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Abstract

A sparse representation-based approach is proposed to determine the salient

views of 3D objects. The salient views are categorized into two groups. The

first are boundary representative views that have several visible sides and

object surfaces that may be attractive to humans. The second are side rep-

resentative views that best represent views from sides of an approximating

convex shape. The side representative views are class-specific and possess the

most representative power compared to other within-class views. Using the
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concept of characteristic view class, we first present a sparse representation-

based approach for estimating the boundary representative views. With

the estimated boundaries, we determine the side representative views based

on a minimum reconstruction error criterion. Furthermore, to evaluate our

method, we introduce the notion of view-dependent dictionaries built from

salient views for applications in 3D object recognition and retrieval. The

proposed view-dependent dictionaries encode information on geometry across

views and representation of the object. Through a series of experiments on

four publicly available 3D object datasets, we demonstrate the effectiveness

of our approach compared to two existing state-of-the-art algorithms and one

baseline method.

Keywords: Salient view, characteristic view class, view geometry, sparse

representation, view-dependent dictionaries, object recognition.

1. Introduction

The concept of characteristic views was first proposed in [4], [12] for object

recognition, which was defined as two views belonging to the same character-

istic view class that are topologically equivalent, and can be related by a 3D

transformation. The transformation consists of geometric rotation, transla-

tion and perspective projection [26]. [26] proposes a framework to partition

the viewing space and to find the set of characteristic views for planar-faced

solid objects. This work was later extended in [7], which essentially computes

the characteristic views of objects with curved-surface.

There are a number of approaches for describing what is contained in a

view [23], [3]. For view-based representations, human perceivers are influ-
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enced by factors such as familiarity with the object being viewed, the simi-

larity of a given view to known views of visually-similar objects and the pose

of the object [23]. Three-quarter views with all visible front, top and side,

are often used as candidate views1. As noted in [20], three-quarter views are

essentially views that most humans prefer when looking at an object. These

views are also known as canonical views [3].

In [27], saliency refers to the novel information in an image relative to

an existing representation. For an eigenspace representation, the saliency is

computed as the residual error that is the amount of energy not captured by

the basis set. A greedy algorithm was proposed for subset selection where

the saliency of every ensemble view is first computed and then the view with

the highest saliency is added to the subset. The subset is then modified using

the eigenspace representation updating algorithm [5], [13] so that the task of

salient view selection can be realized in a dynamic environment.

In recent years, the theory of sparse representations has emerged as a

powerful tool for efficient processing of data. Motivated by its success in many

computer vision and image processing applications [28], [11], we propose a

sparse representation-based approach for selecting the salient views of an

object [3], [20]. Given an object that is not necessarily convex, we assume

it can be approximated by a simple convex shape with multiple number of

sides. A side view class is defined as the set of all views of the corresponding

1In the viewing space there are in fact infinite number of viewpoints. Candidate views

are views seen from a (possibly large but) finite subset of viewpoints [20]. Given a view

descriptor, the objective in [20] is to find the maximum of this descriptor among the

candidate views.
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side of the shape, while a boundary view class refers to views where two or

more sides can be seen simultaneously.

The motivation of our work originates from the concept of characteristic

view class for convex planner-faced solid objects [26]. According to [26], for

any given convex planner-faced solid object, planes obtained by expanding

the object’s faces partition the viewing space. We propose that through these

viewing partitions, it is easier to define and find salient views of the object.

An object in general cannot be both convex and planner-faced. For a con-

vex but not a planer object, partitions of the viewing space are no longer

“planner-faces”; for a general non-convex object, it is even much more in-

volved to partition the viewing space. Our salient views are built upon the

convexity assumption of a given object - even if the object is itself not convex,

we assume it can be approximated by a convex shape. In this way, the view-

ing space partitions of the convex shape are based not only on the object’s

physical shape, but also the texture information. For example, partitions

of a sphere, cylinder or lamp, can be roughly determined by the text, color

or other texture contents shown on the surface. As what actually partition

the viewing space may not necessarily be “planner-faces”, we use “sides”

to refer to those that partition the viewing space, and “boundaries” as the

boundaries among different partitions.

Fig. 1 illustrates distinct regions of side view classes and boundary view

classes given an approximate convex shape for an object. The shape con-

sists of four sides, which give four side view classes and four boundary view

classes under orthographic projection. These eight classes are exactly the

eight characteristic view classes of the approximate convex shape. Using the
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Figure 1: Convex shape approximation and the associated regions of side view classes and

boundary view classes.

object’s approximate convex shape and its sides, we categorize salient views

into two categories: boundary representative views (BRVs) which have more

visible sides and object surfaces, and therefore are more attractive from a

human perception point of view; and side representative views (SRVs) which

best describe the underlying side view classes. In Fig. 1, BRVs and SRVs

are views seen from directions marked with solid white and solid black ar-

rows, respectively. Fig. 2 shows the block diagram of the proposed two-stage

approach for finding the salient views. Views are extracted from a video se-

quence, cropped and properly resized. In the first stage, the boundary scores

are computed using a sparsity-based spread metric to estimate the BRVs and

determine the side view classes. In the second stage, for each side, a set of

SRVs that best represent a corresponding side are chosen by minimizing a

representation error. In other words, our salient views consist of BRVs and
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SRVs, where a BRV is found by maximizing the boundary score while a SRV

is found by minimizing the sparse-to-full reconstruction error.
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Figure 2: Block diagram of the proposed salient view selection approach.

Important applications of salient views include object recognition and

retrieval. In these applications, objects are retrieved or classified from dif-

ferent perspectives. To show the effectiveness of our method, we introduce

the notion of view-dependent dictionaries that are built using salient views

and side view classes. These view-dependent dictionaries can then be used

for 3D object recognition and retrieval applications.

Key contributions of our work are:

1. We propose a sparse representation-based approach for extracting the

salient views of an object.
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2. Our method is based on characteristic views. It selects representative

views of visible sides and object surfaces.

3. We extend this work by introducing view-dependent dictionaries which

are based on the salient views for object recognition and retrieval.

