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ABSTRACT in many practical scenarios. Another limitation of this approach is
. . . ) ) that the large size of the matrix due to the inclusion of large num-
In this paper, an automatic target recognition algorithm is presentele; of gallery images can tremendously increase the computational
based on a framework for learning dictionaries for simultaneoug,mpexity which can make the real-time processing very difficult.
Isez?rfiﬁ Slg|n?)drirtiﬂ;eissegt;stleodn c?r?(i:lfsstusrﬁ eexrt\:g(g('jog'imﬁ‘tz::gfsniry To overcome the aforementioned limitations, in this paper, we
thogongl m%tching pursuit while a matchin% pursuit-based similaritx{g.roloo.'se an ATR algorithm based on learning class §uperV|sed d'.c-_
. e ionaries for simultaneous sparse signal representation and classifi-
measure is used for classification. We show how the propose L tion
framework can be helpful for efficient utilization of data, with the ’
possibility of developing real-time, robust target classification. We
verify the efficacy of the proposed algorithm using confusion matri-1 1. Paper Organization
ces on the well known Comanche forward-looking infrared data set
consisting of ten different military targets at different orientations. In Section 2, we discuss details about the proposed framework for
recognition using simultaneous orthogonal matching pursuit and a
dissimilarity measure. In Section 3, we show some initial recogni-
tion results on a FLIR data set, and present the concluding remarks
and future work in Section 4.

Index Terms— Automatic Target Recognition, Forward-Looking
Infrared (FLIR) Imagery, Simultaneous orthogonal matching gtirsu
(SOMP), Sparse representation.

1. INTRODUCTION
2. SIMULTANEOUS SIGNAL REPRESENTATION

In automatic target recognition (ATR), the objective is to classify
each target image into one of a number of classes. However, the prdg-this section, we show how simultaneous orthogonal matching pur-
ence of high clutter background, sensor noise, the large number stiit can be used for ATR.
target classes, and the computational load involved in processing all
the sensor data has often hampered the development of real-time ro- ) ) ]
bust ATR algorithms. The recognition algorithm usually consists of2-1. Simultaneous Orthogonal Matching Pursuit (SOMP)

several stages such as detection of target, background noise 'emO\f_aet D be a redundant dictionary witi atoms inR”. The elements
feature extraction and classification. In this paper, we mainly focus Y '

on the last two stages. Target recognition using forward-looking in-Of the dictionary are indexed by € T', i.e
frared (FLIR) imagery of different targets in natural scenes is diffi-
cult due to high variation in the thermal signatures of targets. Many
ATR algorithms have been proposed for FLIR imagery. In [1], an . . .
ATR algorithm for FLIR imagery based on modular neural network Ihe atoms have unit Euclidean norm i, |2 = 1,vy € I'. Let
was proposed. Wavelet based vector quantization was used for FLIR = [#1, -, 7s] be a set of training signals, where € R" denotes

ATRin [2]. See [3] for an excellent survey of papers and experimenthe ith signal of X'. Given D and X, SOMP attempts to approx-
tal evaluation of FLIR ATR. imate these signals at once as a linear combination of a common

Recently, Wrightet al. [4] introduced a sparse representation SUbset of atoms of cardinality much smaller thaf6]. Under the

based robust face recognition algorithm, which outperformed man?ssumptiqn that these signals belong to a certain class, SOMP ex-
state of the art algorithms. Extensions based on [4] for FLIR ATRV@cts their common internal structure [6]. In fact, by keeping the
were recently presented in [5]. However, one of the main limita-SParsity I_ow enough, one can eliminate the |n_t_ernal \{anatl_on of the
tions of this approach is that for good recognition performance, th&lass which can lead to more accurate recognition while being robust

training images are required to be extensive enough to span the colf-N°ise [61,[71,[8]. The SOMP algorithm is summarized in Fig. 1.
ditions that might occur in the test set. This may not be the casih what follows, we show that after adding a discriminative term into

SOMP, how we can use the coefficients of sparse representation to-
This work was partially supported by an ARO STIR Grant gether with the residual, over a class specific learned dictionary for
W911NF0910408. recognition.
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Input: Dictionary D, signal matrixX, sparsity levell. but similar results can be obtained by any of the other cost functions
Output: A setAr containingT indices, approximatiost and defined in [7],[8],[9].

residual matrixR. For a dictionaryD and a set of indices\, let &, € R"*IAl
Procedure: be the matrix induced by the restriction of the dictionary elements
1. Initialize the residuaRy, = X, A = @, andt = 1. whose indices are the elements/af Then, the sparsity coefficients
2. Find indexy;, which solves the optimization problem are given byn\?) = (q>/T\q>A)—1q>K$§g>, From this observation, one

T can show that
argmax | Ry ¢ [1.

