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Abstract

In this paper, we develop a multiple instance learning (MIL) algorithm using

the dictionary learning framework where the labels are given in the form of

positive and negative bags, with each bag containing multiple samples. A

positive bag is guaranteed to have only one positive class sample while all

the samples in a negative bag belong to the negative class. Given positive

and negative bags of data, our method learns appropriate feature space to

select positive samples from the positive bags as well as optimal dictionaries

to represent data in these bags. We apply this method for digit recognition,

action recognition, and gender recognition tasks and demonstrate that the

proposed method is robust and can perform significantly better than many
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competitive two class MIL classification algorithms.

Keywords: Dictionary learning, multiple Instance learning, multiple kernel

learning.

1. Introduction

Acquiring good quality labeled training data is one of the critical steps

in building an object recognition system. While human annotation is the

popular choice for obtaining labeled data for training, it is expensive and

time consuming. However, it is relatively easy to obtain weakly labeled data

in the Internet. Such data can be obtained through web search queries,

captions, subtitles of movies and from amateur raters without full knowledge

about the object categories. This has lead to the development of algorithms

for weakly supervised object classification.

A popular machine learning paradigm to handle weakly supervised data

is the Multiple Instance Learning (MIL) [7]. In MIL paradigm, examples

are not individually labeled but grouped into sets or bags which either con-

tain at least one positive examples or only negative examples. Various MIL

algorithms have been proposed in the literature for classification [17], [25],

[2]. The MIL algorithms have been used to handle label errors, by collecting

multiple samples with possible label errors into positive bags. Effect of align-

ment errors in training data can be reduced by forming bags with multiple

shifted templates. The MIL-based algorithms have also been developed for

robust tracking of objects [3].

In recent years, the field of sparse representation and dictionary learn-

ing has undergone rapid development, both in theory and in algorithms. It
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Figure 1: Overview of our method. Given positive and negative bags of data,

our method learns appropriate feature space to select positive samples from

the positive bags as well as optimal dictionaries to represent data in these

bags.

has also been successfully applied to numerous image understanding appli-

cations. This is partly due to the fact that signals or images of interest,

though high dimensional, can often be coded using few representative atoms

in some dictionary. These dictionaries can be either analytic or they can be

learned directly from the data. Often, learning a dictionary directly from

data usually leads to improved results in many practical applications such as

classification and restoration [27]. This has motivated researchers to develop
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robust dictionary learning algorithms for various learning scenarios ranging

from fully supervised [15], [10], [21], [14], [16], to weakly supervised [23], to

unsupervised [24], [20], [5], [8]. Note that this work is fundamentally different

than the work of Shrivastava et al. [23]. Input to the method of Shrivastava

et al. is labeled or unlabeled samples and their method does not handle bags.

In other words, their method works under semi-supervised setting and not

under the MIL setting. Furthermore, Shrivastava et al. use a predefined ker-

nel, while the proposed method learns an optimal one based on the Multiple

Kernel Learning (MKL) method [9].

While the MIL algorithms exist for popular classification methods like

Support Vector Machines (SVM), logistic regression and boosting, such al-

gorithms have not been studied thoroughly in the literature using the dictio-

nary learning framework. Recently, Huo et al. [12] explore dictionary based

MIL method for detecting abnormal events in videos by predicting the la-

bels of the instances in the positive bag. Similarly, Wang et al. [26] learn

a multi-class classification matrix for object representation. In this paper,

we develop an MIL algorithm using the non-linear dictionary learning frame-

work by projecting the data into a feature space. We formulate the multiple

instance learning problem as a kernel learning problem and iteratively learn

the dictionary in the embedded space of the learned kernel. Multiple kernel

learning essentially combines multiple kernels instead of using a single pre-

defined kernel [9]. Different kernels correspond to different notions of simi-

larity between two data samples. In particular, in a high dimensional feature

space, it is not optimal to choose one kernel for all the datasets. In the case

of MIL, the kernel is learned in a discriminative manner, ensuring that the
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negative samples have high reconstruction error on the positive dictionary in

the embedded space. This in turn reduces the effect of negative samples in

the positive bag on the learned positive dictionary. A block diagram of the

proposed algorithm is given in Fig. 1.

The key contributions of our work are:

1. We develop a multiple instance dictionary learning framework to handle

weakly supervised data.

2. We also demonstrate how kernel learning can be incorporated into the

dictionary learning framework so that data from negative and positive

bags are well represented at the same time positive and negative classes

are separated in the feature space.

3. We propose a novel classification procedure based on the proposed mul-

tiple instance dictionary framework.

4. We demonstrate the effectiveness our approach on three publicly avail-

able image classification datasets.

