system
utilizes all past observations along with distributions of match
and non-match data of the genuine user to arrive at a decision.
The proposed method does not require a specific feature nor
a specific classifier; therefor it can be built upon any existing
AA system to enhance its performance.

This paper makes the following contributions.
1) We propose Bayesian and Minimax versions of the QCD

algorithms for fastest detection of intrusions in mobile
AA systems.

2) We propose a sampling scheme with a rule on score
update to increase the efficiency of the proposed QCD
process.

3) Efficient data driven QCD algorithms are proposed for
fastest intruder detection.

4) ADD-PFD curve is proposed as a qualitative perfor-
mance measure for comparing performances in quickest
intrusion detection problems.

A preliminary version of this work appeared in [47], which
describes just the Bayesian and minimax QCD algorithms for
AA. Data efficient QCD algorithms and extensive experimen-
tal evaluations are extensions to [47].

Remainder of the paper is organized as follows. A brief
introduction to related work in AA is given in Section II.
Section III gives an overview of tradition AA pipeline and
describes a new measure for evaluating different intruder
detection algorithms. In Section IV, we first briefly introduce
the idea behind QCD and then present our proposed framework
for QCD-based intrusion detection in mobile AA systems.
In Section V, we introduce data efficient QCD methods
which can be used to improve the efficiency of the proposed
system. Experimental results are presented in Section VI and
Section VII concludes the paper with a brief summary and
discussion. Notations and abbreviations used in the paper are
listed in Tables I and II, respectively.

II. RELATED WORK

In this section, we review some related works on AA. [25]
proposed the usage of the accelerometer sensor to capture
the behavioral information about the user for continuous



IEEE TRANSACTIONS ON INFORMATION FORENSICS ,, VOL. XX, NO. X, MONTH 201X 3

Sensor Data Features

Match-score 
Distribution

Signatures

Non match-score 
Distribution

Sensor Data Features

Features of past 
observations

Matching

MemoryTraining

MemoryTesting

Fig. 2: An overview of the proposed QCD-based AA method.

TABLE I: Notations used in this paper.

Notation Definition
xi Match score obtained at the ith time instance
f0 Density of matched scores
f1 Density of non-matched
E[.] Expectation operator
P [.] Probability function
(x)+ Positive portion of x
T Time at an intrusion occurs
πn Probability of intrusion occurring at time n
ρ Probability of an intrusion occurring
Cα Set of possible solutions for threshold α
pn Probability of change has occurred at time n
L(.) Likelihood ratio
Mi Indicator of whether observation i is recorded

TABLE II: List of abbreviations.

Abbreviation Meaning
AA Active authentication
ADD Average detection delay
ANO Average number of observations
APO Average percentage of observations
BQCD Bayesian Quickest change detection
CDC Change duty cycle
CPU Central processing unit
E-BQCD Efficient Bayesian quickest change detection
E-MQCD Efficient minimax quickest change detection
FAR False acceptance rate
LBP Local binary pattern
MQCD Minimax Quickest change detection
PFD Probability of false detections
PIN Personal identification number
QCD Quickest change detection
RAM Random access memory
WADD Worst average detection delay

authentication. Based on the same rationale, [26] proposed
using the inbuilt sensors of a phone to estimate the gait of the
user to perform authentication. It was shown in [27] that even
the way how a user holds the phone can be discriminative for
the purpose of AA.

In [17], the authors proposed a framework where AA
is performed based on the swiping patterns of the users.
In their work they introduced a 31 dimensional feature for
this purpose. In [21], a new two dimensional feature was
introduced for touch gesture-based AA. Sparse dictionary-
based classification method is employed with linear and non-

linear kernels in [22] to achieve more robust user identification.
It was shown in [19] that utilization of external digital sensors
can result in even better AA systems. A comparison of various
touch-based AA systems on a new dataset is presented in [18].

Most of face-based AA systems are based on hand crafted
features due to limited processing power a device holds. In
[14], Adaboost classifier and LBP feature are used for face
detection and face authentication in mobile devices. In [13],
a facial attribute-based continuous face authentication was
proposed for AA. A domain adaptive sparse dictionary-based
AA system was proposed in [28], by projecting observations
of different domains into a common subspace through an
iterative procedure. [11] proposed to fuse face and voice for
obtaining more robust AA. In [15], face modality was fused
with gyroscope, accelerometer, and magnetometer modalities
for more robust authentication.

Some of the recent works in AA focus on alternative
modalities for performing authentication. Work in [23] focuses
on micro movements of the users’ touch gestures whereas
[24] carries out behavioral profiling based on stylometry, GPS
location and web browsing patterns. Please see [35] for more
detailed survey of various AA methods.

We note that all these works focus on either developing
a new AA modality or improving performance of prevailing
modalities by introducing better features or classifiers. None
of these works have addressed latency in decision making in
the event of an intrusion; nor have they provided a discussion
about the efficiency of their methods. Therefore, in terms of the
fundamental challenges in AA, these methods do not address
challenges of latency and efficiency which are paramount for a
functioning AA system. Intruder detection scheme proposed in
[48] uses a single step time series along with a time decaying
function to update the belief on the user’s authenticity. A
false accept rate (FAR) based mapping function is summed
with a decaying function in [15] to produce a score which
is used to detect intrusions through thresholding. All of these
methods are ad-hoc in nature and do not generalize well to
more practical and generic setups.