4. The view-dependent dictionaries are related by the geometry across

views, and they represent the object in an informative way.

5. We demonstrate the effectiveness of our approach on four publicly avail-

able 3D object datasets.

Items 1 and 2 above summarize the preliminary version of this work that

appeared in [8], while items 3, 4 and 5 are extensions to [8].

1.1. Organization of the Paper

This paper is organized as follows. In section 2, we present our method for

estimating the BRVs of an object. In Section 3, we describe our approach for

determining the SRVs. In section 4, we detail the view-dependent dictionary

learning method using salient views, and its application to object recogni-

tion and retrieval. Experimental results and discussions on recognition and

retrieval using view-dependent dictionaries, as well as visual hull based view

synthesis using the proposed salient views, are presented in section 5. Sec-

tion 6 concludes the paper with a brief summary and future work.

1.2. Summary of acronyms and notations

We present in Tables 1 and 2 a summary of acronyms and notations used

in this paper.
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Table 1: Summary of acronyms.

Acronym Original meaning Where defined

BRV Boundary Representative View Section 2

SRV Side Representative View Section 2

VDD View-dependent Dictionary Section 4

VDDR View-dependent Dictionary based

Recognition/retrieval

Section 4.3

SVSR Salient View selection based on Sparse

Representation

Section 4.3

SS Subset Selection [27] Section 5.2

VS Video Summarization [22] Section 5.2

LOO Leave-one-out Section 5.2.1

2. Estimating boundary representative views

It has been shown from [26] that for a convex planar-faced solid ob-

ject, planes obtained by expanding the object’s faces partition the viewing

space. These planes are used to partition the viewing space into regions

called characteristic view domains. Whenever two views belong to the same

characteristic view class, every viewable point in one view is also viewable in

the other view, and vice versa. Using this idea on the assumed approximate

convex shape of a given object, we use a metric called boundary score to

select BRVs.

In this work, we consider only the 3D views of an object with respect to

the Y axis rotation under the orthographic projection. To represent the

saliency of a candidate view relative to an existing group, the proposed

boundary score is given in a form of 1− SCI, where SCI stands for Sparsity

Concentration Index [29], [19]. It is a measure of sparsity of the coefficient
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Table 2: Summary of notations.

Variable Definition Where defined

zj the view at position j in its column vectorized form Section 2

W a sliding window with γ consecutive z′js Section 2

C1 the matrix that contains views (each in a column-

vectorized form) in the first side view class as its

columns

Section 3

y1 the column-vectorized form of C1 Section 3

ys the column-vectorized form of a set of selected views

from the first side view class

Section 3

R an object-dependent basis set of y1 Section 3

Rs a subset of R corresponding to ys Section 3

σ a column of eigenvalues of y1 as entries Section 3

{ail}
ni

l=1 salient views (in column-vectorized form) of the ith

object

Section 4.1

Ai the matrix whose columns are ails Section 4.1

Bi salient view VDD of the ith object Section 4.1

Ci,j the matrix that contains views (each in a column-

vectorized form) in the jth side view class of the ith

object as its columns

Section 4.2

Di,j the VDD of the jth side view class of the ith object Section 4.2

Di concatenation of side view class VDDs of the ith ob-

ject

Section 4.2

h a query view (in column-vectorized form) Section 4.2

Ei a general term for Bi or Di Section 4.3

G number of retrieved images for the query view h Section 4.3
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representation of a vector in some basis. Low values of SCI indicate that

the given view is fairly informative relative to the existing group. Therefore,

when applied to the view selection, a high boundary score is a strong indi-

cation that the candidate view belongs to a characteristic view class that is

different from the existing one. It can be shown that the boundary score falls

in the range of [0, 1].

In practice, as no knowledge on side view classes is given initially, we

compute the boundary score of a candidate view relative to a set of views

contained in a sliding window (i.e. a set of views with consecutive view

indices) on the path of rotation (with respect to the Y axis). The BRVs are

the views with the maximum boundary scores. In particular, given a view at

position j, we use zj to denote the view in its column-vectorized form. The

boundary score of zj is computed by

1− SCI =
γ

γ − 1

(
1− max

i∈{1,2,...,γ}

‖δi(x̃)‖1
‖x̃‖1

)
, (1)

where x̃ is the representation of the view z(j+α) under the sliding window W

given by

W ,
(
z(j−β−γ+1) z(j−β−γ+2) ... z(j−β)

)
. (2)

We have

x̃ = arg min
x
‖x‖1 s.t. z(j+α) = Wx. (3)

In (1), δi(x̃) is a masked version of x̃ such that its only nonzero entry is

the one that corresponds to the i-th column of W. We compute the spread

metric of the view ahead of zj by α units of indices, with respect to the set
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formed from the (β + γ − 1)-th view up to the β-th view behind zj
2. That

is, this set is formed according to a β-index logged window with size γ.

 !"

(j+ )j(j-!)(j-!-"+1)

(j-1)

POSITIVE

Find representation
m-th side view class (m+1)-th side view class

boundary view class

Figure 3: An illustration of finding the boundary score.

Fig. 3 illustrates the proposed method to compute the boundary score.

Consider two side view classes: m-th side view class (in color purple) and

(m + 1)-th side view class (in color yellow), and one boundary view class

in between. Since in the beginning no information on side view classes is

provided, the choice of basis is unknown and we use a sliding window W

(consisting of views in color green) with a predetermined size γ to find the

boundary score at zj by (1).

