
Non-Linear Dictionary Learning with

Partially Labeled Data

Ashish Shrivastava, Vishal M. Patel, Rama Chellappa

Center for Automation Research, UMIACS, University of Maryland, College Park, MD
20742

Abstract

While recent techniques for discriminative dictionary learning have demon-

strated tremendous success in image analysis applications, their performance

is often limited by the amount of labeled data available for training. Even

though labeling images is difficult, it is relatively easy to collect unlabeled

images either by querying the web or from public datasets. Using the kernel

method, we propose a non-linear discriminative dictionary learning technique

which utilizes both labeled and unlabeled data for learning dictionaries in the

high-dimensional feature space. Furthermore, we show how this method can

be extended for ambiguously labeled classification problem where each train-

ing sample has multiple labels and only one of them is correct. Extensive

evaluation on existing datasets demonstrate that the proposed method per-

forms significantly better than state of the art dictionary learning approaches

when unlabeled images are available for training.
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1. Introduction

Sparse and redundant signal representations have recently gained much

interest in computer vision field [34], [12], [27]. This is partly due to the

fact that signals or images of interest are often sparse with respect to some

dictionary. These dictionaries can be either analytic or they can be learned

directly from the data. In fact, it has been observed that learning a dictio-

nary directly from data often leads to improved results in many practical

applications such as classification and restoration [34], [22], [6].

While dictionaries are often trained to obtain good reconstruction, train-

ing supervised dictionaries with a specific discriminative criterion has also

been considered. For instance, linear discriminant analysis (LDA)-based ba-

sis selection and feature extraction algorithm for classification using wavelet

packets was proposed by Etemand and Chellappa [14] in the late nineties.

Recently, similar algorithms for simultaneous sparse signal representation

and discrimination have also been proposed [25], [15], [24][38], [17], [18], [36],

[21], [37].

Sparse representation and dictionary learning methods for unsupervised

learning have also been proposed. In [33], a method for simultaneously learn-

ing a set of dictionaries that optimally represent each cluster is proposed. To

improve the accuracy of sparse coding, this approach was later extended by

adding a block incoherence term in their optimization problem [23]. Some

of the other sparsity motivated clustering and subspace clustering methods

include [13], [8].

The performance of a supervised classification algorithm is often depen-
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Figure 1: Block diagram illustrating semi-supervised dictionary learning.

dent on the quality and diversity of training images, which are mainly hand-

labeled. However, labeling images is expensive and time consuming due to

the significant human effort involved. On the other hand, one can easily

obtain large amounts of unlabeled images from public image datasets like

Flickr or by querying image search engines like Bing. This has motivated re-

searchers to develop semi-supervised algorithms, which utilize both labeled

and unlabeled data for learning classifier models. Such methods have demon-

strated improved performance when the amount of labeled data is limited.

See [4] for an excellent survey of recent efforts on semi-supervised learning.

Two of the most popular methods for semi-supervised learning are Co-

Training [2] and Semi-Supervised Support Vector Machines (S3VM) [32].

Co-Training assumes the presence of multiple views for each feature and

uses the confident samples in one view to update the other. However, in

applications such as image classification, one often has just a single feature

vector and hence it is difficult to apply Co-Training. S3VM considers the

labels of the unlabeled data as additional unknowns and jointly optimizes

over the classifier parameters and the unknown labels in the SVM framework
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[3].

Using the kernel trick, several methods have been proposed in the litera-

ture that exploit sparsity of data in the high dimensional feature space. In

these methods, a preselected Mercer kernel is used to map the input data

onto a features space where dictionaries are trained. It has been shown that

such non-linear dictionaries can provide better discrimination than their lin-

ear counterparts [20], [30], [19].

Motivated by the success of non-linear dictionary learning methods [20],

[30], we propose a novel method to learn kernel discriminative dictionaries for

classification in a semi-supervised manner. Fig. 1 shows the block diagram of

the proposed approach which uses both labeled and unlabeled data. While

learning a dictionary, we maintain a probability distribution over class labels

for each unlabeled data. The discriminative part of the cost is made propor-

tional to the confidence over the assigned label of the participating training

sample. This makes the proposed method robust to label assignment errors.

This paper makes the following contributions1:

1. We propose a discriminative dictionary learning method that utilizes

both labeled and unlabeled data.