III. INTRUDER DETECTION IN AA

A typical AA system consists of several stages as illustrated
in Figure 3. Initially, sensor data of the genuine user is
obtained through an enrollment phase and a set of features
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are extracted from the enrolled data. Face images, swipe
gesture coordinates, gyroscope/ accelerometer readings and
microphone amplitudes are popular choices of data for this
purpose. These set of features serve as the gallery at the
matching stage.

Upon the initial login of the user, the device continuously
collects the same set of data as before during the normal
operation of the device. This stage is the Data Acquisition
phase shown in Figure 3. Features generated with the collected
data are compared against the gallery using a Biometric
System using a suitable authentication algorithm. At the end of
the comparison phase, a match score xi is obtained. At the nth

time instance based on previously observed matched scores
x1, x2, ..., xn, a decision is made as to whether an intrusion
has occurred or not. If an intrusion has occurred, the phone
is locked and the user is prompted to verify his/her identity
by the means of a primary verification method. This typically
takes the form of a password or a primary biometric such as
fingerprint. Otherwise, the user is allowed to continue with the
device until the next sensor observation.
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Fig. 3: An overview of a typical AA system.

The score distribution obtained as explained for the genuine
user is henceforth referred to as the match score distribu-
tion (f0). Similarly, score distribution of non-genuine users
(intruders or attackers in this context) is referred to as the
non-match distribution (f1). Hence, when an intrusion occurs,
the distribution of observations changes from being match
to non-match. Therefore, an intrusion point is treated as a
change point. With this background, we use the words pre-
change distribution and match distribution interchangeably.
Similarly, post-change distribution and non-match distribution
are used interchangeably. If the match distribution has con-
siderable overlap with the non-match distribution, then the
detection results tend to be poor. This is typically the case
in mobile devices where sensor data acquisition appears in
an unconstrained setup. For example, in the case of face-
based AA, face images captured by the front-facing camera
contain profile faces, tilted faces as well as partial faces.
Therefore, the resulting match score distribution tends to be
broad. On the other hand, usage of more sophisticated tools
that provides better separation between the two distributions
are not preferred for mobile applications due to hardware
limitations of the device. As a result, match and non-match
distributions tend to overlap considerably. In this context, a
more scientific approach backed by a theoretical reasoning is
essential to perform the detection of the change. To this end,
we propose the use of statistical QCD to detect intrusions in
the mobile AA systems.

In the following subsections, we identify two essential
characteristics such an AA system needs to possess in order
for it to be useful in practice.

A. Average Detection Delay (ADD)

The primary goal of an AA system is to promptly detect
intrusion when the intruder attempts to access the device.
Therefore, detection delay of intruder attempts is an important
characteristic of a mobile AA system. If the system requires
large number of sensor samples to identify an intrusion, there
is a possibility that information theft has already occurred by
the time intrusion was detected. Hence, from the point view
of security [49], it is more desirable to have an AA system
with a low intrusion detection delay.

B. Probability of False Detections (PFD)

On the other hand, if an AA system generates large number
of false intruder detections, it would reduce the usability [49]
of the user. For example, consider the system shown in Figure
3. The AA system prompts the user to enter a password every
time AA fails. If the AA system consistently generates false
intruder detection alarms, the user will be prompted to enter
the password regularly - thereby greatly degrading consumer
experience (usability).

As a consequence, Average Detection Delay (ADD) and
Probability of False Detections (PFD) play a vital role in any
AA system. If T is the real change point, mathematically ADD
and PFD at time τ are defined as follows

ADD(τ) = E[(τ − T )+]

PFD(τ) = P [τ < T ], (1)

where E[.] and P [.] are the expectation and probability with
respect to τ , respectively and [(x)+] denotes the positive part
of x.

From these definitions, one can see that there is an inverse
correlation between these two quantities. Generally, obtaining
more sensor samples enhances the chance of making a more
accurate decision on whether an intrusion has occurred or
not. However, this can only be done at the cost of having a
relatively larger intrusion detection delay. Therefore, there is
always a trade-off between intrusion detection delay and false
intruder detection rate. Since, the relationship between ADD
and PFD characterizes the performance of an AA system, we
propose using the ADD-PFD graph as a tool to compare the
performance of different AA systems. Shown in Figure 4 are
a set of ADD-PFD plots drawn for practical non-sequential
AA systems. As expected, in order to obtain very accurate
detections (corresponding to a lower PFD), more samples are
required to be processed. Moreover, according to Figure 4,
making a decision based on fewer samples are prone to more
false intruder detections.

Adhering to security and usability principles [49], the objec-
tive of an AA system is to be able to detect intrusions while
ensuring probability of false intruder detection is very low.
Therefore, the AA system should operate in a region where
both ADD and PFD are comparatively low. For example, for
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Fig. 4: PFD-ADD curves of two AA systems. Out of the
two, the system corresponding to the red curve has better
performance. One of the possible operable regions for a
practical system is shown in a solid red line.

the system represented by the red curve in Figure 4, a practical
choice would be to operate in the region denoted by the solid
line.