2A limitation of the proposed method is that α and β cannot be too small or

too large. As we assume the training sequences with known BRVs or ground-truth

visual-hull representations are not available, we experimentally set α and β such that

α corresponds to 48◦ and β corresponds to 24◦. If such training sequences can be

acquired, we can first solve α̂, β̂ = argmin
α,β

‖x‖1 s.t. z(j∗+α) = W∗x, where W∗ =

(z(j∗−β−γ+1) z(j∗−β−γ+2) · · · z(j∗−β)). Then we take the average over (α̂, β̂)’s computed

from all given BRVs and sequences as the experimental setting for test sequences in the

same category.
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2.1. Geometric interpretation of boundary representative views

There is a close relation between the proposed BRVs and a minimal set

of representative views that can be used to successfully synthesize all other

views of an object via visual hull based methods [14], [30]. Without explic-

itly rendering from the 3D model to reconstruct the synthesized view, these

methods build correspondences between a given view and each synthesized

view by performing pixel-to-pixel mapping based on spatial correspondences

according to the geometry. All pixels that can be seen from synthesized view

are mapped from the corresponding pixels of the given view.

Using the concept of visual hull, the minimal set of representative views3

is selected such that for every view zj of the given object, the intersection be-

tween the cone formed by projecting the silhouette image into the 3D space

through the camera center of the view zj, and the shape of the object, is

contained in the intersection between the visual hull formed by the corre-

sponding cones4 projected from camera centers of these representative views,

and the shape of the object. A BRV is a view with as many as visible “sides”

of the convex shape approximation on the object, and hence is a view whose

characteristic view domain covers as many as viewpoints as possible. There-

fore, the visual hull formed by cones of all viewpoints in the characteristic

3Given 2D images, we can estimate BRVs using the proposed algorithm. To find the

minimal set of representative views, however, we need 3D geometric information of the

object (including camera intrinsic and extrinsic parameters). The scenario where we find

BRVs is based on a sequence of 2D images without knowing 3D parameters. Hence, in

this work, we did not find the minimal set of representative views to replace BRVs.
4The visual hull is the intersection of these cones.
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view domain of the BRV contains the intersection between the object shape

and the corresponding cones of views that are as many as possible. In other

words, BRVs are candidates of representative views, where the representa-

tive views are views that can be used to synthesize full views of the object.

The relation of BRVs with geometry is further elaborated via the visual hull

based view synthesis experiments presented in section 5.3.

3. Side representative view selection

Representative views can either be interpreted as a sparse representation

(i.e., coefficients) under some basis, or can be used as sparse observation

where sparse coefficients under some basis can be found. In this section, with

representative views regarded as sparse observations, we propose a procedure

for finding an object-dependent basis set. We assume that camera parameters

are not known.

We assume that distinct side view classes are independent of each other.

Without loss of generality, we consider the first side view class, denoted by

C1 = [z1 z2 ... zk1 ]. Its singular value decomposition (SVD) is [z1 z2 ... zk1 ] =

VΣUT , where V = [v1 v2 ... vL] is an L-by-L matrix (L is total number of

pixels of an image); U = [u1 u2 ... uk1 ] is a k1-by-k1 matrix; and σ1, ...σk1 are

the eigenvalues (i.e., first k1 diagonal entries of Σ). Let y1 be the column-

vectorized form of C1. It can be shown that

y1 = Rσ. (4)

where the ith column of R is the column-vectorized form of matrix viu
T
i . In

(4), matrix R is an object-dependent basis set, and σ = [σ1, ...σk1 ]
T contains

eigenvalues as coefficients.
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Our objective is to select l1 out of k1 views as representative views that

best represent the side view class, where l1 < k1. There are
(
k1
l1

)
possible

ways to select them. Let

R =


Q1

...

Qk1

 , (5)

where each Qj (j ∈ {1, ..., k1}) is a L-by-k1 matrix corresponding to zj.

Consider one way in which the selected views zs1 , ..., zsl1 form a column

vector ys, and the corresponding matrices Qs1 , ...,Qsl1
form a Rs such that

ys =


zs1
...

zsl1

 , Rs =


Qs1

...

Qsl1

 . (6)

We solve the following equation using the `1 norm:

x̂s = arg min
x
‖x‖1 s.t. ys = Rsx. (7)

Since l1 < k1, fewer constraints are involved in solving (7) than in (4), and

we would expect x̂(ys) to be sparser than w. Among all possible
(
k1
l1

)
ways,

the one which gives the least sparse-to-full reconstruction residual is chosen.

In other words, we seek

ŷs = arg min
s
‖y1 −Rx̂s‖2. (8)

The corresponding best reconstruction is closest to y1, and can be thought

of as the one directly reconstructed using sparse observations from these l1

representative views. It has sparse representation x̂(ŷs) under the basis R

defined in (4).
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There is a close relation between the proposed salient views and the char-

acteristic views proposed in [4], [12], [26]. For a convex shape, the salient

view of a characteristic view class is an important view of that class, in the

sense that: When the characteristic view class is a boundary view class,

the corresponding salient view is a BRV, found by maximizing the boundary

score given by (1); When the characteristic view class is a side view class, the

corresponding salient view is a SRV, found by minimizing the reconstruction

error given by (8).

4. View-dependent Dictionaries

Important applications of salient views include object recognition and

retrieval where one wants to recognize or retrieve images having the same

object while taken from different perspectives [17], [9], [10]. In this section,

we introduce the notion of view-dependent dictionaries for this application.

With the convexity of an object (or the convexity by approximation if

the object is not convex), the corresponding characteristic view classes can

be categorized into boundary view classes and side view classes. As shown

in sections 2.1 and 3, BRVs are candidates of views that can be used for

synthesizing the original full views of the object via visual hull based meth-

ods, while each SRV is selected to minimize spare-to-full reconstruction error

within the corresponding side view class. Hence, BRVs and SRVs are de-

signed to reflect the view geometry and represent the object in an informative

way. As these views are more representative compared to other views, the

dictionaries learned from them, called view-dependent dictionaries (VDDs),

encode information on geometry across views and representation of the ob-
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ject. The VDDs are designed to represent a 3D object based on views taken

from the object’s full geometric perspectives, and meanwhile, remove the 3D

redundancy. Therefore, they are useful in object recognition and retrieval

applications.

The VDDs can be built either directly from salient views (i.e., BRVs

and SRVs), or using views belonging to side view classes. Here, we refer to

dictionaries built from salient views and side view classes by “salient view

VDD” and “side view class VDD”, respectively5.