2. Using the kernel trick, we extend the formulation for learning linear

dictionaries with labeled and unlabeled data to the non-linear case. An

efficient optimization procedure is proposed for solving this non-linear

dictionary learning problem.

3. We show how the proposed method can be extended to ambiguously

1Preliminary version of this work appeared in [31]. Items 2 and 3 are extensions to

[31].
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labeled data where each training sample has multiple labels and only

one of them is correct.

In our previous work [30], we developed a supervised non-linear discrimi-

native dictionary learning method for image classification. The method pro-

posed in this paper is different from [30] in that it is a general non-linear semi-

supervised dictionary learning method. The methods proposed for learning

dictionaries form ambiguously labeled data [7] are also different from the

one proposed in this paper. Specifically, in [7] two linear methods are pro-

posed - one based on soft decision rules and the other based on hard decision

rules. In contrast to linear reconstructive dictionary leaning methods in [7]

and [38], we propose a general discriminative non-linear kernel dictionary

learning method for semi-supervised learning.

The rest of the paper is organized as follows. In Section 2, we formulate

the problem of non-linear dictionary learning with partially labeled data.

The optimization of the proposed framework is presented in Section 3. Ex-

perimental results are presented in Section 4 and Section 5 concludes the

paper with a brief summary and discussion.

2. Problem Formulation

In this section, we formulate the optimization problem for learning dis-

criminative dictionaries with partially labeled data. We first present the

linear formulation. We then extend it to the non-linear case.

2.1. Linear Dictionary Learning with Partially Labeled Data

LetY = [y1, . . . ,yN ] ∈ R
d×N be the data matrix where d is the dimension

of each data sample yi and N is the total number of training samples. We
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assume that the data is partially labeled and denote the label of the ith sample

by li. When the sample yi is not labeled, we set li to 0, i.e., li ∈ {0, 1, . . . C},

where C is the total number of classes.

Our goal is to learn a dictionary D ∈ R
d×K , where K is the number of

unit norm atoms. We represent this dictionary as the concatenation of all

the classes’ dictionary, i.e. D , [D1| . . . |DC] such that each Dc ∈ R
d×Kc can

represent the cth class data well while not economically representing the other

class data. Here, Kc is the number of atoms in dictionary Dc, and hence,

K =
∑C

c=1Kc. Enforcing each Dc to represent only its own class c improves

the discriminative capability of the learned dictionary. We represent each

sample yi by sparse linear combination of dictionaryD’s atoms and represent

the sparse coefficient of the ith sample by xi. Furthermore, we denote the

coefficient matrix for all the samples by X, i.e., X , [x1, . . . ,xN ].

In order to deal with unlabeled data, we introduce a probability matrix

P ∈ R
C×N such that each column of P represents the class distribution of the

corresponding data sample. In other words, (c, i)th element Pci of P denotes

the probability of the ith sample belonging to class c. Hence, by definition,

Pci = 1 if yi is labeled with one class and li = c.

Pci = 0 if yi is labeled with one class and li 6= c.

0 ≤ Pci ≤ 1 if yi is unlabeled or ambiguously labeled. (1)

We denote the probability of all the samples belonging to class c by a di-

agonal matrix Pc ∈ R
N×N such that Pc(i, i) = Pci and the non-diagonal

elements of Pc are set equal to zeros. Also, we define a matrix Qc , 1 −Pc
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to denote the probability of all the samples not belonging to the cth class.

Furthermore, we define Psqrt
c and Qsqrt

c the square root of Pc and Qc, re-

spectively, i.e., Pc = Psqrt
c Psqrt

c and Qc = Qsqrt
c Qsqrt

c . The Frobenius norm

and the sparsity promoting ℓ1 norm of a matrix A are denoted as ‖A‖F and

‖A‖1 , respectively.