Based on this rationale, a better AA system should have a
PFD-ADD curve operating below other comparable systems.
For example, considering the two operating curves shown in
Figure 4, system corresponding to the red colored line has a
better performance since its operating curve lies at a lower
space compared to the other system.

IV. QUICKEST CHANGE DETECTION

Quickest Change Detection is a branch of statistical signal
processing that thrives to detect the change point of statistical
properties of a random process [50], [51], [52]. The objective
of QCD is to produce algorithms that detect the change with
a minimal delay (ADD) while adhering to false alarm rate
constraints (PFD). Consider a collection of obtained match
scores, x1, x2, · · · , xn, from the AA system shown in Figure
2. Assuming that individual scores are mutually independent,
QCD theory can be used to determine whether a change has
occurred before time n or not. In the following subsections
we present two main formulations of QCD.

A. Bayesian QCD (BQCD)

In the Bayesian setting [50], it is assumed that the time τ
when the change occurs is distributed according to a geometric
distribution, Geometric(ρ). Here, the value of ρ is the prob-
ability of a change occurring (an intrusion in this context).
Conditioned on the change point τ , observations obtained
before and after the change follows two distinct distributions,
f0 and f1. At each time n, based on πi = P{τ = i} for
all i < n, a decision is made as to whether a change has

occurred or not. Based on this formulation, ADD and PFD
can be redefined as

ADD(τ) = E[(τ − T )+] =

∞∑
n=0

πnEn[(τ − T )+] (2)

PFD(τ) = P [τ < T ] =

∞∑
n=0

πnPn[τ < T ], (3)

where, for a Geometric(ρ) distribution,

πn = P{τ = n} = (1− ρ)n−1ρ

for 0 < ρ < 1 and n > 0. Then the Bayesian QCD becomes
an optimization problem where the requirement is to minimize
ADD subjected to a constraint on PFD. If the class of stopping
times adhering to the constrain α on PFD is defined as

Cα = {τ : PFD(τ) < α},

then the QCD problem takes the form of Shiryaev’s formu-
lation [53], [50]. Objective of the Bayesian QCD formulated
by Shiryaev is to obtain a stopping time τ ∈ Cα to minimize
ADD(τ ) for a given α. If pn is the posterior probability that a
change has occurred at time n given observations up to time
n

pn = P [T 6 n|Xn],

where Xn = (x1, x2, ..., xn), then using the Bayes rule, it was
shown in [50] that pn follows a recursive formula as follows

pn+1 = Φ(xn+1, pn),

where

Φ(xn+1, pn) =
p̃nL(xn+1)

p̃nL(xn+1) + (1− p̃n)
.

Here, p̃n = pn + (1− pn)ρ and

L(xn+1) =
f1(xn+1)

f0(xn+1)

is the likelihood ratio with p0 = 0.
From Theorem 3.1 in [52], this recursive formula provides

an optimal solution for the problem in hand with a stopping
time of

τs = inf{n > 1 : pn > Aα}

if A ∈ (0, 1) can be chosen such that PFD(τs) = α. This
method is known as the Shiryaev test and its proof can be
found in [53], [52].

B. MiniMax QCD (MQCD)

In most of the practical AA systems, probability of intrusion
is not known in advance. Therefore, it is important to study
QCD in a non-Bayesian setting. MiniMax QCD formulation
treats the change point τ as an unknown deterministic quantity
[51], [52]. However, as earlier, it is assumed that pre-change
distribution, f0, and post-change distribution, f1, are known.
Due to the absence of prior knowledge on the change point,
a reasonable measure of PFD is the reciprocal of mean time
to a false detection as follows

PFD(τ) =
1

E∞[τ ]
.
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Based on this definition of PFD, Lorden proposed a minimax
formulation for QCD [54], [51]. Consider the set of stopping
times Dα for a given constraint α such that

Dα = {τ : PFD(τ) 6 α}.

Adhering to this constraint, Lorden’s formulation optimizes
a cost function to solve the minimax QCD problem. In
particular, the cost function is the supremum of the average
delay conditioned on the worst possible realizations as follows

WADD(τ) = sup
n>1

ess supEn[(τ − n)+|Xn].

Lorden’s formulation tries to minimize the worst possible
detection delay subjected to a constraint on PFD [54]. It was
shown in [52], that the exact optimal solution for Lorden’s
formulation of QCD can be obtained using the CumSum
algorithm [55].

C. CumSum Algorithm

Define the statistic W (n) such that

W (n) = max
16k6n+1

n∑
i=k

log(L(xi)),

and W0 = 0, where L(Xn) = f1(Xn)/f0(Xn) is the log
likelihood ratio. It can be shown that the statistic W (n) has
the following recursive form

Wn+1 = (Wn + log(L(Xn+1))+).

Time at which a change occured (τ ) is chosen such that

τc = inf{n > 1 : Wn > b},

where b is a threshold. More details about the CumSum
algorithm can be found in [55], [51], [52], [50].

D. Proposed Algorithm

Based on the Bayesian and MiniMax QCD algorithms, we
propose an authentication algorithm to detect intrusions in an
AA system. Essentially, our proposal is independent of all
other base elements of an AA system (Figure 3). Therefore,
existing AA systems can easily be extended to incorporate
the proposed QCD method.