1.1. Organization of the paper

This paper is organized as follows. Section 2 defines and formulates the

multiple instance dictionary learning problem. Details of the optimization

problem are presented in Section 3. A classification procedure using our

proposed dictionary learning method is presented in Section 4. Experimental

results are presented in Section 5 and Section 6 concludes the paper with a

brief summary and discussion.
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2. Problem Formulation

Given a set of training samples, Y = [y1, · · · ,yN ] ∈ Rd×N , one can learn

a dictionary D ∈ Rd×K with K atoms, that leads to the best representation

for each member in this set, under strict sparsity constraints by solving the

following optimization problem

arg min
D,X
‖Y −DX‖2F subject to ∀i ‖xi‖0 ≤ T0, (1)

where xi represents the ith column of coefficient matrix X ∈ RK×N and T0

is the sparsity parameter. Here, the Frobenius norm is defined as ‖A‖F =√∑
ij A

2
ij and the norm ‖x‖0 counts the number of non-zero elements in x.

Various algorithms have been proposed in the literature that can solve the

above optimization problem [1], [27].

Using the kernel trick, one can also make the dictionary learning model

(1) non-linear [19]. Let Φ : Rd → G be a non-linear mapping from a d

dimensional space into a dot product space G. A non-linear dictionary can be

trained in the feature space G by solving the following optimization problem

arg min
A,X
‖Φ(Y)−Φ(Y)AX‖2F s. t. ∀i ‖xi‖0 ≤ T0, (2)

where Φ(Y) = [Φ(y1), · · · ,Φ(yN)]. Since the dictionary lies in the linear

span of the samples Φ(Y), in (2) we have used the following model for the

dictionary in the feature space, D̃ = Φ(Y)A, where A ∈ RN×K is a matrix

with K atoms [19]. This model provides adaptivity via modification of the

matrix A. After some algebraic manipulations, the cost function in (2) can

be rewritten as,

‖Φ(Y)−Φ(Y)AX‖2F = tr((I−AX)TK(Y,Y)(I−AX)),
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where K(Y,Y) is a kernel matrix whose elements are computed from κ(i, j) =

Φ(yi)
TΦ(yj). It is apparent that the objective function is feasible since it

only involves a matrix of finite dimension K ∈ RN×N , instead of dealing with

a possibly infinite dimensional dictionary.

An important property of this formulation is that the computation of K

only requires dot products. Therefore, we are able to employ Mercer ker-

nel functions to compute these dot products without carrying out the map-

ping Φ. Some commonly used kernels include polynomial kernels κ(x,y) =

〈(x,y〉 + c)d and Gaussian kernels κ(x,y) = exp
(
−‖x−y‖2

c

)
, where c and d

are the parameters.

In multiple instance learning setting, we have labeled bags instead of

samples for training. Each bag is labeled either +1 or −1, called a positive or

a negative bag, respectively. A negative bag will have only negative samples.

A positive bag is guaranteed to have at least one positive sample, while the

remaining ones can be either positive or negative. We denote the bth positive

bag by a matrix Yp
b , [yp

b,1, . . . ,y
p
b,mb

] ∈ Rd×mb , whose columns are the mb

positive samples. Here, d is the dimension of data sample. Similarly, let Yn
b ,

[yn
b,1, . . . ,y

n
b,nb

] ∈ Rd×nb be the bth negative bag containing the nb negative

samples. We denote concatenation of all positive bags with Yp and that of

negative bags with Yn, i.e. Yp , [Yp
1, . . . ,Y

p
Np

] = [yp
1, . . . ,y

p
M ] ∈ Rd×M and

Yn , [Yn
1 , . . . ,Y

n
Nn

] = [yn
1 , . . . ,y

n
N ] ∈ Rd×N , where M ,

∑Np

b=1mb is the

total number of positive samples in all the positive bags and N ,
∑Nn

b=1 nb is

the total number of negative samples in all the negative bags. There are Np

positive bags and Nn negative bags in total. The bth positive bag contains

mb samples, while the bth negative bag has nb samples. Given Yn and Yp,
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the objective is to learn a non-linear dictionary-based model that can classify

a novel test sample to a positive or a negative class.

We denote the negative dictionary, in feature space, as D̃n = Φ(Yn)An

and positive dictionary as D̃p = Φ(Yp)Ap, where An ∈ RN×Kn and Ap ∈

RM×Kp are matrices with Kn and Kp number of atoms, respectively. Since,

the dictionaries are learned by adapting Ap and An we will henceforth refer

to Ap as the positive dictionary and An as the negative dictionary. Let

Xn , [xn
1 , . . . ,x

n
N ] ∈ RKn×N be the coefficient matrix for negative samples

using negative dictionary where xn
i is the coefficient vector for ith negative

sample. Likewise, let Xp , [xp
1, . . . ,x

p
M ] ∈ RKp×d denote the coefficient

matrices for positive samples using the positive dictionary.