Equipped with these notations, we formulate the dictionary learning prob-

lem as one of optimizing

J0(D,X,P) = F0(Y,D,X,P) +H(X,P) + λ1‖X‖1, (2)

where,

F0(Y,D,X,P) = ‖Y −DX‖2F

+ τ1

C
∑

c=1

‖
(

Y −DcX
c
)

Psqrt
c ‖2F

+ τ2

C
∑

c=1

‖DcX
cQsqrt

c ‖2F , (3)

H(X,P) = λ2

(

tr(Sw(X,P)− Sb(X,P))
)

+ η‖X‖2F , (4)

and Xc is the coefficient matrix corresponding to the cth class. Here, the first

term of F0 encourages D to be a good representative of the data matrix Y

without needing any label information. The second term of F0 enforces that

the cth class dictionary Dc represents well those samples which are likely

to belong to class c. Note that Psqrt
c is a diagonal matrix and hence the

contribution of each sample in this part of the cost is proportional to the

probability of it having come from the cth class. The third part of F0 enlarges

the reconstruction error of those samples which are less likely to have come
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from the cth class. The parameters τ1 and τ2 control the discriminative

capability of the learned dictionary.

The second term H of J0 in (2) makes the sparse coefficients of samples

discriminative by decreasing the trace of within-class scatter matrix

Sw =

C
∑

c=1

∑

i:li=c

(xi −mc)(xi −mc)
T

and increasing the trace of between-class scatter matrix

Sb =

C
∑

c=1

Nc(mc −m)(mc −m)T ,

where mc is the average of the cth class coefficients, m is the average of all

the coefficients and Nc is the number of samples in class c. However, when

the label information is available in the form of probability matrix, these

scatter matrices can be defined as follows

Sw(X,P) =
C
∑

c=1

(X−Mc)Pc(X−Mc)
T

=

C
∑

c=1

(X−XEc)Pc(X−XEc)
T , (5)

where Ec ∈ R
N×N has N repeated column and each of them, denoted by ec,

has the following form,

ec(i) =
Pci

wc

, where wc =

N
∑

i=1

Pci, (6)

and

Sb(X,P) =
C
∑

c=1

wc(Xec −Xb)(Xec −Xb)T , (7)
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where, b(i) = 1
N
, ∀i = 1, . . . , N . Note that Xec is the average of the c

th class

coefficients and Xb is the average of all the coefficients.

In (4), tr(.) denotes the matrix trace operator and an elastic term ‖X‖2F is

added to make the cost with respect to X convex and stable. Similar formu-

lations have been used in [35, 14]. The last term of J0 enforces the sparsity

of coefficients. Finally, λ1, λ2 and η are the parameters controlling sparsity

of coefficients, discriminability of sparse codes and elastic term, respectively.

2.2. Non-Linear Dictionary Learning

Let Φ : Rd → G be a non-linear mapping from d-dimensional space into

a dot product space G. Dictionary learning algorithm can be formulated in

the feature space by writing D = Φ(Y)A, where A ∈ R
N×K is a matrix

with K columns [20], [30]. By changing the columns of A, we can learn

the dictionary atoms in the feature space. Hence, the columns of A are

referred to as atoms and denoted by ak, with k = 1, . . . , K. The kth atom in

the feature space can be written as Φ(Y)ak. In order to enforce unit norm

constraint on the atoms in the feature space, akKak should be equal to 1 for

all k. Also, we define A as the concatenation of C matrices, one for each

class, i.e., A = [A1| . . . |AC ]. Next, we can change F0 and denote it by F

such that,
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F(Y,A,X,P) = ‖Φ(Y)−Φ(Y)AX‖2F

+ τ1

C
∑

c=1

‖
(

Φ(Y)−Φ(Y)AcX
c
)

Psqrt
c ‖2F

+ τ2

C
∑

c=1

‖
(

Φ(Y)AcX
c
)

Qsqrt
c ‖2F . (8)

As we will see later, each of the terms in F containing Φ(Y) can be

written in terms of the dot products Φ(Y)TΦ(Y). This allows us to use the

kernel trick by writing Φ(Y)TΦ(Y) = K(Y,Y) ∈ R
N×N , where, K is the

kernel matrix whose (i, j)th element measures the similarity between yi and

yj by means of a mercer kernel function denoted by κ(yi,yj) : R
d×R

d → R.

Some commonly used kernels include polynomial kernels

κ(yi,yj) = (yT
i yj + a)b

and Gaussian kernels

κ(yT
i yj) = exp

(‖yi − yj‖
2

c

)

,

where a, b and c are the parameters of the kernel functions. The overall cost

for the non-linear dictionary learning can be written as follows

J (A,X,P) = F(Y,A,X,P) +H(X,P) + λ1‖X‖1. (9)

Having proposed the formulation for learning non-linear dictionaries with

partially labeled data, we describe our approach to optimize the cost in (9).
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3. Optimization of the Proposed Formulation

Our optimization problem is to minimize the cost in (9) with respect to

dictionary A, sparse coefficient matrix X and probability matrix P,

Â, X̂, P̂ = arg min
A,X,P

J (A,X,P)

subject to aT
kKak = 1, ∀k = 1, . . . , K. (10)

Equation (10) is jointly non-convex in all the three variable. Hence, we resort

to optimizing one variable at a time, while keeping the other two fixed.

