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ABSTRACT

In this paper, an automatic target recognition algorithm is presented
based on a framework for learning dictionaries for simultaneous
sparse signal representation and feature extraction. The dictionary
learning algorithm is based on class supervised simultaneous or-
thogonal matching pursuit while a matching pursuit-based similarity
measure is used for classification. We show how the proposed
framework can be helpful for efficient utilization of data, with the
possibility of developing real-time, robust target classification. We
verify the efficacy of the proposed algorithm using confusion matri-
ces on the well known Comanche forward-looking infrared data set
consisting of ten different military targets at different orientations.

Index Terms— Automatic Target Recognition, Forward-Looking
Infrared (FLIR) Imagery, Simultaneous orthogonal matching pursuit
(SOMP), Sparse representation.

1. INTRODUCTION

In automatic target recognition (ATR), the objective is to classify
each target image into one of a number of classes. However, the pres-
ence of high clutter background, sensor noise, the large number of
target classes, and the computational load involved in processing all
the sensor data has often hampered the development of real-time ro-
bust ATR algorithms. The recognition algorithm usually consists of
several stages such as detection of target, background noise removal,
feature extraction and classification. In this paper, we mainly focus
on the last two stages. Target recognition using forward-looking in-
frared (FLIR) imagery of different targets in natural scenes is diffi-
cult due to high variation in the thermal signatures of targets. Many
ATR algorithms have been proposed for FLIR imagery. In [1], an
ATR algorithm for FLIR imagery based on modular neural network
was proposed. Wavelet based vector quantization was used for FLIR
ATR in [2]. See [3] for an excellent survey of papers and experimen-
tal evaluation of FLIR ATR.

Recently, Wrightet al. [4] introduced a sparse representation
based robust face recognition algorithm, which outperformed many
state of the art algorithms. Extensions based on [4] for FLIR ATR
were recently presented in [5]. However, one of the main limita-
tions of this approach is that for good recognition performance, the
training images are required to be extensive enough to span the con-
ditions that might occur in the test set. This may not be the case
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in many practical scenarios. Another limitation of this approach is
that the large size of the matrix due to the inclusion of large num-
ber of gallery images can tremendously increase the computational
complexity which can make the real-time processing very difficult.

To overcome the aforementioned limitations, in this paper, we
propose an ATR algorithm based on learning class supervised dic-
tionaries for simultaneous sparse signal representation and classifi-
cation.

1.1. Paper Organization

In Section 2, we discuss details about the proposed framework for
recognition using simultaneous orthogonal matching pursuit and a
dissimilarity measure. In Section 3, we show some initial recogni-
tion results on a FLIR data set, and present the concluding remarks
and future work in Section 4.

2. SIMULTANEOUS SIGNAL REPRESENTATION

In this section, we show how simultaneous orthogonal matching pur-
suit can be used for ATR.

2.1. Simultaneous Orthogonal Matching Pursuit (SOMP)

Let D be a redundant dictionary withK atoms inR
n. The elements

of the dictionary are indexed byγ ∈ Γ, i.e

D = {φγ : γ ∈ Γ} ⊂ R
n
.

The atoms have unit Euclidean norm i.e.,‖φγ‖2 = 1, ∀γ ∈ Γ. Let
X = [x1, ..., xs] be a set of training signals, wherexi ∈ R

n denotes
the ith signal ofX. Given D andX, SOMP attempts to approx-
imate these signals at once as a linear combination of a common
subset of atoms of cardinality much smaller thann [6]. Under the
assumption that these signals belong to a certain class, SOMP ex-
tracts their common internal structure [6]. In fact, by keeping the
sparsity low enough, one can eliminate the internal variation of the
class which can lead to more accurate recognition while being robust
to noise [6],[7],[8]. The SOMP algorithm is summarized in Fig. 1.
In what follows, we show that after adding a discriminative term into
SOMP, how we can use the coefficients of sparse representation to-
gether with the residual, over a class specific learned dictionary for
recognition.



Input: DictionaryD, signal matrixX, sparsity levelT .
Output: A setΛT containingT indices, approximationA and
residual matrixR.
Procedure:
1. Initialize the residualR0 = X, Λ = ∅, andt = 1.
2. Find indexγt, which solves the optimization problem

arg max
γ∈Γ

‖RT
t φγ‖1.

3. SetΛt = Λt−1 ∪ {γt}.
4. Determine the orthogonal projectorPt onto the span of the
atoms indexed inΛt.
5. Compute the new approximation and residual:

At = PtX,

Rt = (I − Pt)X.

6. If t = T , then stop. Otherwise, incrementt = t + 1, and go
to step 2.

Fig. 1. SOMP algorithm.

2.2. Separability based SOMP (SSOMP)

To further increase the discriminative power of SOMP, we adapt a
supervised learning algorithm based on linear discriminant analysis
(LDA). Note that LDA-based basis selection and feature extraction
algorithm for classification using wavelet packets was proposed by
Etemand and Chellappa in [9]. Recently, similar algorithms for si-
multaneous representation and discrimination have also been pro-
posed in [7], [8], and [10].