3.Seth; = Ay U {y}. Sb(a) = (PR PA) " RSH(X)PA(PLDA) "
4, Detgrmlne the orthogonal projectB¥ onto the span of th Sw(a) = (<I>£<I>A)‘1<I>f5w(X)cI>A(<I>K<I>A)‘1.
atoms indexed im\;.

D

5. Compute the new approximation and residual: Hence, we can write the optimization problem that we want to solve
in step 2 of the SOMP algorithm (to get the supervised SOMP) as
Ar = P X, follows
Ry = (I - P)X. arg max (|| R ¢, |1 + A (@) , ®)
y€ET
6. If t = T, then stop. Otherwise, increment ¢ + 1, and go where A\ > 0 controls the trade-off between discrimination and
to step 2. reconstruction. We call the resulting algorithm supervised SOMP
(SSOMP).

Fig. 1. SOMP algorithm.
2.3. Classification Using SOMP and SSOMP

o Once the dictionaries are learned for each class, one can design a
2.2. Separability based SOMP (SSOMP) classifier based on either residuals (i.e. approximation error) or co-

To further increase the discriminative power of SOMP, we adapt &fficients. For instance, SOMP (or SSOMP) approximations of the
supervised learning algorithm based on linear discriminant analysi€St Samplgy can be found using the learned dictionaries. The test
(LDA). Note that LDA-based basis selection and feature extractiors@Mple can then be assigned the label of the class whose dictionary
algorithm for classification using wavelet packets was proposed bgives the best approximation gf(i.e. the smallest residual). How-
Etemand and Chellappa in [9]. Recently, similar algorithms for si-€Ver. a test signal may find an economic representation in many dic-
multaneous representation and discrimination have also been prionaries. Hence, the approximation error by itself may not be the

posed in [7], [8], and [10]. most reliable measure for classification. .
Let us denote the number of classesctand assume that The approach of comparing coefficient vectors of projected and
original objects have also been proposed for classification [11].
X = [X“), .. ,X(C)} € R™™, Also, in [8] and [10, 7], nearest neighbor (NN) and SVM classifiers
are used on the coefficient vectors for classification, respectively.
where X @) — Mj)y . ,m%}} € R™*" denotes the samples that Since, the matching pursuit approximation defines a sigiial

belong to thejth class that has; samples aneh = c.n;. To obtain terms of its projection, the coefficient vector and the residual, we
a supervised atom selection algorithm, we modify the SOMP algoProPose to use these for classification. Egtbe the projection op-
rithm by adding a separability constraint that captures within-clas§rator defined by the dictionary learned for the class containing

and between-class variations. Define the within-class scatter matrb€t (s, Ps) be the coefficient vector ani(s, P;) be the residual.
Then, in order to compare two signajsand s, we projectg onto

Swas c the projectionP, of s and noting the coefficient vecter(g, P,) and
Sy = Z Si, (1)  residualR(g, Ps). Based on these, the matching pursuit dissimilarity
i=1 measure (MPDM)[12] has been defined as
where 50.5) = VOFalg. ) + 1= OFalgs).  (©)
i . X . . yS) = R\G, S - alg;S),
So= 3l - u)(al = u)7, @ ’ N e
k=1 wheref < [0,1] determines the importance of the residuals and

coefficients ind, Fr(g, s) is the difference between the residuals of

(i) _— 1 5 . (9) ; - . .
andp™ = -3 4L, ;. One can also define the between-class, 4y, when both samples are projected onto the projectionf s

k=1
scatter matrixS, as

. Fr(g,s) = | R(g, Ps) = R(s, P,)||” (7)
i i T
Sp = Z”iW( P =T, @) andr, (g, s) compares their corresponding coefficient vectors
=1
Fa(g,s) = lla(g, Ps) — a(s, P5)||*. 8)

wherepy = i > n;u'? is the total mean vector. In order
to achieve good separability for classification, one needs to hawote that MPDM is a dissimilarity measure as small values indicate
large between-class scatter and small within-class scatter simultaimilar signals, while large values indicate dissimilar signals (see
neously. This can be achieved by introducing various cost functionEl2] for details). Once the class specific dictionaries are learned, the
[71,[81.[9]. In this paper, we use the following cost function classification is accomplished using the NN classification rule in the
MPDM sense. To further increase the recognition performance, one
J(X) =Tr(Sy"Sp) (4)  canalso perform the k-NN in terms of MPDM.
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Fig. 2. Side view of all 10 targets present in the SIG data set.

Itis also simple to introduce a reject threshold using the MPDM;3.2. Dictionary
if the value is too big, then the sample is considered not to belong t:

any class and should be rejected Pn our experiments, the dictionaryp, contained about500 ele-

ments. It consisted of 2-D DCT atoms, 2-D Daubechies (4-taps)
wavelet atoms, Gabor atoms and a few target chips. Fig. 3 shows
3. EXPERIMENTAL RESULTS some of the atoms from our dictionary.