3.1. Optimization of the Dictionary A

When the coefficient matrix X and the probability matrix P are fixed,

we optimize A one class at a time. To optimize the cth class dictionary, we

write the cost J with respect to Ac as

JAc
= ‖Φ(Y)−Φ(Y)AcX

c −Φ(Y)AoX
o‖2F

+ τ1‖
(

Φ(Y)−Φ(Y)AcX
c
)

Psqrt
c ‖2F

+ τ2‖
(

Φ(Y)AcX
c
)

Qsqrt
c ‖2F , (11)

where, Yo and Ao denote the other class (i.e. not c) data matrix and dic-

tionary, respectively. Xo denotes the coefficient matrix corresponding to Ao.

These matrices are defined as,

Yo , [Y1, . . . ,Yc−1,Yc+1, . . . ,YC], (12)

Ao , [A1, . . . ,Ac−1,Ac+1, . . . ,AC], (13)

Xo , [X1T , . . . ,Xc−1T ,Xc+1T , . . . ,XCT
]T , (14)
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where Yc ∈ R
d×Nc is part of the data matrix consisting of samples from the

cth class. To update A, we solve the following optimization problem for all

c = 1, . . . , C,

Âc = argmin
Ac

JAc
(15)

subject to aT
kKak = 1, ∀k = 1, . . . , Kc, (16)

where ak is the kth columns of Ac.

Next, we optimize one atom at a time while keeping the others fixed. The

cost with respect to ak can be written as

Jak
= ‖ZΦ

c −Φ(Y)akx
k‖2F + τ1‖(U

Φ
c −Φ(Y)akx

k)Psqrt
c ‖2F

+ τ2‖Φ(Y)(akx
k +Wc)Q

sqrt
c ‖2F , (17)

where,

Wc :=
∑

j 6=k

Ac(:, j)X
c(j, :),

ZΦ
c := Φ(Y)−Φ(Y)AoX

o −Φ(Y)Wc, and

UΦ
c := Φ(Y)−Φ(Y)Wc.

(18)

Writing Jak
in kernel form (and ignoring the terms independent of ak), we

get

Jak
= tr[xkxkTaT

kKak − 2aT
k

(

K−KAoX
o −KWc

)

xkT ]

+ τ1 tr[a
T
kKakx

kPcx
kT − 2aT

k

(

K−KWc

)

Pcx
kT ]

+ τ2 tr[a
T
kKakx

kQcx
kT + 2aT

kKWcQcx
kT ]. (19)
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To optimize, Jak
, subject to akKak = 1, we write the Lagrange function as

L(ak, γ) = Jak
+ γ(akKak − 1), (20)

where, γ is a Lagrange multiplier. Next, we take the derivative of L(.) with

respect to ak and set it equal to zero

α.Kak =[K−KAoX
o −KWc]x

kT

+ τ1[K−KWc]Pcx
kT − τ2KWcQcx

kT , (21)

where α is a scalar constant. Denoting the right hand side of the above

equation by Kv, we get α.ak = v, where,

v , [I−AoX
o −Wc]x

kT + τ1[I−Wc]Pcx
kT − τ2WcQcx

kT ,

and along with the constraint aT
kKak = 1, we choose the dual variable γ,

and hence α, such that the condition is satisfied. In other words,

ak =
v

‖v‖2
. (22)

3.2. Optimization of the Coefficient Matrix X

With the fixed dictionary A, and the probability matrix P, the cost in (9)

can be re-written with respect to X as,

JX =F1(X) + τ1F2(X) + τ2F3(X)+

λ2H1(X) + λ2H2(X) + η‖X‖2F + λ1‖X‖1, (23)
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where,

F1 = ‖Φ(Y)−Φ(Y)AX‖2F ,

F2 =
C
∑

c=1

‖
(

Φ(Y)−Φ(Y)AcX
c
)

Psqrt
c ‖2F ,

F3 =

C
∑

c=1

‖
(

Φ(Y)AcX
c
)

Qsqrt
c ‖2F ,

H1 = tr[

C
∑

c=1

(X−XEc)Pc(X−XEc)
T ], and

H2 = −tr[
C
∑

c=1

wc(Xec −Xb)(Xec −Xb)T ].