Training: In the training phase, the user is asked to perform
a wide variety of tasks and sensor data are obtained. Pre-
determined features are then evaluated from the obtained
sensor data. Part of the obtained features are stored in memory
to serve as the gallery in the AA system. The remaining
features are compared against chosen gallery to build a match
distribution. In addition, the gallery entries are used to con-
struct a non-match distribution based on the non-user features
as illustrated in Figure 2. For the experiments conducted in
this paper, a sample of other class data was used to model
the non-match distribution. In practice, a common set of pre-
obtained sensor data specific for the device can be used for this
purpose. For example, face images of different users obtained
from the same device can be made available in a cloud storage
system for training.

input : Detection score of most recent iteration
score, match score xn, match distribution f0,
non-match distribution f1, Threshold,
FloorThreshol

output: Detection of an intrusion (Boolean)

//If it’s the initial iteration set score to be zero;
if isempty(score) then

score = 0 ;
else

score =
UpdateScore(score, xn, f0, f1, F loorThreshold);
//FloorThreshold is used only resource efficient
versions;

end
if score > Threshold then

Detect = True;
else

Detect = False;
end
Return (Detect);

Algorithm 1: Main procedure proposed for decision mak-
ing.

Testing: The proposed testing phase takes in to consideration a
sequence of past observations when making a decision. At time
n, the same set of sensor data and corresponding features gn
of the probe is collected as in the enrollment phase. Obtained
features are compared against the signatures to obtain a score
value xn. A decision is made based on scores corresponding to
all past observations x1, x2, · · · , xn and the match distribution
f0 and non-match distribution f1.

Described in Algorithm 1 is the proposed structure for
decision making. A variable score is initialized at zero and
is updated using the method UpdateScore once a new ob-
servation is observed. Once the score exceeds threshold A, a
detection of a change is declared. In this paper we present
two variants of the method UpdateScore based on BQCD
and MQCD. Those methods are listed in Algorithm 2 and
Algorithm 3, respectively.

input : score, xn, f0, f1
output: score

//Calculate likelihood ratio;
L = f1(xn)/f0(xn);
p̃n = score+ (1− score)ρ;
score← p̃nL

p̃nL+(1−p̃n) ;
Return (score);

Algorithm 2: UpdateScore Method incorporating BQCD.

Illustrated in Figure 5 is the variation of detection scores
when Bayesian QCD is used for the video shown in Figure 1.
Detection scores values increase when there is significant
variation in the expression. However, they decrease again once
the neutral expression is returned. Since the intrusion occurs
in Frame 201, the score value is seemed to be monotonically
increasing. In this specific example, the likelihood ratio be-
comes infinity after the change point. Therefore, according to
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input : score, xn, f0, f1
output: score

//Calculate likelihood ratio;
L = log(f1(xn)/f0(xn));
score← score+ L;
Return (score);

Algorithm 3: UpdateScore Method incorporating MQCD.

Algorithm 2, the score is increasing by the assigned constant
C. It should be noted that, slope of the curve could be
increased by selecting a higher value for C in Algorithm 2.
By the time the score passes the predetermined threshold, it is
declared that an intrusion has occurred. For the set threshold
in Figure 5, detection occurs with a delay of 9 samples.
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D E F
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I

J
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L

Change 
Point

Fig. 5: Variation of Bayesian QCD scores for the video shown
in Figure 1.

V. RESOURCE EFFICIENT QUICKEST CHANGE DETECTION

In this section, we discuss how QCD can be performed with
having a lower burden on the device resources. As noted in
the introduction, a trivial solution to the problem of resource
limitation is to perform detection on a few selected samples
of observations. However, quickest detection performance may
degrade greatly depending on how the sampling is done. In
what follows, we introduce a data driven sampling rule based
on data efficient QCD [51], [52], [56].

Consider a sequence of time instances t = 1, 2, · · · , i in
which the device operates. At each time i, i > 0, a decision is
made whether to take or skip an observation at time i+1. Let
Mi be the indicator random variable such that Mi = 1 if the
score xi is used for decision making, and Mi = 0 otherwise.
Thus, Mi+1 is a function of the information available at time
i, i.e. Mi+1 = φi(Ii), where φi is the control law at time
i, and Ii = [M1,M2, · · · ,Mi, x

M1
1 , xM2

2 , · · · , sMi
i ] represents

the information at time i. Here, xMi
i represents xi if Mi = 1,

otherwise xi is absent from the information vector Ii. Let T
be the stopping time on the information sequence {Ii}. Then,
average percentage of observations (APO) obtained prior to
the change point can be quantified as

APO = E

[
1

T

T∑
n=1

Mn

]
. (4)

In the QCD scheme introduced in the previous section,
observations are obtained at every time instant. Therefore,
APO is equal to 1. A lower APO can be obtained while
maintaining a lower ADD and PFD rates by employing an
intelligent sampling mechanism. When such a mechanism is
used, average usage of resources (memory, processing power,
battery usage) are expected to decrease compared to the QCD
scheme [47]. We introduce a technique to achieve this based
on data efficient QCD.