Obtain salient 
views (BRVs and 

SRVs)

Build VDDs using 

salient views

Training 1: Salient view VDDs

Divide full views 
into side view 

classes using BRVs

Build VDDs using 

side view classes 

Training 2: Side view class VDDs

Identification and 

retrieval

Testing scenario 2

Query: 
Full views

Target:  
Salient view VDDs or 

side view class VDDs

Identification and 

retrieval

Testing scenario 1

Query: 
Salient views

Target:  
Salient view VDDs or 

side view class VDDs

(a) (b)

Figure 4: Illustration of different training and testing scenarios for recognition/retrieval.

(a) Two training scenarios: salient view VDDs and side view class VDDs. (b) Two testing

scenarios: salient views (as query) vs. VDDs (as target), and full views (as query) vs.

VDDs (as target).

5Dictionaries of salient views and side view classes are denoted by Bi (in section 4.1)

and Di,j (in section 4.2), respectively.
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4.1. Salient view VDDs

Let the salient views of the ith object be denoted by {ail}
ni
l=1. Then, the

following optimization problem can be solved to obtain the corresponding

salient view VDD denoted by Bi:

(Bi,Λi) = arg min
B,Λ
‖Ai −BΛ‖2F , s.t. ‖λl‖0 ≤ T0,

∀l ∈ {1, ..., ni},∀i ∈ {1, ..., P}, (9)

where P is the total number of objects (i.e. classes) in the target gallery, λl

represents the lth column of Λ, Ai is the matrix whose columns are ails and

T0 is the sparsity parameter. Here, ‖A‖F is the Frobenius norm of matrix

A defined by ‖A‖F =
√∑

ij A
2
ij, and the norm ‖λ‖0 counts the number of

non-zero elements in λ.

Various methods can be used to solve the above optimization algorithm.

In this paper, we use the K-SVD algorithm for learning the view-dependent

dictionaries due to its simplicity and fast convergence [2]. The K-SVD algo-

rithm alternates between sparse-coding and dictionary update steps. In the

sparse-coding step, B is fixed and the representation vectors λi,ls are found

for each example ail by solving the following sparse coding problem

min
λi,l

‖ail −Bλi,l‖22 such that ‖λi,l‖0 ≤ T0,

∀l ∈ {1, .., ni},∀i ∈ {1, .., P}. (10)

As solving (10) is NP-hard, approximate solutions are usually sought [6], [25].

Greedy pursuit algorithms such as matching pursuit and orthogonal matching

pursuit [18] are often used to find the approximate solutions to the above

sparse coding problem [24]. In the dictionary update step, the dictionary is
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updated atom-by-atom in an efficient way. The K-SVD algorithm has been

observed to converge in a few iterations [2].

4.2. Side view class VDDs

Let Ci,j be the matrix that contains views (each in a column-vectorized

form) in the jth SVC of the ith object as its columns. Using the K-SVD

algorithm, we learn a sub-dictionary Di,j that best represents Ci,j by solving

the same optimization problem as in (10). We then concatenate Di,js to form

a side view class VDD, Di. In other words, Di = [Di,1 Di,2 ... Di,mi
].

4.3. View-based Object Recognition and Retrieval

In this section, we show how the VDDs can be used for view-based object

recognition and retrieval.

4.3.1. Recognition

Given a query h, in a particular view, we project it onto the span of

the atoms in each view-dependent dictionary. Let Ei be the ith target class’s

view-dependent dictionary (either Bi or Di, depending on applications). The

approximation and residual vectors can then be calculated as

hi = EiE
†
ih, (11)

and

ri(h) = h− hi = (I− Ei(E
T
i Ei)

−1ET
i )h, (12)

respectively, where E†i , (ET
i Ei)

−1ET
i is the pseudoinverse of Ei, and I is

the identity matrix. As Ei leads to the best representation for the ith target

18



object, it is assumed that ‖ri(h)‖2 will be small if h belongs to the ith class

and larger for the other classes. Therefore, if

i∗ = arg min
1≤i≤P

‖ri(h)‖2, (13)

then h is identified as belonging to the i∗th class in the target gallery as the

corresponding view-dependent dictionary gives the minimum reconstruction

error.

4.3.2. Retrieval

For image retrieval, we search for the relevance of h among views belong-

ing to the i∗th target class by a G-nearest-neighbor criterion, where G is the

number of retrieved images for h. The resulting View-Dependent Dictionary-

based Recognition/retrieval algorithm is denoted as VDDR.

Fig. 4 (a) illustrates two training scenarios for building salient view VDDs

and side view class VDDs, respectively. In the testing phase, the query

views can either be salient views or full views. These two testing scenarios

are illustrated by Fig. 4 (b). We refer to our Salient View selection based

on Sparse Representation approach as SVSR. Algorithm 1 summarizes the

overall procedure of the proposed SVSR with VDDR for object recognition

and retrieval using salient views and view-dependent dictionaries.

5. Experimental Results

In this section, we demonstrate the performance of our method in finding

salient views as well as object recognition and retrieval on 3D video sequences.

All the 3D video sequences used in our experiments are sequences of still
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Algorithm 1: The proposed SVSR with VDDR.

Input: Full 3D views of the target gallery, and query views.

Algorithm:

1. Use (1) to compute the boundary score. Choose views with the highest

boundary scores as BRVs.

2. Use BRVs to divide the full views into side view classes. Use (8) to find SRVs.

Training:

3. Collect salient views and side view classes. Use (9) to learn Bi and Di.

4. Repeat 1, 2 and 3 for all objects in the target gallery.

Testing:

5. Recognition and retrieval - For each query view, determine the closest

target class by (13). The relevances are found by the nearest neighbor criterion.

Output:

1. Salient views, side view classes and view-dependent dictionaries of the target

gallery.

2. The closest target class and the relevance to each the query views.
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images taken at regular intervals of 0◦∼360◦ and 0◦∼180◦ (with respect to

the Y axis) for objects and faces, respectively.