In this section, we present some preliminary results of our propose

algorithm on the Comanche FLIR data set consisting of different->: Results

military targets at different orientations. In the first set of experiments, we randomly selectédargets per
aspect angle from the SIG data set for training, called TRAIN-SIG,

3.1. Dataset and another set of000 targets disjoint from the training data for

. ) ) . testing, called TEST-SIG. We used SOMP and SSOMP for training
The data set contains 10 different vehicle targets. We will denotg|oq specific dictionaries with 10 atoms. The value Xan (5)

these targets @8G:1, 7G2,--- , TG10. For each target, there are a5 chosen to be 0.2 and thHevalue in (6) was fixed to 0.5. In

72 orientations, corresponding to aspect angle®’ob°, - - ,355° 4| the experiments, the target chips size was reduced #om 75
in azimuth. The data consists of a training set and a test set. W8 16« 15 Givene target classes, !, -- - ,w°, each represented
* i ) i

will refer to the training set as the SIG set and the test set as thg jis own separate dictionary, the classification rule we use is the
ROl set. The SIG data set has about 13,816 image chips, while the+r llowing

are 3,353 images in the ROI data set. The SIG data set consists of

the images that were collected undgr very favorable conditions. The if 5(30»951(5)) < 6(:75,1:1(61))#]' AL Vk=1, - ,n;

SIG data set contains 874 to 1468 images per target class. The ROI

set consists of only five targets, nam@lg:1, TG2,TG3,TG4and  then classifyz into w’. The probabilities of correct classification
T'G7. The target images for the ROI set were taken under less fgor this experiment ar63.60 and94.80 percent for the SOMP and
vorable conditions, such as targets with different weather condition&sSOMP, respectively. The confusion matrices for this experiment
in different background, in and around clutter; hence, these data aege shown in Fig. 4 (a) and (c) for SOMP and SSOMP, respectively.
very challenging. There are 577 to 798 images for each of these five |n the second set of experiments, we again randomly seletted
target classes. The images are of si@ex 75 pixels. All the images  targets per aspect angle from the SIG data set for training. We ran-
in the SIG and ROI sets were normalized to a fixed range with thglomly chose a set af000 targets from the ROI data set for testing,
target put approximately in the center. The orientation in the ROI segalled TEST-ROI. Again, we used SOMP and SSOMP for training
was given very coarsely; evedp°. In Fig. 2 we show side view of  class specific dictionaries with 10 atoms. The same values for
all the 10 targets present in the SIG set. andé were used as before. The probabilities of correct classification
for this experiment ar&1.89 and76.19 percent for the SOMP and
SSOMP, respectively. The confusion matrices for this experiment
are shown in Fig. 4 (b) and (d) for SOMP and SSOMP, respectively.

Table 1. Recognition rates (iffo) for different methods.
[ Methods [ CNN4 [ MNN | LVQ | SOMP | SSOMP|
TRAIN-SIG 95.16 | 95.49 | 99.72 100 100
TEST-SIG - 90.53 - 93.60 | 94.80
TEST-ROI 59.25 | 75.58 | 75.12| 71.89 76.19

Fig. 3. Afew 16 x 16 atoms from the dictionary.

From the above experiments, it is clear that introducing a dis-
criminative term into SOMP generally improves the classification
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Fig. 4. Confusion matrices. (a) SOMP on TEST-SIG. (b) SOMP on [6]
TEST-ROI. (c) SSOMP on TEST-SIG. (d) SSOMP on TEST-ROI.

[7]
performance over SOMP. Also, note that our method is more general
than the methods presented in [1] and [2]. In their methods, to deal
with the background artifacts, they use several rectangular windows
of different size based on the ground truth silhouette computer-aided [8]
design models. As a result, their performance significantly depends
on the choice of windows [1],[2],[3]. In contrast, the method pre-
sented here does not require any windowing. Results obtained using[9]
different techniques are compared in Table. 1, where CNN4, MNN
and LVQ stand for 4 layered convolutional neural network [3], mod-
ular neural network [1] and learning vector quantization [2], respec-

tively. [10]

[11]
4. DISCUSSION AND CONCLUSION

12
In this paper, we presented a framework for simultaneous sparse sig[- ]
nal representation for robust ATR. Supervised SOMP was proposed
to learn discriminative class specific dictionaries. The classification
rule was based on a dissimilarity measure that combined both the
coefficient vector and the residuals. Promising preliminary results [13]
were obtained on a difficult FLIR target data set.

Several future directions of inquiry are possible considering our
new approach to ATR. For instance, in our proposed method, the
dictionary, D, was predetermined. However, it has been observed 14]
that the choice of the dictionary that sparsifies the signals is cru-
cial for signal representation and in some cases for classification
[13],[14],[15]. We are currently investigation this possibility of op-
timizing the dictionary for the FLIR target images using the K-SVD [15]
like algorithms [13]. Also, the sparsity motivated methods for ATR
presented here for FLIR images can be easily extended to the other
object recognition problems such as the one based on synthetic aper-
ture radar imagery and face recognition.
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