A. Efficient Bayesian Formulation (E-BQCD)

In the Bayesian formulation of efficient QCD, an additional
constraint based on the number of observations used is in-
troduced in the optimization procedure. Define the Average
Number of Observations (ANO) as

ANO = E

[min(τ,T−1)∑
n=1

Mn

]
. (5)

This quantity essentially captures the number of observations
taken prior to the change point. It should be noted that
ANO does not penalize additional observations taken after
the change point. Therefore, ANO is a more conservative
measure of the number of observations compared to APO,
where T ×APO ≥ ANO.

The efficient Bayesian QCD problem can be formulated as
an optimization problem as follows[56],[52]

minimize
φ,τ

ADD(φ, τ)

subject to PFA(φ, τ) ≤ α
ANO(φ, τ) ≤ β.

(6)

In [56], an algorithm is presented to seek a possible solution
for this optimization problem. Consider Pn, the probability
that change had occurred by time n,

pn = P (T ≤ n|In),

where p0 = 0. For A,B ≥ 0 and A > B the following control
rule is proposed

Mn+1 =

{
0, if pn < B

1, if pn ≥ B.

Based on the value of Mn+1, pn+1 is updated as

pn+1 =

{
p̃n, if Mn+1 = 0

p̃nL(xn+1)
p̃nL(xn+1)+(1−p̃n) , if Mn+1 = 1,

where p̃n = pn + (1 − pn)ρ and L(xn+1) = f1(xn+1)
f0(xn+1)

. An
intruder detection is declared at the earliest time (τD) when pn
surpasses the threshold A, i.e. τD = inf{n ≥ 1 : pn > A}.
It was proved in [56] that this algorithm is asymptotically
optimal for the optimization formulation (6) for each fixed β
when α→ 0.
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B. Efficient MiniMax Formulation (E-MQCD)

In a non-Bayesian setting, due to the absence of a priori
distribution on the change point, a different quantity should
be used to quantify the number of observations used for
decision making. Work in [51],[52], proposes change Duty
Cycle (CDC) as

CDC = lim
n

sup
1

n
En

[ n−1∑
k=1

Mk|τ ≥ n
]

(7)

for this purpose. It should be noted that both CDC and APO
are similar quantities. With the definition of CDC, efficient
QCD in a minimax setting can be formulated as the following
optimization problem

minimize
φ,τ

ADD(φ, τ)

subject to PFA(φ, τ) ≤ α
CDC(φ, τ) ≤ β.

(8)

In [51], a two threshold algorithm called DE-CumSum algo-
rithm, is presented as a solution to this optimization problem.
For suitably selected thresholds chosen to meet constraints
α and β, it is shown to obtain the optimal lower bound
asymptotically as α → 0. The DE-CumSum algorithm is
presented below.

Start with W0 = 0 and let µ > 0, A > 0 and h ≥ 0. For
n ≥ 0 use the following control rule

Mn+1 =

{
0 if Wn < 0

1 if Wn ≥ 0.

Statistic Wn is updated as follows

Wn+1 =

{
min(Wn + µ, o), if Mn+1 = 0

max(Wn + logL(Xn+1),−h), if Mn+1 = 1,

where L(x) = f1(x)
f0(x)

. A change is declared at time τW , when
the statistic Wn passes the threshold A for the first time as

τW = inf{n ≥ 1 : Wn > A}. (9)

C. Modified Algorithm

Testing and training procedure under the resource efficient
QCD-based detection is the same as proposed in Section IV-D.
Testing is done using the main method described in Algorithm
1 in section IV-D. Here, we present two alternative variants of
the UpdateScore method based on resource efficient BQCD
and MQCD. Different steps are summarized in Algorithm 4
and Algorithm 5, respectively corresponding to the updates of
E-BQCD and E-MQCD.

In Algorithm 8, parameter D is a constant. In our tests, this
parameter was set to be equal to 1.Parameter FloorThreshold
is set equal to 0.05 in both algorithms. Evolution of score
values when efficient Bayesian QCD is used is illustrated
in Figure 6 for the case shown in Figure 1. In order to
demonstrate the effect of using different sampling rates, the
same experiment was conducted for a series of APO values.
Functionality of efficient QCD algorithm can be explained
using Figure 6. Consider the black line (corresponding to APO

input : score, xn, f0, f1, F loorThreshold
output: score

//Calculate the priori probability L = f1(xn)/f0(xn);
p̃n = score+ (1− score)ρ;
//Use priori to update score when score is small if
score < FloorThreshold then

score = p̃n ;
else

score← p̃nL
p̃nL+(1−p̃n) ;

end
Return (score);

Algorithm 4: UpdateScore method incorporating E-BQCD

input : score, xn, f0, f1, F loorThreshold
output: score

if score < 0 then
score =min(score+D,0) ;

else
score←
max(score+ log( f1(xn)

f0(xn)
),−FloorThreshold) ;

end
Return (score);

Algorithm 5: UpdateScore method incorporating E-MQCD

= 0.92%) in Figure 6. After the initial observation at t = 1, no
observations are taken until the score passes 0.05 at t = 52.
In this duration, score is updated using a priori probability.
Hence, the score is having a constant slope in this interval.
At t = 52, as the score passes 0.05, an observation is taken
and the score is updated based on log-likelihood as outlined
in Algorithm 4. This causes a discontinuity in the graph by
shifting the value of score onto 0.0007. Since this value is
lower than 0.05, no observation is taken at t = 53. This process
is continued until the score value surpasses the Threshold
value when an intrusion is declared.
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Fig. 6: Variations of efficient Bayesian QCD scores for the
video shown in Figure 1 for different APO values.