5.1. Salient Views

We selected three available sequences of 3D videos for our experiments

on salient view selection: the BUS sequence6, the HEAD sequence7 and the

JONES sequence8. A given video is converted into a set of images, each

of which is one view of the object at some particular rotation angle with

respect to the Y axis, ranging from 0◦ to 360◦. Images are cropped and

resized in the preprocessing stage. Fig. 5 shows these sequences of images.

There are 126 views (2.85◦ increment per view), 32 views (∼ 11.25◦ increment

per view), and 51 views (∼ 7.05◦ increment per view) for BUS, HEAD and

JONES sequences, respectively. In these figures, the sequence of images

going from the left to the right in each row, and then from the top row to the

bottom row, corresponds to the (camera) clockwise direction. We calculate

the spread metrics with Wβ,γ sliding in both clockwise (positive) direction,

and counterclockwise (negative) direction.

By assuming that the approximate convex shape has four perceptible

sides for the object in each of these sequences, we pick four peaks from

spread metric scores. In addition, we use the fact that any two peaks shall

be separated by a certain gap, otherwise peaks may be located within the

same boundary view class (the gap is 22.5◦ for the BUS sequence, and 30◦

for HEAD and JONES sequences). Fig. 6, 7 and 8 show the results. It is

6http://vimeo.com/3066167
7http://vimeo.com/15198240
8http://www.youtube.com/watch?v=vq1UeTW6uKE
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Figure 5: Sequences of 3D views. Left: the BUS sequence (126 views); right top: the

HEAD sequence (32 views); right bottom: the JONES sequence (51 views).
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Figure 6: Finding BRVs for the BUS sequence: (a) Clockwise spread metric and counter-

clockwise spread metric. (b) Estimated BRVs.
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expected that these BRVs are those with more sides and visible surfaces as

suggested in [3], [20], and hence human perceivers are more sensitive to them.
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Figure 7: Finding BRVs for the HEAD sequence: (a) Clockwise spread metric and coun-

terclockwise spread metric. (b) Estimated BRVs.

10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1

view number

s
p

re
a

d
 m

e
tr

ic

 

 Clockwise SM

Counterclockwise SM

(a) (b)

Figure 8: Finding BRVs for the JONES sequence: (a) Clockwise spread metric and coun-

terclockwise spread metric. (b) Estimated BRVs.

Fig. 9 shows the four side view classes which are separated using the esti-

mated BRVs. Taking into account the overall computational load, we evenly

down-sample views in each class, such that each class has no greater than

nine views. In Fig. 9, we use green lines to mark distinct side view classes.

It can be seen that for most cases, views belonging to the same side view

class come with more similar poses than those of views that are from distinct
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side view classes. Fig. 10 shows the resulting SRVs. For each side view class,

we pick only one view with the minimum sparse-to-full reconstruction error

(i.e., l1 = 1). The results of the BUS sequence are shown in Fig. 10(a), where

views with numbers 034, 070, 096 and 126 are obtained with the minimum

residuals calculated by (8) and are representatives of side view classes shown

in the first row up to the fourth row at the left top of Fig. 9, respectively.

Similarly, for the HEAD sequence, views in Fig. 10(b) with numbers 009,

014, 027 and 031 are obtained as SRVs of the left bottom 4 rows in Fig. 9,

whereas views in Fig. 10(c) with numbers 016, 030, 039 and 003 are SRVs of

those 4 rows of side view classes shown at the right of Fig. 9, for the JONES

sequence.

Figure 9: Estimated 4 side view classes with down-sampled views. Left top: the BUS

sequence; left bottom: the HEAD sequence; right: the JONES sequence.

To link the proposed salient view selection with sparse representation, we

use (7) to formulate the problem as ys = Rsx, where ys is a sparse view in

contrast with the full view y1. In other words, given a sparse view (i.e., an

incomplete observation of the full view), our goal is to acquire the original full

view. Equations (4)-(8) illustrate the proposed sparse representation-based
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approach. The principal component analysis (PCA), on the other hand, is

indeed different from our approach. This can be explained by the fact that

the PCA does not impose a sparsity constraint through `1-minimization, and

it does not necessarily give the minimum reconstruction error of the full view,

required by both (7) and (8). In addition, eigen-images9 obtained by PCA in

general are not real views, which does not constitute a sparse view scenario

for view selection considered in our work. Tables 3, 4 and 5 compare the `2-

norm reconstruction errors of the proposed SRVs and eigen-images obtained

by PCA. As shown, compared to SRVs, the eigen-images do not give better

reconstruction of full views. In addition, these images shown in Fig. 11 are

not real views.

Intuitively, one would expect a SRV to be the side view that capture the

most energy compared to other within-class views, and thus have minimum

sparse-to-full reconstruction residuals according to (7) and (8). It is not

hard to see this phenomenon by comparing representative views in Fig. 10

with their associated classes in Fig. 9. For all these sequences, the SRVs are

generally pretty close to side views: frontal view, left-side view, right-side

view and back view. Finally, the salient views are selected from both BRVs

and SRVs.

5.2. Object Recognition and Retrieval using View-dependent Dictionaries

In this section, we demonstrate the performance of our method in object

recognition and retrieval on four datasets: Humster3D videos, Princeton 3D

models [21], Vetter’s 3DFS database [1] and Human ID database [16]. For

9Here we use eigen-images to refer to images of eigenvectors.
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(a) (c)

(b)

Figure 10: SRVs of (a) the BUS sequence (b) the HEAD sequence (c) the JONES sequence.

The BUS sequence 1st side view

class

2nd side view

class

3rd side view

class

4th side view class

SRV reconstruction

error

0.0008 0.0004 0.0001 0

PCA

reconstruction

error

12.8804 11.6513 13.7120 14.5873

Table 3: Reconstruction errors using SRVs and eigen-images by PCA of the BUS sequence

(view size: 32× 60 pixels).
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The HEAD

sequence

1st side view

class

2nd side view

class

3rd side view

class

4th side view class

SRV reconstruction

error

0.0001 0.0003 0.0001 0.0001

PCA

reconstruction

error

3.0541 7.7308 2.6140 6.6715

Table 4: Reconstruction errors using SRVs and eigen-images by PCA of the HEAD se-

quence (view size: 40× 50 pixels).