Equipped with the above notations, in what follows we formulate the costs

to be optimized for learning the dictionaries in the features space. Since we

have the labels for all the negative samples from the negative bags, we seek a

dictionary such that the following reconstruction error, subject to a sparsity

constraint on xn
i , is minimized,

Rn(An,Φ(.),Xn) = ‖Φ(Yn)−Φ(Yn)AnXn‖2F . (3)

In the positive bags, only one sample is guaranteed to be positive, hence, we

use exactly one sample per positive bag. Since we do not know which sample

is true positive, we also need to learn a selection matrix Ω ∈ RM×Np that

selects a true positive sample from each positive bag. This can be done by
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defining the following matrix,

Ω(i, j) =


1, if yi is the true positive sample

of jth positive bag Yp
j

0, otherwise

(4)

i = 1, . . .M, j = 1, . . . Np. (5)

With the above definition, we see that YpΩ has as many columns as the

number of positive bags, i.e. Np, and each column is picked from differ-

ent positive bags. The reconstruction error from the selected true positive

samples can be written as,

Rp(Ap,Xp,Φ(.),Ω) = ‖Φ(Yp)Ω−Φ(Yp)ApXpΩ‖2F (6)

Along with learning a dictionary, our goal is also to learn a feature space

where the data of a given class is well represented using the corresponding

dictionary and maximally orthogonal to samples from other classes. This

will make the dictionaries more incoherent and data easily classifiable in

separate classes. Therefore, we want to learn the feature space Φ where

selected positive samples and negative dictionaries (in which all the negative

samples can be represented) are maximally orthogonal. This can be done by

minimizing the following objective function

F(Φ,An,Ap,Ω) = ‖AT
nΦ(Yn)TΦ(Yp)Ω‖2F = ‖AT

nK(Yn,Yp)Ω‖2F (7)

While one can directly learn this kernel matrix, such non parametric ker-

nel learning approaches are computationally expensive, involving optimiza-

tion over hundreds of variables. Therefore, we use multiple base kernels and
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seek to learn their optimum linear combination. Assume that there are a to-

tal of B base kernels and each of them is denoted by Kb, where b = 1, . . . , B.

A kernel K(P,Q), where P,Q can be either Yp or Yn, can be represented

as a linear combination of the base kernels as follows

K(P,Q) =
B∑
b=1

βbKb(P,Q) (8)

s. t. 0 ≤ βb ≤ 1; ∀b = 1, . . . , B, and
B∑
b=1

βb = 1 (9)

where β , [β1, . . . , βB]T is a vector of linear weights to combine the pre-

determined base kernels. By combining the above discussed objectives, the

overall cost to be minimized becomes

J (Ap,Xp,An,Xn,Ω,β) = Rn(An,Xn,β) + ηRp(Ap,Xp,Ω,β)

+ λF(Ap,An,Ω,β) (10)

subject to, ‖xp
i ‖0 ≤ T0, ‖xn

j ‖0 ≤ T0,

i = 1, . . . ,M, j = 1, . . . , N (11)

where η and λ are the hyper-parameters that control the contribution from

the individual cost functions. We refer to the framework of learning dictio-

naries by optimizing the above objective as the Multiple Instance Dictionary

Learning (MIDL).

3. Multiple Instance Dictionary Learning

Since our objective in Eq. (10) is jointly non-convex in all the variables,

we update one variable at a time, with remaining ones fixed. In what fol-

lows, we discuss our optimization approach to update each of the variables

Xn,Xp,An,Ap,Ω and β.
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3.1. Updating Coefficient Matrices Xn and Xp

With fixed dictionary and feature kernel, the sparse coefficients for the

ith samples can be computed by minimizing the following cost:

Jxn
i

= ‖Φ(yn
i )−Φ(Yn)Anx

n
i ‖ (12)

x̂n
i = arg min

xn
i

Jxn
i

subject to ‖xn
i ‖0 ≤ T0 ∀i. (13)

This optimization problem can be solved using the kernel orthogonal match-

ing pursuit (KOMP) algorithm proposed in [19], and Xn can be updated

as,

Xn = [x̂n
1 , . . . , x̂

n
N ]. (14)

Likewise, we compute the positive sample coefficient x̂p
i as,

x̂p
i = arg min

xp
i

Jxp
i

subject to ‖xp
i ‖0 ≤ T0 ∀i, (15)

where Jxp
i

= ‖Φ(yp
i )−Φ(Yp)Apx

p
i ‖. (16)

Finally, Xp can be updated as,

Xp = [x̂p
1, . . . , x̂

p
M ]. (17)

3.2. Updating Negative Dictionary An

To update the negative dictionary and the corresponding coefficients, we

need to optimize Rn over An and Xn. Similar to [19], we update one atom

at a time in an efficient way. To update the kth atom ak, we minimize the

following error:

E(ak) = ‖Φ(Yn)− Φ(Yn)
(∑

j 6=k

ajx
j
T + akx

k
T

)
‖2F . (18)
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In order to keep the sparsity same, we consider only those samples that use

the current atom ak. Let these indices be zk , {i | 1 ≤ i ≤ Kn, such that xk
T (i) 6=

0} and Zk ∈ RKn×|zk| be a binary valued matrix with Zk(zk(j), j) = 1, j =

1, . . . , |zk| and 0 otherwise. Now, the error E can be re-written as,

E(ak) = ‖Φ(Yn)ER
k − Φ(Yn)akx

k
R‖2F , (19)

where xk
R = xk

TZ and ER
k =

(
I−
∑

j 6=k ajx
j
T

)
Z. Note that Φ(Yn)akx

k
R is the

rank-1 approximation of Φ(Yn)ER
k . We write the singular value decomposi-

tion (SVD) of Φ(Yn)ER
k = UΣV and then,

Φ(Yn)akx
k
R = σ1u1v1, (20)

where, σ1 = Σ(1, 1) is the largest eigenvalue and u1 and v1 are the corre-

sponding eigen vectors of U and V, respectively. To keep the atom norm to

unity, we set ak = u1 and xk
R = σ1v

T
1 . However, it is difficult to compute

the direct SVD of Φ(Yn)ER
k . Hence, we approximate it with the SVD of the

gram matrix,

(Φ(Yn)ER
k )T (Φ(Yn)ER

k ) = (ER
k )TK(Yn,Yn)ER

k = V∆VT . (21)