Furthermore, Figure 6 suggests that variations of scores
across time is somewhat similar when APO is 100% and
48.1% for the considered case. This shows that selecting
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sampling points intelligently could reduce the sampling rate
almost by half while producing near-identical performance
for specific cases. The effect of sampling on the detection
performance is discussed in detail in the following section.

VI. EXPERIMENTAL RESULTS

A. Quickest Change Detection

We evaluated the performance of the proposed QCD meth-
ods using three publicly available unconstrained AA datasets
- Touchalytics [17], MOBIO [11], and UMDAA-01 [12]. The
following three previously proposed AA methods are used as
the benchmark for comparisons.
Single score-based authentication (SSA): The present score
value xn alone is used to authenticate the user. If the score
value is above a predetermined threshold, user is authenticated
otherwise treated as an intrusion.
Time decay fusion (Sui et al.) [48]: In this method, two
score samples fused by a linear function is used along with a
decaying function to determine the authenticity of a user as,
sn = wxn−1 + (1 − w)xn × eτδt, where, w, τ are constants
and δt is the time elapsed since the last observation.
Confidence functions (Crouse et al.) [15]: A sequential
detection score Slogin is calculated by incorporating time
delay since the last observation and a function of the present
score xn. The detection score is evaluated as, Slogin,n =

Slogin,n−1 + fmap(xn) +
∫ tnow

tprev
fdecdt. See [15] for the exact

definitions of fmap and fdec.
The PFD-ADD curves, introduced in Section III, are used

to compare the performance of different methods. The PFD-
ADD plot for the BQCD and MQCD methods can be obtained
by varying the parameter Threshold and plotting the ADD
values corresponding to different PFD values. Similarly, the
ADD-PFD curves for SSA and the method proposed by Sui
et al. [48] and Crouse et al. [15] are obtained by varying the
decision making threshold.

The measure of ADD signifies the latency of detecting an
attack. On the other hand, PFD is a measure of false detections.
A practical AA system should have a low latency in decision
making as well as low false detection rate. Therefore, better
AA systems are expected to have low ADD and PFD values.
Hence, they should operate towards the lower left corner of
the PFD-ADD curve, as illustrated in Figure 4. As a result,
AA methods with very low operating values in the PFD-ADD
plot are better in terms of their performance.

In the absence of a proper mobile dataset with intrusions,
experimental data was obtained in the following manner for
all datasets considered. For each dataset, all possible pairs
of users were considered at a time. For each pair of users,
full length signals (e.g. touch gestures or detected faces) of
considered pair of users were merged to obtain a trial with
a single intrusion. As a result, only one intruder/attacker was
presented at each trial. Shown in Figure 1 is a sample trial
obtained in this manner. Frames A to I correspond to the
enrolled images of the genuine user. An intruder is presented
at frame J and onwards. The intrusion point depends on the
length of the samples corresponding to the first (genuine) user
and therefore is not pre-determined. Each trial was tested using

(a) (b)
Fig. 7: Sample detected face images from (a) the MOBIO
dataset and (b) the UMDAA-01 dataset.

before mentioned methods to determine detection delay and
probability of false detections under each method.

1) UMDAA-01 Dataset: The UMDAA-01 dataset [12] con-
sists of images of 50 individuals taken from an iPhone 5
device across three sessions performing five tasks including an
enrollment task. Both face images as well as touch gestures
are simultaneously captured in this dataset. Sample detected
face images from this dataset are shown in Figure 7(b). As
suggested in [12], enrollment data was used as gallery and
data from the other sessions was used as probes. In addition
20 number of instances from the probe session was used
to obtain the match score distribution. When testing, 33 %
of the remaining subjects excluding the probe class and the
target class were randomly chosen to obtain the non-match
distribution.
Results on the Face Data: Face images of the user were
normalized and image regions corresponding to eyes, nose,
lips and eyebrows were extracted. The HOG features [57]
were extracted on each facial component. These features were
concatenated to obtain the resulting feature for the given face.
Cosine distance is used to generate score values by matching
enrollment data with probes. Figure 8 shows the ADD-PFD
plot corresponding the UMDAA-01 face data. From this figure,
it can be seen that both BQCD (ρ = 0.001) and MQCD
outperform the other methods. This can be seen by comparing
their performances in the low PFD region.
Results on the Touch Data: From each swipe data, a 27-
dimensional feature vector is extracted using the method
described in [17]. A single class SVM with RBF kernel was
used to generate matching scores. Figure 9 shows the ADD-
PFD curves corresponding to different methods on this dataset.
It should be noted that there exists a considerable similarity
between single touch swipes of different users. Therefore,
from Figure 9, methods that rely on data of single or two
swipes have performed poorly. It can be seen that BQCD,
MQCD and the method proposed by Crouse et al. [15] that
uses information from pre and post change distributions have
performed reasonably well. In general, the MQCD method
yields faster detection rates and low false detections compared
to the other methods.