The JONES

sequence

1st side view

class

2nd side view

class

3rd side view

class

4th side view class

SRV reconstruction

error

0.0002 0.0001 0.0005 0.0002

PCA

reconstruction

error

5.2547 3.8546 6.4123 5.6018

Table 5: Reconstruction errors using SRVs and eigen-images by PCA of the JONES se-

quence (view size: 60× 32 pixels).
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(a) (c)

(b)

Figure 11: Eigen-images by PCA from side view classes of (a) the BUS sequence (b) the

HEAD sequence (c) the JONES sequence. These images are not real views.

each view of the four datasets, we took its grayscale image as the input

feature.

We compare the proposed SVSR with two other state-of-the-art approaches

proposed in [27] and [22], and one baseline approach. In [27], Winkeler et

al. proposed a greedy algorithm for subset selection. In their work, saliency

was defined as the amount of energy not captured by the basis set for an

eigenspace representation. The saliency of every ensemble view is computed

and the one with the highest saliency is added to the subset. In [22], Shroff

et al. proposed a video summarization algorithm to select exemplar frames.

Their algorithm optimizes a linear combination of diversity and square error,

where diversity represents the scatter of exemplars to their mean, while the

square error represents the summation of all class scatters.

We refer to the methods in [27] and [22] by SS (for Subset Selection) and

VS (for Video Summarization), respectively. For fair comparisons, the SS,

VS and SVSR methods are all followed by the VDDR algorithm for building
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view-dependent dictionaries. On the other hand, the baseline method is

the one that randomly selects salient views, followed by a nearest neighbor

(NN) classifier without using dictionaries. This baseline-NN is provided in

contrast with the SS-VDDR, VS-VDDR, and SVSR-VDDR methods. For

each model, we selected 8 salient views using SVSR (4 BRVs and 4 SRVs,

i.e. ni = 8 and mi = 4), VS, SS and baseline algorithms. Unless otherwise

stated, the number of dictionary atoms is set equal to 8 for the salient view

VDDs, and 20 for the side view class VDDs. Moreover, as the baseline-NN

selects salient views randomly, we reported its average performance over 20

trials.

We evaluate the methods in terms of identification and retrieval perfor-

mances. Given a certain number of retrieved images, the average retrieval

performance [15], [10] of a class is defined as the average number of relevant

retrieved images over all query images of that particular class. The overall

average retrieval performance is the mean of average retrieval performance

over all classes.

5.2.1. Humster3D videos

Humster3D videos10 contain a wide range of videos of 3D models including

vehicles (1068), furniture (375), electronics (104), animals & plants (30) and

life & leisure (28). We selected a subset containing 16 videos in the following

4 categories for our experiments: animals (4), vehicles (4), LCDs (4) and

i-phones (4). Each video contains 100 views and each view was resized to

24 × 42 pixels. Fig. 12(a) shows example images from these 16 videos, and

10http://humster3d.com/
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(a) (b)

(c)

Figure 12: Example images from 3D datasets. (a) Humster3D videos. First row: animals;

second row: vehicles; third row: LCDs; fourth row: i-phones (b) Princeton 3D models.

First row: apatosauruses; second row: dogs; third row: horses; fourth row: sharks; fifth

row: trexes (c) Vetter’s 3DFS database (100 subjects).

(a)

(b)

(c)

Figure 13: Example of down-sampled views from 3D datasets. (a) Humster3D videos. (b)

Princeton 3D models. (c) Vetter’s 3DFS database.
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Fig. 13(a) shows a series of down-sampled views of the first (top-left) video

shown in Fig. 12(a).

Table 6 shows the rank-1 recognition rates under various combinations

of query views and view-dependent dictionaries. The query views can be

either full views or salient views, and the target gallery is given by either

the salient view VDDs or the side view class VDDs. “Full views vs. salient

view VDDs” means that full views are query and salient view VDDs are

target. In addition, we further conducted leave-one-out (LOO) tests, where

the view-dependent dictionary associated with the true class of the query

object is excluded from the target gallery. As salient view VDDs are built

using few salient views, tests with and without LOO were both conducted.

On the other hand, since side view class VDDs are built using almost all full

views (with BRVs excluded), only LOO tests were conducted.

As shown in Table 6, SVSR-VDDR obtained the highest rank-1 recog-

nition rate. It also obtained the highest category (among animals, vehicles,

LCDs and i-phones) recognition rates for most tests. Compared to SS-VDDR

and VS-VDDR, the baseline-NN was able to obtain better performances be-

cause the between-category distances possessed in the target gallery are large

enough. The overall average retrieval rates among 16 classes (eight target

views retrieved for each query image) of baseline-NN, SS-VDDR, VS-VDDR

and SVSR-VDDR are 6.29, 5.61, 6.75 and 7.04, respectively. The SVSR-

VDDR obtained the best the overall average retrieval performance.

5.2.2. Princeton 3D models

Princeton 3D models (version 1) [21] contain a database of 1814 3D polyg-

onal models collected from the internet. We selected a subset containing 20
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Experiments \

Algorithms

baseline-

NN

SS-VDDR VS-VDDR SVSR-VDDR

Full views vs.

salient view VDDs

99.84 96.90 100 100

Full views vs.

salient view VDDs

(LOO)

93.25 75.60 88.75 90.35

Full views vs. side

view class VDDs

(LOO)

93.96 89.80 90.85 92.50

Salient views vs.

salient view VDDs

(LOO)

92.03 76.56 89.06 91.41

Salient views vs.

side view class

VDDs (LOO)

92.11 85.94 92.19 93.75

Average 94.24 84.96 92.17 93.60

Table 6: Rank-1 recognition rates (%) on the Humster3D videos.
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models across the following 5 animal categories for experiments: apatosaurus,

dog, horse, shark, and trex. We extracted 90 views from each model and each

view was resized to 30 × 30 pixels. Fig. 12(b) shows example images from

these 20 models, and Fig. 13(b) shows a series of down-sampled views of the

first (top-left) model shown in Fig. 12(b).