We then set

ak = σ−11 ER
k v1, xk

R = σ1v
T
1 . (22)

3.3. Updating Positive Dictionary Ap

The positive dictionary update is very similar to that of the negative dic-

tionary except the fact that positive dictionary is learned using the selected

signals according to the Ω matrix. In order to account for the additional
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matrix Ω in the dictionary update, we represent the kernel matrix and the

reduced data as follows,

K(YR
p ,Y

R
p ) = ΩTK(Yp,Yp)Ω (23)

YR
p = YpΩ, XR

p = XpΩ. (24)

We learn the reduced dictionary AR
p and XR

p exactly as negative dictionary

with Yn replaced with YR
p and Xn replaced with XR

n . Finally, to obtain Ap

from AR
p , we copy the rows of AR

p into those rows of Ap that correspond to

the selected positive samples according to the matrix Ω and set the rest of

the rows to 0. In other words,

Ap = ΩAR
p . (25)

3.4. Updating Kernel Mixing Coefficients β

While updating the kernel, we want to consider the following two criteria:

1. We want the dictionary atoms to have unit norms in the new feature

space, i.e., aT
pK(Yp,Yp)ap = 1, ∀p = 1, . . . , Kp and aT

nK(Yn,Yn)an =

1, ∀n = 1, . . . , Kn. Here, ap is the pth atom of the positive dictionary

and an is the nth atom of the negative dictionary.

2. The cost J (.) in Eq. (10) should be minimized with respect to β.

Considering these two criteria, we seek to minimize the following quadratic

cost with respect to β

Jβ = βTen + ηβTep + λβTGβ + λL(βTQβ − 2βTq) (26)

s. t. 0 ≤ βb ≤ 1; ∀b = 1, . . . , B, and
B∑
b=1

βb = 1. (27)
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First and second part of the above cost minimizes the reconstruction error

of the negative and the selected positive samples. The third enforces the

orthogonality between the two classes and the last part of the cost enforces

the atom norms in feature space to be close to unity. Here, λL is set to

a large value to penalize heavily on any norm other than unity. In our

implementation, we use λL = 100. Various terms in the cost are computed

as follows (see appendix for the derivation),

en(b) =
N∑
i=1

(
Kb(y

n
i ,y

n
i ) + (xn

i )TAT
nKb(Yn,Yn)Anx

n
i − 2Kb(y

n
i ,Yn)Anx

n
i

)
.

(28)

ep(b) =
M∑
i=1

(
Kb(y

p
i ,y

p
i ) + (xp

i )
TAT

pKb(Yp,Yp)Apx
p
i

− 2Kb(y
p
i ,Yp)Apx

p
i

)
1[yi∈Ωs], (29)

where 1[yi∈Ωs] is the indicator variable which is 1 when yi is one of the selected

true positive samples and is 0 otherwise. Here, Ωs is defined as,

Ωs = {i | 1 ≤ i ≤M,

Np∑
i=1

Ω[i, :] 6= 0}. (30)

The third term in Eq. (26), minimizes the similarity between positive

and negative dictionary atoms by learning a feature space in which both the

classes are maximally orthogonal. We minimize the projection of the negative

dictionary atoms onto the selected positive samples F which can be written
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as,

F = trace{(AT
nK(Yn,Yp)Ω)(AT

nK(Yn,Yp)Ω)T}

= trace{(AT
n

B∑
b=1

βbKb(Yn,Yp)Ω)(AT
n

B∑
b=1

βbKb(Yn,Yp)Ω)T} (31)

=
B∑

bi=1

B∑
bj=1

βbiG(bi, bj)βbj. (32)

Here, G(bi, bj) is defined as

G(bi, bj) = trace[
(
AT

nKbi(Yn,Yp)Ω
)(

AT
nKbj(Yn,Yp)Ω

)T
] (33)

where, bi = 1, . . . , B, and, bj = 1, . . . , B.