The problem of updating X can be written as

X̂ = argmin
X

JX. (24)

In order to minimize JX with respect toX, we use the Iterative Projection

Method (IPM) that minimizes a cost consisting of a convex term with an

additional ℓ1 regularizer [26, 35]. IPM is an iterative algorithm that computes

the derivative of all the terms except the ℓ1 part of the cost and takes a

gradient descent step at each iteration. Followed by this gradient descent

at each iteration, the values of X are soft thresholded [26]. The required
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derivative of all the terms in (23) can be computed as follows

∂F1

∂X
= 2AT

KAX− 2AT
K, (25)

∂F2

∂Xc
=

∂

∂Xc
tr[AT

c KAcX
cPcX

cT −AT
c KPcX

cT ] (26)

= 2AT
c KAcX

cPc − 2AT
c KPc, (27)

∂F3

∂Xc
= 2AT

c KAcX
cQc. (28)

Note that H1(X) =
∑C

c=1 tr[X
TScX], where Sc := (I − Ec)Pc(I − Ec)

T .

Hence,

∂H1

∂X
=

C
∑

c=1

2XSc. (29)

Similarly,

∂H2

∂X
= −

∂

∂X

C
∑

c=1

tr[XTcX
T ] (30)

= −
C
∑

c=1

2XTc, (31)

where, Tc := wc(ec − b)(ec − b)T .
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3.3. Optimization of the Probability Matrix P

With the fixed dictionary A, and the coefficient matrix X, the cost in (9)

can be re-written with respect to P as,

JP =τ1

C
∑

c=1

N
∑

i=1

Pci‖Φ(yi)−Φ(Y)Acx
c
i‖

2
2 + τ2

C
∑

c=1

N
∑

i=1

(1− Pci)‖Φ(Y)Acx
c
i‖

2
2

+ λ2

C
∑

c=1

N
∑

i=1

Pci‖xi −mc‖
2
2 − λ2

C
∑

c=1

Nc‖mc −m‖22. (32)

We can solve the above problem by optimizing for the class probabilities for

the ith sample pi independently, where pi = [P1i, . . . , PCi]
T , provided that

mc does not change much with each update. Hence, the cost with respect to

pi is given by

Jpi
= pT

i vi, (33)

where the cth element of vi is given by,

vi(c) =τ1‖Φ(yi)−Φ(Y)Acx
c
i‖

2
2

− τ2‖Φ(Y)Acx
c
i‖

2
2 + λ2‖xi −mc‖

2
2. (34)

The goal is to, minimize Jpi
subject to pT

i 1 = 1,pi ≥ 0. To minimize a

linear cost subject to linear constraints is a linear programming (LP) opti-

mization problem whose solution is on one of the vertices. In other words,

the element of pi corresponding to minimum value in vi would be 1 and other

elements would be zeros. This is to say that each sample will be assigned to

a fixed class rather than a class distribution. Hence, instead of solving this

LP, we compute the probability of each sample based on the reconstruction
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error eci of the ith sample on the cth class dictionary, defined as

eci = ‖Φ(yi)−Φ(Y)Acx
c
i‖

2
2

= K(yi,yi) + (xc
i)

TAKAxc
i −K(yi,Y)Acx

c
i , (35)

where xc
i is the sparse coefficient of the ith sample corresponding to dictionary

Ac. Now, the probability of the ith sample belonging to the cth class can be

defined as

Pci =











exp {−
eci

σ
}

∑
C

c=1
exp {−

eci

σ
}

if
exp {−

eci

σ
}

∑
C

c=1
exp {−

eci

σ
}
> θ,

0 otherwise.

(36)

Here, σ is a parameter that controls how sharp the probability distributions

are. Furthermore, we want to add only those samples which are quite con-

fident about its class and remove the ones that have similar probability of

having come from multiple classes. This is achieved by setting the proba-

bility of those samples to zero which are less than a certain parameter θ.