Table 7 shows rank-1 recognition rates. While the proposed SVSR-

VDDR obtained the second highest recognition rate, it ranks the highest in

a majority (3 out of 5) of category recognition tests. Moreover, the baseline-

NN obtained the lowest average recognition rate. This can be explained by

the fact that the between-category distances among the target classes are no

longer large. In fact, compared to the Humster3D videos, more class outliers

may exist in the target gallery from this dataset. The overall average retrieval

rates among 20 classes (eight target views retrieved for each query image)

of baseline-NN, SS-VDDR, VS-VDDR and SVSR-VDDR are 5.48, 4.81, 6.36

and 6.18, respectively.

5.2.3. Vetter’s 3D face database

Vetter’s 3D face database [1] contains 100 face models. We extracted 60

views (rotated from 0◦∼ 180◦ with respect to the Y axis) from each model

and resized each view to 30 × 30 pixels. Fig. 12(c) shows example images

from all 100 models, and Fig. 13(c) shows a series of down-sampled views of

the first (top-left) model shown in Fig. 12(c).

Table 8 shows face recognition rates. The proposed SVSR-VDDR ob-

tained the highest recognition rate. The proposed SVSR-VDDR obtained

the best average retrieval performance. In particular, the overall average re-

trieval rates among 100 classes (eight target views retrieved for each query
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Experiments \

Algorithms

baseline-

NN

SS-VDDR VS-VDDR SVSR-VDDR

Full views vs.

salient view VDDs

85.60 77.93 89.91 91.42

Full views vs.

salient view VDDs

(LOO)

57.50 54.86 63.11 63.99

Full views vs. side

view class VDDs

(LOO)

61.64 76.30 76.71 77.41

Salient views vs.

salient view VDDs

(LOO)

64 75 73.75 68.13

Salient views vs.

side view class

VDDs (LOO)

70.56 84.38 82.50 82.50

Average 67.86 73.69 77.20 76.70

Table 7: Rank-1 recognition rates (%) on the Princeton 3D models.
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image) of baseline-NN, SS-VDDR, VS-VDDR and SVSR-VDDR are 2.52,

2.65, 2.71, 2.75, respectively.

Experiments \

Algorithms

baseline-

NN

SS-VDDR VS-VDDR SVSR-VDDR

Full views vs.

salient view VDDs

31.47 33.16 33.87 34.41

Table 8: Rank-1 recognition rates (%) on Vetter’s 3D face database.

5.2.4. Human ID database

In this subsection, we demonstrate the effectiveness of the proposed SVSR-

VDDR on video-based face recognition for real people. The Human ID

database [16] contains videos of human faces and people, which is useful

for testing algorithms for face and person recognition. Complete data sets in

this database are available for 284 subjects. In our experiment, videos of a

subset of 60 out of 284 subjects were chosen. For each of these selected sub-

jects, there are videos of moving facial mug shots, facial speech and dynamic

facial expressions. Fig. 14 (a), (b) and (c) shows 30 cropped face images

of one subject from its moving facial mug shots, facial speech and dynamic

facial expression videos, respectively. Similar to the Vetter’s database used

for our experiments in section 5.2.3, the facial mug shot video contains poses

from the left side pose to the right side pose

The face region of each frame extracted from the selected videos was prop-

erly cropped and resized to 30 × 24 pixels as a view. We used salient views

from the moving facial mug shot videos to construct salient view VDDs, and

evaluated these dictionaries using query full views from the same subject’s
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(a)

(b)

(c)

Figure 14: Example cropped face images from videos in the Human ID database. Types

of videos include: (a) moving facial mug shot (b) facial speech and (c) dynamic facial

expression.

moving facial mug shot videos, facial speech videos, and dynamic facial ex-

pression videos. Table 9 shows rank-1 face recognition rates among 60

classes. As shown, the proposed SVSR-VDDR obtained the highest (av-

erage) recognition rates. Comparing different video types, we observe that

faces of subjects in the speech and expression videos appear in a single frontal

pose, which can be accounted for by the view-dependent dictionaries as the

moving facial mug shot videos also contain frontal face images. However, low

recognition rates were obtained on these videos. This can be explained by the

fact that these videos contain facial variations that are novel to the original

facial mug shot videos, and hence are more challenging for recognition.

5.2.5. Discussion

Among all compared methods, we observed VS-VDDR and the proposed

SVSR-VDDR obtained close performances. This can be explained by the

fact that both VS and SVSR aim to find object representative views. The

slight difference is that the VS minimizes the cost as a linear combination
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Experiments \ Algorithms baseline-

NN

SS-VDDR VS-VDDR SVSR-VDDR

Full views of moving facial

mug shot videos vs. salient

view VDDs

67.63 68.91 77.87 82.45

Full views of facial speech

videos vs. salient view VDDs

20.52 15.00 43.33 53.33

Full views of dynamic facial

expression videos vs. salient

view VDDs

28.71 20.00 45.00 45.00

Average 38.95 34.64 55.40 60.26

Table 9: Rank-1 recognition rates (%) on the Human ID database.

of diversity and square error, while the proposed SVSR finds representative

views that either contain more sides (BRVs) or minimize the reconstruction

error (SRVs). The SS, on the other hand, defines the saliency as the informa-

tion relative to a representation. It turns out that the SS finds discriminative

views. While discriminative views are not necessarily representative, the SS

is not optimal for object recognition and retrieval applications. Furthermore,

the baseline-NN works well only when the within-class variation is small and

between-class distances are large enough in the target gallery. It is sensitive

to a few outliers in the target gallery that either increases the within-class

scatter and/or decreases the between-class distances.

5.3. Visual Hull-based View Synthesis

As shown in section 2.1, BRVs are candidates of representative views

that can be used to successfully synthesize full views of the object. In this
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section, we experimentally evaluate the performance of visual hull based view

synthesis for all compared algorithms. Our experiments were conducted on

Vetter’s 3DFS database [1].