Finally, the matrix Q ∈ RB×B and the vector q ∈ RB in the fourth term

of Eq.(26) are computed as follows,

Q =

Kp∑
p=1


aT
pK1(Yp,Yp)ap

. . .

aT
pKB(Yp,Yp)ap




aT
pK1(Yp,Yp)ap

. . .

aT
pKB(Yp,Yp)ap


T

+
Kn∑
n=1


aT
nK1(Yn,Yn)an

. . .

aT
nKB(Yn,Yn)an




aT
nK1(Yn,Yn)an

. . .

aT
nKB(Yn,Yn)an


T

, (34)

where ap is the pth atom of the positive dictionary and an is the nth atom of

the negative dictionary and

q =

Kp∑
p=1


aT
pK1(Yp,Yp)ap

. . .

aT
pKB(Yp,Yp)ap

+
Kn∑
n=1


aT
nK1(Yn,Yn)an

. . .

aT
nKB(Yn,Yn)an

 . (35)

Since Jβ in Eq. (26) is a quadratic cost with linear constraints in β, it can

be solved with any quadratic program (QP) solver [6].
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3.5. Updating Positive Sample Selection Matrix Ω

According to the cost J in Eq. (10), we select those samples which give

minimum error with the positive dictionary and are maximum orthogonal to

the negative dictionary. However, a positive dictionary is required in order to

select the samples based on the positive dictionary. To avoid this ‘chicken and

egg’ problem, we select positive samples by maximizing their reconstruction

error onto the negative dictionary and minimizing their projection onto the

negative dictionary. For a given positive bag Yp
b , we select the sample that

maximizes the following cost,

Eb(i) = ‖Φ(yb,i)−Φ(Yn)Apxb,i‖22 − λ‖AT
nΦ(Yn)TΦ(yb,i)‖22 (36)

= K(yb,i,yb,i) + xT
b,iA

T
pK(Yn,Yn)Apxb,i − 2K(yb,i,Yn)Apxb,i

− λ‖AT
nK(Yn,yb,i)‖22. (37)

Sample selected as true positive from the bth positive bag is denoted by yb,m∗ ,

where,

m∗ = arg max
i
Eb(i). (38)

Finally, we update Ω according to Eq. (4).

3.6. Algorithm Initialization

We initialize An with all zeros except for a randomly selected location

in each column, which is set equal to 1. This corresponds to initializing the

dictionary with randomly selected samples in the feature space. Since we

have the labels of all the negative sample, we run a few alternate iterations

of updating An and Xn. Positive sample selection matrix Ω is updated by

choosing those samples that give the maximum reconstruction error with
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the negative dictionary. Kernel mixing coefficient vector β is initialized to a

uniform distribution, giving equal weight to all the base kernels. Finally, the

columns of positive dictionary Ap are initialized with all zeros but a single

1. The position of this 1 in a column is randomly selected, such that this

corresponds to the sample in the feature space which has been chosen as

the true positive sample according to Ω. The complete MIDL algorithm is

summarized in Algorithm 1.

Algorithm 1: MIDL Algorithm

Input: Yn,Yp,Kb, T0, J , iteration count

Output: An,Ap,Xn,Xp,β,Ω

Initialize An,Ap,Xn,Xp,β,Ω as described in sub-section 3.6.

for t = 1, . . . , J do

1. Update β by optimizing cost in Eq. (26).

2. Update Xn and Xp using Eq. (14) and (17).

3. Update An and Ap using Eq (19) and (25).

4. Update Ω using Eq.(38) and (4).

end

return An,Ap,Xn,Xp,β,Ω

4. Classification

Given a test bag, we may need to predict the label of the whole bag or

each instance in it. Once we decide the label of an instance, the bag label can

trivially be determined as +1 if and only if at least one instance is positive.

To determine the label of a given test instance yt, we compute its sparse code
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xt ∈ RKp+Kn by solving the following optimization problem using the kernel

OMP algorithm

xt = arg min
x
‖Φ(yt)−Φ(Y)A‖22 subject to ‖xt‖0 ≤ T1,

where,

A =

 Ap 0Kp×Kn

0Kn×Kp An

 and Y = [Yp | Yn]. (39)

Let the xp
t ∈ RKp be a vector consisting of the first Kp elements of xt

and xn
t ∈ RKn be the last Kn elements of xt. We compute the reconstruction

error using the positive dictionary εp and the reconstruction error using the

negative dictionary εn as follows,

εp = ‖Φ(yt)−Φ(Yp)Apx
p
t‖22 (40)

= K(yt,yt) + (xp
t )

TAT
pK(Yp,Yp)Apx

p
t − 2K(yt,yt)Apx

p
t . (41)

Similarly,

εn = K(yt,yt) + (xn
t )TAT

nK(Yn,Yn)Anx
n
t − 2K(yt,yt)Anx

n
t . (42)

Finally, the label of the instance is decided as,

class label of yt =

+1 if εp ≤ εn

−1 otherwise.

(43)

5. Experiments

In this section, we present several experimental results demonstrating

the effectiveness of the proposed dictionary learning method for classification

tasks. We present classification results on the USPS digit dataset [11], MSR2
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Action dataset [4], and gender recognition using the AR face dataset [18].