Furthermore, instead of updating P at each iteration, we skip a few itera-

tion(s) (typically 1 − 5) before updating the probability matrix. This gives

some time for the learned dictionary to converge before adding more samples.

The proposed method for learning dictionary is summarized in Algorithm 1.

3.4. Dictionary Learning with Ambiguously Labeled Data

In many practical situations there might be multiple labels available for

each training sample. For example, given a picture with multiple faces and

a caption specifying who are in the picture, the reader may not know which

face goes with the names in the caption. The problem of learning identities
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Algorithm 1: Algorithm for learning non-linear dictionary A by solving

(9).

Input: Training Data Y, Partial Labels li, ∀i = 1, . . . N , Kernel

Function κ.

Output: Dictionary A.

Initialize Dictionary A, sparse Coefficient matrix X and Probability

matrix P.

itr = 0

repeat

itr = itr + 1

Update sparse coefficient matrix X by solving (24).

if mod(itr, skipItr)=0 then

Update Probability matrix P using (36)

end

for c = 1, . . . , C do

for k = 1, . . . , Kc do

Update atom ak using (22).

end

end

until convergence or maximum iterations ;

return A.
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where each example is associated with multiple labels, when only one of

which is correct is often known as ambiguously labeled learning [11].

This ambiguously labeled data can be easily handled using the pro-

posed formulation by giving equal probabilities to each of the given class

for that sample. For example, if a sample yi has labels 1, 4, 5, 7, we can set

P(c, i) = 0.25, for c = 1, 4, 5, 7. However, a major challenge in handling such

ambiguously labeled data is to learn an initial dictionary [7]. For the cases

where data is either unambiguously labeled or completely unlabeled, we can

use the unambiguously labeled data to learn an initial dictionary for each

class. However, when each sample has multiple labels, we first need to clus-

ter the data into different classes to make sure that the learned dictionary

for each class is not influenced by the samples of the other classes.

Let yi have multiple labels denoted by the set Li and the number of

ambiguous labels be denoted by Ci , |Li|. In order to assign one cluster

label to yi, we learn Ci dictionaries, one for each ambiguous class label,

using all the samples excluding yi. While learning the cth class dictionary

Dci, where c ∈ Li, for the i
th sample, we use all the samples excluding yi and

with at least one class label as c. Let the set of these samples be denoted by

Yci. We learn a dictionary Dci with the data matrix Yci using the KSVD

algorithm [1] for each c ∈ Li. The reconstruction error of yi is computed on

Dci as follows,

rci = ‖yi −Dcix‖2, (37)

where, x = (DT
ciDci)

−1DT
ciyi. Next, yi is assigned to the cluster c with the

minimum reconstruction error rci. These steps are summarized in Algorithm

2.
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Algorithm 2: Algorithm for clustering ambiguously labeled data into C clusters.

Input: Training Data Y, Partial Labels Li, ∀i = 1, . . .N .

Output: Cluster labels hi ∈ {1, . . . , C} for each sample yi, for all

i = 1, . . . , N .

for i = 1, . . . , N do

for j = 1, . . . , Ci do

c = Li(j)

Collect all the samples except yi with at least one class label as

c into data matrix Yci.

Learn dictionary Dci with Yci using KSVD algorithm.

x = (DT
ciDci)

−1DT
ciyi.

rci = ‖yi −Dcix‖2.

end

Cluster label hi = argminc∈Li
rci

end

return hi, ∀i = 1, . . . , N .
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For each class, an initial dictionary D
(0)
c is learned with samples in the

cth cluster using the KSVD algorithm. Finally, initial non-linear dictionary

A
(0)
c is computed using D

(0)
c as

A(0)
c = pinv(Y)D(0)

c , (38)

where pinv(Y) is the pseudo-inverse of the data matrix Y.