Given a view, we use image-based visual hull [14], [30] to build corre-

spondences between the view and each synthesized view. All pixels that

can be seen from synthesized view are mapped from the corresponding pix-

els of the given view. When the objective view is located between two given

views, it can be reconstructed using the two synthesized views from the given

views, according to the relative perspectives between itself and the two given

views. The number of pixel columns from either of the synthesized views is

determined by the ratio of the perspective between the objective view and

one synthesized view, to the perspective between the objective view and the

other synthesized view. To illustrate this idea further, let zθd be the objective

view, and two given views be denoted by zθ1 and zθ2 , where θ1 ≤ θd ≤ θ2 are

the view perspectives with respect to the Y axis. Let ẑθ1 and ẑθ2 denote the

two synthesized views from zθ1 and zθ2 , respectively. Let C be the number

of columns of zθd in its 2D matrix form. Then, at θd, the reconstructed view,

z̃θd is synthesized in such a way that its right bC θd−θ1
θ2−θ1 c columns are mapped

from the same right bC θd−θ1
θ2−θ1 c columns of t̃θ2 , while its left dC θ2−θd

θ2−θ1 e columns

are mapped from the same left dC θ2−θd
θ2−θ1 e columns of t̃θ1 . On the other hand,

if the objective view is not located between two given views, then all columns

of its reconstructed view are directly mapped from the synthesized view of

the closet given view.

Fig. 15 illustrates an example of the reconstructed view at 0◦ using two

synthesized views from two given views at −45◦ and 30◦, denoted by “SV1”
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and “SV2”, respectively. The number of columns from the left of the recon-

structed view contributed using the same columns of the synthesized view at

−45◦, and the number of columns from the right of the reconstructed view

contributed using the same columns of the synthesized view at 30◦, have a

ratio of 30 to 45, which are perspectives between the objective view to the

given views at 30◦ and −45◦, respectively. The reconstructed view at 0◦ is

observed to have a shorter distance to its ground-truth than the other two

synthesized views, either of which is synthesized using only one given view.

Figure 15: Visual hull based reconstruction. The reconstructed view at 0◦ using two

synthesized views from two views at −45◦ and 30◦, has a shorter distance to its ground-

truth than the other two synthesized views, either of which is synthesized using only one

given view.

Table 10 shows average reconstruction errors using two given views pro-

duced from different algorithms on the Vetter’s 3D face database. Each view

is resized to 112 × 95 pixels. For our SVSR method, two BRVs with the

highest boundary scores computed using (1) are selected as given views. The

reconstruction error is computed using the `2-norm distance between the

desired view and the reconstructed view in the normalized grayscale. The

“baseline1” refers to the scenario that two given views are randomly selected,
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while “baseline2” refers to the scenario that two given views are fixed at −45◦

and 45◦.Fig. 16 shows the average reconstruction errors versus subject indices

(1∼100) and perspectives (−90◦∼90◦), respectively. As shown in Table 10

and Fig. 16, the proposed SVSR obtained the lowest average reconstruction

errors among other compared methods.

Experiments \

Algorithms

baseline1 baseline2 SS VS SVSR

Average reconstruction

errors

20.4584 18.8793 19.0119 19.0483 18.6331

Table 10: Average reconstruction errors on Vetter’s 3D face database. The reconstruction

error is computed as the `2-norm distance between the reconstructed view and its ground-

truth view in the normalized grayscale.
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Figure 16: Average reconstruction errors versus subject indices on Vetter’s 3D face

database.
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6. Conclusion

We presented a two-stage approach based on sparse representation to find

the salient views of an object. The first stage computes the spread metric

and boundary scores to estimate boundary representative views. Using these

estimated representative views, full views are roughly partitioned into dif-

ferent side view classes. In the second stage, side representative views are

determined that have minimum class sparse-to-full reconstruction residuals.

We constructed view-dependent dictionaries using the salient views and side

view classes for applications in 3D object recognition and retrieval. We re-

lated the view-dependent dictionaries with the geometry across views. These

dictionaries can represent the object in an informative way. Through a series

of experiments on four publicly available 3D datasets, we demonstrated the

effectiveness of our approach compared to the two existing state-of-the-art

algorithms and one baseline method.

We are currently extending our work to view selection among the full 3D

views taken at all perspectives (rotations with respect to all three axes) in

various distances. Another important research direction is to extract fea-

tures that are both class representative and class discriminative for 3D view

selection and object recognition. We will also evaluate the robustness of our

approach to noise and occlusions.
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of videos. IEEE Transactions on Multimedia, 12(8):853–868, December 2010.

[23] Michael J. Tarr and David J. Kriegman. What defines a view? Vision Research,

41:1981–2004, 2001.

[24] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE

Trans. on Information Theory, 50(10):2231–2242, October 2004.

[25] J. A. Tropp and S. J. Wright. Computational methods for sparse solution of linear

inverse problems. Proceedings of the IEEE, 98(6):948–958, June 2010.

[26] R. Wang and Herbert Freeman. Object recognition based on characteristic view

classes. Proceedings of IEEE International Conference on Pattern Recognition, pages

8–12, 1990.

[27] Jay Winkeler, B. S. Manjunath, and S. Chandrasekaran. Subset selection for active

object recognition. IEEE CVPR, 2:511–516, 1999.

[28] J. Wright, Yi Ma, J. Mairal, G. Sapiro, T.S. Huang, and Shuicheng Yan. Sparse

representation for computer vision and pattern recognition. Proceedings of the IEEE,

98(6):1031–1044, June 2010.

44



[29] John Wright, Allen Y. Yang, Arvinda Ganesh, S. Shankar Sastry, and Yi Ma. Robust

face recognition via sparse representation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 31:210–227, 2009.

[30] Zhanfeng Yue and Rama Chellappa. Synthesis of silouettes and visual hull reconstruc-

tion for articulated humans. IEEE Trans. on Multimedia, 10(8):1565–1577, December

2008.

45