The positive dictionary is not very reliable in the beginning of the learning

process because it has been learned using the mixture of negative and positive

samples. Therefore, we set λ and η values to 0 at the beginning of the first

iteration and slowly increase their values by 10% at each iteration until they

reach their predefined values. We use a total of 50 base kernels for learning

the optimal kernel. We use a linear kernel, the histogram intersection kernel,

10 polynomial kernels of degree d = 2 (with coefficients c varying from 0.5

to 5 in steps of 0.5), 10 polynomial kernels of degree d = 3 (with coefficients

c varying from 0.5 to 5 in steps of 0.5), and remaining 28 Gaussian kernel

functions with parameter c increasing in the steps of 0.01. We compare

the performance of our method with that of several recent state-of-the-art

MIL methods including diverse density (DD) [17], EM diverse density (EM-

DD) [28], nearest neighbor (C-kNN) [25], multiple instance support vector

machine (MI-SVM) [2] and recently proposed max-margin dictionary learning

(MMDL) [26]. In order to compare it with MMDL, we computed the max-

margin dictionary as proposed in [26] and the instance probabilities were

computed based on its projection on the learned dictionary. The parameters

of all the algorithms were optimized using two-fold cross validation. The

training data was divided into two sets, the algorithm was learned using the

data from one set and optimized by testing on the other set. Finally, the

learned parameters were used to learn the algorithm on all the training data

and tested on the test data.
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5.1. Digit Recognition

The USPS digit dataset [11] consists of 10 classes (digits 0−9) with total

of 7291 training images and 2001 test images. We perform 10 experiments in

which one digit is chosen as the positive class and the remaining digits are

considered as the negative class samples. For training, we form 25 positive

and 25 negative bags. Each of the positive bags contains 2 positive samples

and 2 randomly chosen negative samples, while each of the negative bags

contains 4 randomly picked negative samples. We test the learned model on

75 positive bags and 75 negative bags. For all the experiments we have set

λ = 1, η = 1, the sparsity level T0 = 4 and the number of iterations to 40.

As we see from Table 1, the proposed method performs better than the

other compared methods for most of the digits. The parameters of the com-

peting algorithms were set using two-fold cross validation. The training

instances were divided into two sets and parameters were adjusted to maxi-

mize the accuracy on half of the instances while using the data for training

from the other half. The closest performing algorithm is the MI-SVM which

is similar to our method in the sense that MI-SVM also selects one sample

from each bag and alternate between learning SVM plane and selecting one

positive sample from each positive bag. Selecting positive samples helps to

improve the accuracy of our method.

5.1.1. Pre-images of learned atoms

For the USPS digit dataset we use the pixel values as features, hence,

we can analyze our results by visualizing the learned atoms of the positive

dictionary in the feature space using their pre-images. Recall that the pth

atom of positive dictionary in feature space is represented by Φ(Yp)ap, where
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Bag/

Inst

DD

[17]

EMDD

[28]

C-

kNN

[25]

mi-

SVM

[2]

MI-

SVM

[2]

MMDL

[26]

MIDL

Digit 0
Bag 43.3 81.3 54.0 84.0 88.0 82.7 94.7

Inst 72.2 83.6 68.5 92.3 86.7 86.5 95.0

Digit 1
Bag 95.3 50.0 76.8 92.0 88.5 88.7 94.7

Inst 95.3 75.0 84.7 76.7 81.5 92.8 93.0

Digit 2
Bag 52.0 37.3 56.0 84.0 90.7 85.3 89.3

Inst 73.8 52.7 71.5 74.6 82.3 88.2 90.7

Digit 3
Bag 46.7 52.7 66.7 90.0 61.3 84.0 96.0

Inst 73.8 52.7 73.3 95 78.0 87.0 94.7

Digit 4
Bag 80.0 80.0 56.0 82.0 82.0 86.7 94.0

Inst 84.2 84.2 71.0 90.2 85.7 86.2 92.3

Digit 5
Bag 76.0 50.0 54.7 89.3 55.3 80.0 93.3

Inst 83.7 75.0 71.3 90.7 76.3 84.3 91.3

Digit 6
Bag 48.0 86.7 71.3 89.3 73.3 84.0 99.3

Inst 71.8 87.8 74.2 94.2 81.5 86.0 96.2

Digit 7
Bag 98.7 50.0 73.3 83.3 84.0 84.0 99.3

Inst 96.0 75.0 74.8 92.5 85.8 91.7 95.7

Digit 8
Bag 47.3 80.0 46.0 86.0 86.0 84.7 94.0

Inst 72.2 83.8 65.8 90.8 87.3 86.0 90.8

Digit 9
Bag 88.6 79.3 64.7 88.0 90.7 84.7 90.7

Inst 86.2 82.5 68.8 88.3 88.0 85.3 92.7

Avg.
Bag 67.6 64.7 61.9 86.8 80.0 84.5 94.3

Inst 80.9 75.7 72.4 88.5 83.3 87.4 93.2

Table 1: Bag and Instance accuracy for the proposed method, compared to

the competing ones for the USPS digit [11] recognition experiment. Each

row compares the accuracy for a digit chosen as the positive class and the

rest of the digits as the negative class.
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ap ∈ RM is the representation of the kernel dictionary atom with respect

to the base Φ(Yp) in the feature space G. The pre-image of Φ(Yp)ak is

obtained by seeking a vector in the input space dp ∈ Rd that minimizes

the cost function ‖Φ(dp)−Φ(Yp)ap‖2. Due to various noise effects and the

generally non-invertible mapping Φ, the exact pre-image does not always

exist. However, the approximated pre-image can be reconstructed without

venturing into the feature space using the techniques described in [22]. We

show the pre-images of 10 atoms of each of the digits in Figure 2. Here, cth

row corresponds to the positive dictionary atom when the digit c is chosen

as the positive class and the rest of the digits as the negative class.