Let us denote the number of classes byc and assume that

X = [X(1)
, · · · , X

(c)] ∈ R
n×m

,

whereX(j) = [x
(j)
1 , · · · , x

(j)
ni

] ∈ R
n×ni denotes the samples that

belong to thejth class that hasni samples andm = c.ni. To obtain
a supervised atom selection algorithm, we modify the SOMP algo-
rithm by adding a separability constraint that captures within-class
and between-class variations. Define the within-class scatter matrix
Sw as

Sw =

cX
i=1

Si, (1)

where

Si =

niX
k=1

(x
(i)
k − µ

(i))(x
(i)
k − µ

(i))T
, (2)

andµ(i) = 1
ni

Pni

k=1 x
(i)
k . One can also define the between-class

scatter matrixSb as

Sb =

cX
i=1

ni(µ
(i) − µ)(µ(i) − µ)T

, (3)

whereµ = 1
cni

Pc

i=1 niµ
(i) is the total mean vector. In order

to achieve good separability for classification, one needs to have
large between-class scatter and small within-class scatter simulta-
neously. This can be achieved by introducing various cost functions
[7],[8],[9]. In this paper, we use the following cost function

J(X) = Tr(S−1
w Sb) (4)

but similar results can be obtained by any of the other cost functions
defined in [7],[8],[9].

For a dictionaryD and a set of indicesΛ, let ΦΛ ∈ R
n×|Λ|

be the matrix induced by the restriction of the dictionary elements
whose indices are the elements ofΛ. Then, the sparsity coefficients
are given byα(j)

k = (ΦT
ΛΦΛ)−1ΦT

Λx
(j)
k . From this observation, one

can show that

Sb(α) = (ΦT
ΛΦΛ)−1ΦT

ΛSb(X)ΦΛ(ΦT
ΛΦΛ)−1

Sw(α) = (ΦT
ΛΦΛ)−1ΦT

ΛSw(X)ΦΛ(ΦT
ΛΦΛ)−1

.

Hence, we can write the optimization problem that we want to solve
in step 2 of the SOMP algorithm (to get the supervised SOMP) as
follows

arg max
γ∈Γ

�
‖RT

t φγ‖1 + λJ(α)
�

, (5)

where λ ≥ 0 controls the trade-off between discrimination and
reconstruction. We call the resulting algorithm supervised SOMP
(SSOMP).

2.3. Classification Using SOMP and SSOMP

Once the dictionaries are learned for each class, one can design a
classifier based on either residuals (i.e. approximation error) or co-
efficients. For instance, SOMP (or SSOMP) approximations of the
test sampleg can be found using the learned dictionaries. The test
sample can then be assigned the label of the class whose dictionary
gives the best approximation ofg (i.e. the smallest residual). How-
ever, a test signal may find an economic representation in many dic-
tionaries. Hence, the approximation error by itself may not be the
most reliable measure for classification.

The approach of comparing coefficient vectors of projected and
original objects have also been proposed for classification [11].
Also, in [8] and [10, 7], nearest neighbor (NN) and SVM classifiers
are used on the coefficient vectors for classification, respectively.

Since, the matching pursuit approximation defines a signals in
terms of its projection, the coefficient vector and the residual, we
propose to use these for classification. LetPs be the projection op-
erator defined by the dictionary learned for the class containings.
Let α(s, Ps) be the coefficient vector andR(s, Ps) be the residual.
Then, in order to compare two signalsg ands, we projectg onto
the projectionPs of s and noting the coefficient vectorα(g, Ps) and
residualR(g, Ps). Based on these, the matching pursuit dissimilarity
measure (MPDM)[12] has been defined as

δ(g, s) =
p

θFR(g, s) + (1 − θ)Fα(g, s), (6)

whereθ ∈ [0, 1] determines the importance of the residuals and
coefficients inδ, FR(g, s) is the difference between the residuals of
g ands when both samples are projected onto the projectionPs of s

FR(g, s) = ‖R(g, Ps) − R(s, Ps)‖
2 (7)

andFα(g, s) compares their corresponding coefficient vectors

Fα(g, s) = ‖α(g, Ps) − α(s, Ps)‖
2
. (8)

Note that MPDM is a dissimilarity measure as small values indicate
similar signals, while large values indicate dissimilar signals (see
[12] for details). Once the class specific dictionaries are learned, the
classification is accomplished using the NN classification rule in the
MPDM sense. To further increase the recognition performance, one
can also perform the k-NN in terms of MPDM.



TG1 (HMMWV) TG2 (BMP) TG3 (T72) TG4 (M35) TG5 (ZSU23)

TG6 (2S1) TG7 (M60) TG8 (M113) TG9 (M3) TG10 (M1)

Fig. 2. Side view of all 10 targets present in the SIG data set.

It is also simple to introduce a reject threshold using the MPDM;
if the value is too big, then the sample is considered not to belong to
any class and should be rejected.

3. EXPERIMENTAL RESULTS

In this section, we present some preliminary results of our proposed
algorithm on the Comanche FLIR data set consisting of different
military targets at different orientations.