3.5. Classification

Having learned the non-linear dictionary A, we classify a given test sam-

ple yt by first computing its sparse code xt by solving the following optimiza-

tion problem,

xt = argmin
x

‖Φ(yt)−Φ(Y)Ax‖22 + λ‖x‖1 (39)

= argmin
x

(

κ(yt,yt) + xTAT
K(Y,Y)Ax

− 2K(yt,Y)Ax+ λ‖x‖1

)

. (40)

The above problem in (40) is solved using the IPM. Next, to determine the

class of the test sample, we compute the reconstruction error for each class

as

rc = ‖Φ(yt)−Φ(Y)Acx
c‖22 (41)

= κ(yt,yt) + (xc)TAT
c K(Y,Y)Acx

c

− 2K(yt,Y)Acx
c. (42)

Finally, the test sample is assigned the class corresponding to the minimum

reconstruction error as

class of yt = argmin
c

rc. (43)
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4. Experimental Results

To illustrate the effectiveness of our method, we present experimental

results on some of the publicly available databases such as the USPS digit

dataset [16], the Kimia’s object dataset [29] and TV LOST dataset [10, 9]

that consists of cropped face images from TV series ‘LOST’. A compari-

son with other existing object recognition methods in [35] suggests that the

discriminative dictionary learning algorithm known as Fisher Discriminant

Dictionary Learning (FDDL) is among the best dictionary-based method for

classification. Hence, we use FDDL and a semi-supervised dictionary learning

algorithm S2D2 [31] to compare the performance on semi-supervised experi-

ments. We also compare our method with that of Support Vector Machines

(SVM) as well as a semi-supervised extension of SVM known as (S3VM) [32].

Also, we compare our method with recently proposed Pseudo Multi-view Au-

tomatic Feature Decomposition for Co-training (PMC) method [5]. In all of

our experiments, λ is set equal to 0.05 and η is set equal to 0.001. The

number of iterations are set to a maximum value of 30. All the other pa-

rameters are set using cross-validation separately for each experiment. For

big training datasets, they can be optimized on a small validation dataset to

reduce training time. In our experiments, we optimized the sparsity param-

eter over the set {0.01, 0.05, 0.1, 0.5}. The discriminative parameters τ1 and

τ2 were optimized over the set {0.1, 1, 5, 10}. We skipped a few iterations

when updating P to ensure the convergence of the cost function. This allows

dictionary atoms to converge before using them to compute the probability

matrix. Furthermore, the parameter σ controls the sharpness of probability

distribution. Although, this can be computed in each iteration as the average
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reconstruction error as was done in [7], we set this equal to 1 for simplicity.

If the probability distributions appear very flat, we reduce it to a smaller

value.

4.1. Digit Recognition

The USPS digit dataset [16] consists of gray images of hand written digits

from 0 to 9. This dataset contains 7291 training samples and 2007 test

samples. From the training data, four samples from each class are randomly

chosen as the labeled samples and the rest of the training data is used as

the unlabeled data. The original images are of size 16 × 16 which forms

the feature vector of dimension 256. We added a maximum of 10 unlabeled

samples per class at each iterations. For this experiment we used polynomial

kernel of degree 4, and set sparsity parameter λ1 = 0.01. Furthermore, to

avoid low confidence samples we set θ = 0.5.

We compare the recognition accuracies of the proposed method with other

methods in Table 1. The parameters τ1 and τ2 were set equal to 10 and 0.1,

respectively, for this dataset. Observe that the proposed method outper-

forms the other methods by more than 5%. The major difference between

S2D2 and the proposed method is the use of non-linear kernel. This con-

firms the importance of non-linear kernels in dictionary learning methods.

The improvement in performance compared to SVM and FDDL is due to

the fact that we utilize the unlabeled data for updating dictionaries in the

training stage. Being supervised techniques, the performance of SVM and

FDDL reduces when the available labeled samples are small. Unlike S3VM

which assigns hard labels to the unlabeled data points at each iteration, the

proposed method assigns only a soft probability of class for each unlabeled
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Algorithms Accuracy(%)

SVM 74.47

S3VM [32] 75.61

FDDL [35] 79.24

PMC [5] 79.78

S2D2 [31] 85.61

Proposed Method 90.60

Table 1: Recognition accuracy for the proposed method on USPS Digits dataset.

data.The reason why the proposed method performs better than S3VM is

because the soft assignment approach is more robust to labeling errors when

compared to the hard assignment.

Pre-Images of the learned dictionary atoms: Recall that the kth

atom of the learned non-linear dictionary is represented as Φ(Y)ak with

respect to the base Φ(Y) in the feature space G. Since G is large, and

possibly of infinite dimension, we visualize the pre-image [28] of dictionary

atoms. The pre-image of a dictionary atom Φ(Y)ak is obtained by seeking

a vector dk in input space R
d that minimizes the cost function ‖Φ(dk) −

Φ(Y)ak‖2. Due to various noise effects and the generally non-invertible

mapping Φ, pre-image does not always exist. However, an approximated

pre-image can be reconstructed without venturing into feature space using

techniques described in [28]. In Fig. 2, we show the pre-images of some of

the learned dictionary atoms from each class.