Figure 2: Pre-Images of the USPS digit’s positive dictionary atoms for dif-

ferent digits as the positive class.
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5.1.2. Noisy data

Furthermore, we study the behavior of our method when the data is

contaminated by Gaussian noise and contain missing pixels. For the missing

pixel scenario, we randomly set certain percentage of pixel count to zero.

The Gaussian noise is added with varying standard deviation. As shown in

Figure 3, our method performs better than the competing algorithms. This

is the case because dictionary-based methods are known to be robust in the

presence of noise [1], [27].
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Figure 3: Comparison of USPS digit recognition accuracies for different meth-

ods in the presence of (a) Gaussian noise and (b) missing-pixel effects.

5.1.3. Convergence of the Proposed Method

The proposed method iterates until the cost converges or the maximum

number of iterations are reached. At each iteration, the dictionary, the se-

lection matrix, and the kernel weights are updated. Although, there is no

theoretical guarantee that the cost should converge to a global minima, we
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empirically observe that the proposed optimization approach improves the

cost at each iteration. This is essentially what is shown in Fig. 4 for the

experiment with the USPS digit dataset. One can clearly see the decrease of

the cost as the iterations increase.
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Figure 4: Convergence of the cost for three experiments (a) USPS digit 0 (b)

USPS digit 1, and, (c) USPS digit 2

5.2. Action Recognition

The MSR2 action dataset has 54 videos and each video sequence has the

following three actions: clapping, hand-waving and boxing. In our experi-

mental setup, we use 27 videos for training and the remaining 27 videos for

testing. We create one positive bag and one negative bag from each video se-

quence, resulting in 27 positive and 27 negative bags for training and the same

number of positive and negative bags for testing. Since most of the video

sequences have just 1 or 2 action samples (cuboids) per class, we add more

action samples for each class as follows. For each action cuboid (sample),

we include two more action cuboids, each with the same spatial co-ordinates

but overlapping by 50% in temporal dimension. One action cuboid can de-

generate into maximum of 3 action cuboids. Each positive bag contains all
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the positive action cuboids and two negative cuboids from the same video

sequence. The negative bag has all the remaining negative action cuboids.

We compute the bag of words of dense spatial temporal interest point (STIP)

features [13]. We set λ = 0.01 and η = 1, and the sparsity T0 = 5 for this

experiment. The results shown in Table 2 demonstrate that the proposed

method performs significantly better than other compared methods. One of

the reasons why our method performs better is that we learn the appropriate

feature space in which the data is well represented as well as separated, while

the other methods work in the pre-determined feature space.

Bag/

Inst

DD

[17]

EMDD

[28]

C-

kNN

[25]

mi-

SVM

[2]

MI-

SVM

[2]

MMDL

[26]

MIDL

Clapping
Bag 56.3 56.3 56.3 64.5 58.3 58.3 72.9

Inst 77.0 77.0 77.0 74.5 76.0 71.7 80.6

Waving
Bag 50.0 50.0 50.0 75.9 70.3 61.1 77.8

Inst 66.7 66.7 66.7 80.8 76.6 71.2 85.0

Boxing
Bag 50.0 50.0 50.0 59.2 64.8 64.8 81.5

Inst 62.1 62.1 62.1 76.3 73.5 64.7 77.3

Table 2: Bag and Instance accuracy for the proposed method, compared

to competing ones for MSR2 Action dataset [4]. Each row compares the

accuracy for an action chosen as positive class and remaining ones as negative

class.

We further study our results by looking at the incorrectly selected features

(by examining the selection matrix Ω) for each of the classes (clapping, hand-
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waving, and boxing). Figure 5 shows the incorrectly selected positive samples

from the positive bags according to the Ω matrix. We find that the boxing

class selects all the samples correctly, which probably is the reason why it

has better bag accuracy than the other classes.

Figure 5: False positives selected by the Ω matrix. The false positives for

clapping are, two hand-waving and one boxing actions, while false positives

for hand-waving are 3 clapping action units. Boxing class does not have any

false positive. One frame for each false positive is shown in the figure.

5.3. Gender Recognition

Gender recognition task is a two class problem with male gender as the

positive class and female gender as the negative class. For this purpose

we use 50 male subjects and 50 female subjects of the AR face database.

Each subject has 14 faces (7 from each of the two sessions). We use 25

male and 25 female subjects for training and the remaining ones for testing.

With 350(= 25 ∗ 14) positive samples and 350 negative samples, we form
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175 positive bags and 175 negative bags. Each positive bag consists of 2

positive samples and 1 negative sample, while a negative bag has 1 negative

sample. We set λ = 0.5 and η = 1 for this experiment. Table 3 compares

the performance of our method with that of the other competitive methods.