2) MOBIO Dataset: The MOBIO dataset [11] contains
videos of 152 subjects taken across two phases where each
phase consists of six sessions each. Videos in this dataset are
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Fig. 8: Performance curves obtained on the UMDAA-01 face
dataset.
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Fig. 9: Performance curves obtained on the UMDAA-01 touch
dataset.

acquired using a standard 2008 Macbook laptop computer and
a NOKIA N93i mobile phone (See Figure 7(a)). Following the
protocol defined in [13], video frames of the 12th session were
considered as the enrollment data and video frames of all other
sessions were used as probes. We conducted our experiments
on the laptop image data based on the LBP features. Again, the
cosine distance was used to generate the match and non-match
scores. Figure 10 shows the performance curves corresponding
to different methods on the MOBIO dataset. Note that the
images in this dataset are well aligned and mostly frontal.
As a result, pre-change and post-change distributions are well
separated. Hence, all considered methods yielded relatively
better performance. However, the BQCD and MQCD methods
have performed marginally better than the other compared
approaches.

3) Touchalytics Dataset: The Touchalitics dataset contains
touch data of 37 users collected across 7 tasks. Similar to the
UMDAA-01 touch dataset, touch gesture features are extracted
using the method described in [17] and a single class SVM
with RBF kernel was used to generate match and non-match
scores. Figure 11 shows the performance of different methods
on this dataset. As before, making a decision based on a single
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Fig. 10: Performance curves obtained on the MOBIO face
dataset.

swipe or two swipes have appeared to perform poorly. The
MQCD method performs the best followed by the BQCD
method and the method of Crouse et al. [15].
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Fig. 11: Performance curves obtained on Touchalytics dataset.

4) Discussion: From the above experiments, it can be seen
that the BQCD and MQCD methods have outperformed the
other existing AA methods. Furthermore, in all cases, the
MQCD method has performed marginally better than the
BQCD method. This is mainly due to the error induced
by approximating the change distribution by a Geometric
(ρ) distribution. In practice, where information on change
(intrusion) probability is unknown in advance, the MQCD
method provides more usability as opposed to the BQCD
method.

Detection delay and probability of false detections of the
proposed algorithm depend on the type of features as well
as the classifiers used for matching. The proposed method is
not restricted to any specific type of feature or a classifier.
Therefore, by using better features and classifiers it is possible
to obtain even lower ADD and PFD values.

Furthermore, it should be noted that, the detection delay
rates (ADD) shown in Figures 8, 9, 10, and 11 are highly
inflated as a result of non-detected intrusions due to the lim-
itations of the features and/or classifiers. To further elaborate
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on this point, let us consider the implementation of the MQCD
method with a threshold chosen such that PFD is at 5%.
Tabulated in Table III is the distribution of detection delay
(ADD) for the tests conducted. According to Table III, nearly
90% of the time, an intrusion can be detected using less than 7
samples. Therefore, the proposed method would produce quick
results for a small false detection rate in a practical setting.

2-3 S 4-5 S 6-7 S 8-10S >10 S
UMD-Face 11.9 17.07 55.06 6.02 9.93
UMD-
Touch*

73.62 13.51 4.69 3.04 3.13

MOBIO 8.74 61.87 10.38 7.51 11.5
Touchalytics 3.65 7.23 82.23 2.94 3.94
Mean 24.47 24.92 38.09 4.87 7.12

TABLE III: Percentage breakdown of delay times (in samples)
for a fixed PFD of 5% for MQCD. *3% of PFD was used
instead.

B. Resource Efficient QCD

Effect of extending QCD to incorporate resource efficiency
through sampling was studied on the before mentioned three
datasets. Performance of the proposed sampling method was
compared against the following two benchmark sampling
methods.
Fixed Time Step Sampling: Most of the existing AA systems
employ a sampling mechanism where sensor observations are
obtained with a fixed inter-sample interval [15],[48]. In our
experiments, this interval was chosen to satisfy the given APO
rate.
Dice Sampling: In this method, a weighted coin is tossed at
every time instant to determine whether a sample should be
obtained or not [56],[51],[52]. The weight of the coin is equal
to the chosen APO value.

Same set of features and classifiers as described in Sec-
tion VI-A were used to evaluate performance of the proposed
methods. For each dataset considered in this paper, E-BQCD
and E-MQCD were applied on top of BQCD and MQCD
for a specific APO rate. In addition, BQCD method was
implemented using time step sampling and DICE sampling
for comparison.

Shown in Figure 12 are the performance curves obtained for
the UMDAA-01 face dataset for an APO of 21%. Performance
curves have shifted to the left by some margin and have moved
slightly upwards as shown in the graph due to sampling. At a
glance, performance appears to have improved despite lower
sampling for a given PFD value. In comparison, sampling with
DICE and fixed time step has worsen the initial result. The
same trend seems to follow in the UMDAA-01 touch dataset
as seen in Figure 13 for an APO of 17%. Although BQCD
tends to perform poorly compared to MQCD, performance of
resource efficient versions of BQCD and MQCD are compa-
rable.