3.1. Dataset

The data set contains 10 different vehicle targets. We will denote
these targets asTG1, TG2, · · · , TG10. For each target, there are
72 orientations, corresponding to aspect angles of0◦, 5◦, · · · , 355◦

in azimuth. The data consists of a training set and a test set. We
will refer to the training set as the SIG set and the test set as the
ROI set. The SIG data set has about 13,816 image chips, while there
are 3,353 images in the ROI data set. The SIG data set consists of
the images that were collected under very favorable conditions. The
SIG data set contains 874 to 1468 images per target class. The ROI
set consists of only five targets, namelyTG1, TG2, TG3, TG4 and
TG7. The target images for the ROI set were taken under less fa-
vorable conditions, such as targets with different weather conditions,
in different background, in and around clutter; hence, these data are
very challenging. There are 577 to 798 images for each of these five
target classes. The images are of size40× 75 pixels. All the images
in the SIG and ROI sets were normalized to a fixed range with the
target put approximately in the center. The orientation in the ROI set
was given very coarsely; every45◦. In Fig. 2 we show side view of
all the 10 targets present in the SIG set.

Fig. 3. A few 16 × 16 atoms from the dictionary,D.

3.2. Dictionary

In our experiments, the dictionary,D, contained about1500 ele-
ments. It consisted of 2-D DCT atoms, 2-D Daubechies (4-taps)
wavelet atoms, Gabor atoms and a few target chips. Fig. 3 shows
some of the atoms from our dictionary.

3.3. Results

In the first set of experiments, we randomly selected11 targets per
aspect angle from the SIG data set for training, called TRAIN-SIG,
and another set of1000 targets disjoint from the training data for
testing, called TEST-SIG. We used SOMP and SSOMP for training
class specific dictionaries with 10 atoms. The value forλ in (5)
was chosen to be 0.2 and theθ value in (6) was fixed to 0.5. In
all the experiments, the target chips size was reduced from40 × 75
to 16 × 16. Given c target classes,ω1, · · · , ωc, each represented
by its own separate dictionary, the classification rule we use is the
following

if δ(x, x
(j)
k ) < δ(x, x

(l)
k ), ∀j 6= l, ∀k = 1, · · · , ni

then classifyx into ωj . The probabilities of correct classification
for this experiment are93.60 and94.80 percent for the SOMP and
SSOMP, respectively. The confusion matrices for this experiment
are shown in Fig. 4 (a) and (c) for SOMP and SSOMP, respectively.

In the second set of experiments, we again randomly selected11
targets per aspect angle from the SIG data set for training. We ran-
domly chose a set of1000 targets from the ROI data set for testing,
called TEST-ROI. Again, we used SOMP and SSOMP for training
class specific dictionaries with 10 atoms. The same values forλ
andθ were used as before. The probabilities of correct classification
for this experiment are71.89 and76.19 percent for the SOMP and
SSOMP, respectively. The confusion matrices for this experiment
are shown in Fig. 4 (b) and (d) for SOMP and SSOMP, respectively.

Table 1. Recognition rates (in%) for different methods.
Methods CNN4 MNN LVQ SOMP SSOMP

TRAIN-SIG 95.16 95.49 99.72 100 100
TEST-SIG - 90.53 - 93.60 94.80
TEST-ROI 59.25 75.58 75.12 71.89 76.19

From the above experiments, it is clear that introducing a dis-
criminative term into SOMP generally improves the classification
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Fig. 4. Confusion matrices. (a) SOMP on TEST-SIG. (b) SOMP on
TEST-ROI. (c) SSOMP on TEST-SIG. (d) SSOMP on TEST-ROI.

performance over SOMP. Also, note that our method is more general
than the methods presented in [1] and [2]. In their methods, to deal
with the background artifacts, they use several rectangular windows
of different size based on the ground truth silhouette computer-aided
design models. As a result, their performance significantly depends
on the choice of windows [1],[2],[3]. In contrast, the method pre-
sented here does not require any windowing. Results obtained using
different techniques are compared in Table. 1, where CNN4, MNN
and LVQ stand for 4 layered convolutional neural network [3], mod-
ular neural network [1] and learning vector quantization [2], respec-
tively.

4. DISCUSSION AND CONCLUSION

In this paper, we presented a framework for simultaneous sparse sig-
nal representation for robust ATR. Supervised SOMP was proposed
to learn discriminative class specific dictionaries. The classification
rule was based on a dissimilarity measure that combined both the
coefficient vector and the residuals. Promising preliminary results
were obtained on a difficult FLIR target data set.

Several future directions of inquiry are possible considering our
new approach to ATR. For instance, in our proposed method, the
dictionary,D, was predetermined. However, it has been observed
that the choice of the dictionary that sparsifies the signals is cru-
cial for signal representation and in some cases for classification
[13],[14],[15]. We are currently investigation this possibility of op-
timizing the dictionary for the FLIR target images using the K-SVD
like algorithms [13]. Also, the sparsity motivated methods for ATR
presented here for FLIR images can be easily extended to the other
object recognition problems such as the one based on synthetic aper-
ture radar imagery and face recognition.
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