Bag/

Inst

DD

[17]

EMDD

[28]

C-

kNN

[25]

mi-

SVM

[2]

MI-

SVM

[2]

MMDL

[26]

MIDL

Bag 85.7 52.7 55.4 89.7 90.0 64.8 96.6

Inst 83.0 59.7 64.2 88.6 88.4 64.7 92.14

Table 3: Bag and Instance accuracy for various methods on the gender recog-

nition task. Male faces are chosen as the positive class while female faces are

chosen as the negative class.

6. Conclusion

In this paper, we proposed a non-linear dictionary learning method for

the MIL framework. We formulated the MIL problem as a kernel learning

problem and iteratively learned the dictionary in the embedded space of the

learned kernel. We also described how we can learn the appropriate kernel

matrix instead of using a pre-defined one. This idea of multiple kernel learn-

ing can also be extended to the discriminative dictionary learning setting,

where labels of all the samples are known exactly. Although, this work ad-

dresses the two class classification problem, in the future work, we plan to

extended it to the case of multi-class classification problem, where data for

all the classes are available in the form of bags.
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Appendix

Derivation of (28) and (29):

Reconstruction error of the negative samples can be written as,

Rn = trace{
(
Φ(Yn)−Φ(Yn)AnXn

)(
Φ(Yn)−Φ(Yn)AnXn

)T}
(44)

= trace{K(Yn,Yn) + XT
nAT

nK(Yn,Yn)AnXn − 2K(Yn,Yn)AnXn}.

Writing K(Yn,Yn) as the linear combination of the base kernels
∑

b βbKb(Yn,Yn)

gives

Rn = trace{
∑
b

βbKb(Yn,Yn) +
∑
b

βbX
T
nAT

nKb(Yn,Yn)AnXn

− 2
∑
b

βbKb(Yn,Yn)AnXn} (45)

=
∑
b

βbtrace{Kb(Yn,Yn) + XT
nAT

nKb(Yn,Yn)AnXn

− 2Kb(Yn,Yn)AnXn}. (46)

Now, we define en(b) in (28) as follows,

en(b) , trace{Kb(Yn,Yn) + XT
nAT

nKb(Yn,Yn)AnXn − 2Kb(Yn,Yn)AnXn}

=
N∑
i=1

(
Kb(y

n
i ,y

n
i ) + (xn

i )TAT
nKb(Yn,Yn)Anx

n
i − 2Kb(y

n
i ,Yn)Anx

n
i

)
.

ep(b) for the positive samples in (29) is similarly defined with the difference
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that only selected positive samples (using selection matrix Ω) are considered.

ep(b) , trace{ΩTKb(Yp,Yp)Ω + ΩTXT
p AT

pKb(Yp,Yp)ApXpΩ

− 2ΩTKb(Yp,Yp)ApXpΩ} (47)

=
M∑
i=1

(
Kb(y

p
i ,y

p
i ) + (xp

i )
TAT

pKb(Yp,Yp)Apx
p
i

− 2Kb(y
p
i ,Yp)Apx

p
i

)
1[yi∈Ωs]. (48)

Derivation of (34) and (35):

These two equations enforce dictionary atom norms to unity by minimiz-

ing the following cost,

C =

Kp∑
p=1

(aT
pK(Yp,Yp)ap − 1)2 +

Kn∑
n=1

(aT
nK(Yn,Yn)an − 1)2. (49)

For notational simplicity, we denote a general atom (positive or negative)

by a, a kernel matrix (K(Yn,Yn) or K(Yp,Yp)) by K, and the bth base

kernel by Kb and then solve for the term under the sum:

(aTKa− 1)2 = (aTKa)(aTKa) + 1− 2aTKa

=
(
aT (

B∑
bi=1

βbiKbi)a
)(

aT (
B∑

bj=1

βbjKbj)a
)

+ 1− 2aT (
B∑
b=1

βbKb)a

=
B∑

bi=1

B∑
bj=1

βbiβbj

(
aTKbia

)(
aTKbja

)
+ 1− 2

M∑
b=1

βb(a
TKba)

(50)

(aTKa− 1)2 = βT


aTK1a

. . .

aTKBa




aTK1a

. . .

aTKBa


T

β + 1− 2βT


aTK1a

. . .

aTKBa

 . (51)
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Now, we define Q, and q as

Q =

Kp∑
p=1


aT
pK1(Yp,Yp)ap

. . .

aT
pKB(Yp,Yp)ap




aT
pK1(Yp,Yp)ap

. . .

aT
pKB(Yp,Yp)ap


T

+
Kn∑
n=1


aT
nK1(Yn,Yn)an

. . .

aT
nKB(Yn,Yn)an




aT
nK1(Yn,Yn)an

. . .

aT
nKB(Yn,Yn)an


T

, (52)

q =

Kp∑
p=1


aT
pK1(Yp,Yp)ap

. . .

aT
pKB(Yp,Yp)ap

+
Kn∑
n=1


aT
nK1(Yn,Yn)an

. . .

aT
nKB(Yn,Yn)an

 . (53)

Thus, the cost C in Eq (49) can be written as,

C(β) = βTQβ − 2βTq +Kp +Kn. (54)

Kp and Kn are constants and hence can be dropped from the optimization

cost. This explains the fourth term in Jβ Eq. (26).
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