Results obtained for the experiments done on the MOBIO
face dataset for an APO of 17% are shown in Figure 14.
Both QCD methods yielded comparable results on the MOBIO
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Fig. 12: Performance curves obtained on the UMDAA-01 face
dataset for efficient QCD.
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Fig. 13: Performance curves obtained on the UMDAA-01
touch dataset for efficient QCD.

dataset in our earlier experiments. When resource efficient
QCD was employed, performance curves for both methods
improved nearly by an equal amount compared to the QCD
performance. It should be noted that, both DICE and fixed time
sampling performances are much worse compared to E-QCD
on the MOBIO dataset.

Final set of experiments were carried out on the Touch-
alytics touch dataset with an APO rate of 17%. Results of
these experiments are presented in Figure 15. As in earlier
cases, resource efficient QCD has outperformed QCD and
other sampling methods. However, there are a couple of
notable differences. Unlike in earlier experiments, E-BQCD
and E-MQCD performance curves do not overlap in this
case. However, this is only due to the absence of a common
operating region. In addition, time step sampling performed
better than DICE sampling on this dataset.

Resource efficient QCD have improved the performance
of QCD and has performed better than alternative sampling
methods have. The exact shape of the performance curves and
gaps between each curves depend on the type of feature and
classifier used. Irrespective of this, efficient QCD has yielded
better results on average. This can be seen from the results
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summarized in Table IV, where PFD values obtained for a
fixed detection delay of 15 samples for all considered datasets
are listed.

In order to investigate this phenomena further, we carried
out a case study on the UMDAA-01 face dataset. We con-
ducted the above mentioned experiment on the dataset for
a range of APO values. The resulted performance curves
are shown in Figure 16. Performance curves in Figure 16
suggest that as APO decreases, performance curves keep on
shifting further left. However, at the same time, the minimum
possible detection time has also increased. Therefore, very low
sampling is not feasible if quick change detection is desired.
On the other hand, for a fixed detection delay, it might be
possible to select a lower sampling rate so that lower PFD is
obtained. This result is true for all datasets we considered as
evident from Table IV.

In Figure 17, we plot the minimum possible detection
time for different APO values for the test conducted on
UMDAA-01 face dataset. As evident from this figure, the
minimum detection times increase as sampling fraction (APO)
is increased. Therefore, for practical applications, it is desired
to select a moderate value for APO when efficient QCD is
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Fig. 17: Effect of sampling on minimum average detection
delay.

1) Discussion: Decreasing the sampling rate by selecting
a threshold to achieve a lower APO have decreased the
PFD while increasing the ADD for all the cases considered.
This observation can be justified based on the score update
mechanism. Consider the black curve (APO = 0.93%) and the
blue curve (APO = 9.1 %) in the score evolution shown in
Figure 6. Note that, with the way how sampling is performed,
the black curve had missed all the humps created due to
irregularities in sensing. The blue curve on the other hand,
is affected only by a few humps due to sampling. However,
due to low sampling in humps, the blue curve has not risen
as much as the red curve (APO = 100%) has. This suggests
that for a constant threshold, occurrences of false detections
will be lower for the blue curve (APO = 9.1 %). Therefore,
PFD decreases when sampling is carried out. On the other
hand, due to sampling, an intrusion may not be sensed till the
sampling that follows is carried out. This is clearly seen in the
case of the blue line in Figure 6. As a result, detection delay
increases for a fixed threshold when sampling is carried out
as shown in Figure 17.
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SSA Sui et al
[48]

Crouse et
al [15]

BQCD MQCD E-BQCD E-MQCD DICE
[52]

TIMESTEP
[48],[15]

UMD-Face* 5.1 4.6 4.0 3.5 3.4 1.8 2.1 5.5 4.8
UMD-Touch 48.8 50.2 4.0 2.2 0.6 0.6 0.6 5.4 3.9
MOBIO 1.1 1.2 1.7 0.8 0.8 0.5 0.6 3.0 3.5
Touchalytics 24.6 14.8 3.1 3.8 3.5 NA 1.0 13.1 15.0

TABLE IV: The PFD % rate for a detection delay of 15 samples. The efficient QCD methods use an APO of 17%. * APO of
21% used.

VII. CONCLUSION

In this paper we addressed the issue of detecting intrusions
in a mobile AA system with quickest time with high utilization
of resources. We presented a method for detecting an intrusion
in an AA system with a minimal delay with a constraint
on false detection rate. Two variants of the QCD based on
Bayesian and MiniMax formulations were introduced. Perfor-
mance of the proposed method was demonstrated using three
publicly available datasets.

The basic QCD methodologies were extended using re-
source efficient QCD where a data driven observation sampling
was introduced with the aim of increasing resource efficiency.
The introduced algorithms not only reduced number of obser-
vations taken, but also improve the performance of the system
in terms of latency and false detections. Validity of this result
was demonstrated using various datasets.

The proposed method does not rely on a specific feature or
a classifier for its performance. This was verified in testing by
using different classifiers and features for different datasets.
Therefore, existing AA methods can be extended using the
proposed method to enhance the performance. It was shown
that the proposed method is effective even when there is a con-
siderable overlap between pre and post-change distributions.
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