Performance in the presence of missing and noisy pixels: To further

evaluate the robustness of the proposed method, we computed the recog-
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Figure 2: Pre-images of the learned atoms of USPS digits. Columns show the learned

dictionary atoms for each class.

nition performance of the proposed method when pixels in the image are

either missing or corrupted by noise. In the missing data experiment, we

set pixels at random locations to zero for test images in the digit recogni-

tion application. The number of corrupted pixels was varied and we plot

the corresponding accuracy in Fig. 3(a). Note that the recognition accuracy

falls as expected when the amount of missing pixels is increased. But the

fall in accuracy is much lower for the proposed technique when compared

to the other methods. This clearly demonstrates the improved robustness

of the proposed method compared to the competing methods. Similarly to

study the robustness of our method in the presence of noise, we added inde-

pendent and identically distributed Gaussian noise to the pixels. We varied

the variance of the added noise and compute the recognition accuracy for

all the methods. The results are shown in Fig. 3(b). We observed a similar

improvement in robustness of the proposed technique.

4.2. Object Recognition

In the next set of experiments, we use Kimia’s object dataset [29] which

has 18 object categories each with 12 binary shapes. We randomly chose
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Figure 3: Accuracy for two kinds of corruption for digit recognition. (a) accuracy vs

missing data. (b) Accuracy vs noise variance.

six images per class for training and the remaining six for testing. Further-

more, we randomly picked four images per class as the labeled data and the

remaining two as the unlabeled data. Each image was resized to 16 × 16

and intensity values were used as features. The classification rates for all

the algorithms are compared in Table 2. We see that the proposed method

performs better than the other methods. In this experiment we used poly-

nomial kernel of degree 2. We set sparsity parameter λ1 = 0.5, τ1 = 0.1

and τ2 = 1. Furthermore, to avoid low confidence samples we set θ = 0.5.

These results clearly demonstrate that the performance of discriminative dic-

tionary learning methods can be improved significantly by using unlabeled

data, when the available labeled data is limited. Furthermore, the use of non-

linear kernel can improve the performance of dictionary learning methods for

classification.

Caltech101 object recognition: The Caltech101 dataset contains 102 ob-
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Algorithms Accuracy(%)

SVM 84.26

S3VM [32] 84.26

FDDL [35] 86.11

PMC [5] 88.89

S2D2 [31] 87.96

Proposed Method 92.59

Table 2: Recognition accuracy for the proposed method, compared to competing ones for

shape recognition.

ject categories and each category has about 40 to 80 images downloaded

from Internet. We randomly selected 10 labeled and 10 unlabeled training

images from each category to evaluate the proposed algorithm. To evalu-

ate our method on this dataset, we used spatial pyramid features [17]. For

each image, dense SIFT descriptors were extracted from 16 × 16 patches,

separated by 6 pixels. To train the codebook for spatial pyramid, standard

k-means clustering with k = 1024 was used. Finally, the dimension of spatial

pyramid features were reduced to 3000 dimensions by PCA. The results of

our comparison are provided in Table 3. As can be seen from this table, the

proposed method compares favorably even on the large dataset.

4.3. Ambiguously Labeled Data

In order to test our algorithm on ambiguously labeled data we chose the

TV LOST dataset as used by [7]. This dataset consists of face images from

TV series ‘LOST’. In original dataset, there are 1122 registered face images

corresponding to a total of 14 subjects, each containing from 18 to 204 images.
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Algorithms Accuracy(%)

SVM 60.8

FDDL [35] 61.1

PMC [5] 58.4

S3VM [32] 65.6

Proposed Method 66.4

Table 3: Recognition accuracy for the proposed method on Caltech101 dataset.

In our experiment, we followed the same setting as [7] and chose 12 subjects

with at least 25 face images per subject. For each subject, first 25 images were

selected to evaluate our method. Each image was resized to 30×30 pixels, and

histogram-equalized intensities were used as features. This experiment was

conducted under transductive setting, meaning all the data was available at

training time. We ambiguously labeled 85% of the data and remaining 15%

of the data was correctly labeled. For each ambiguously labeled sample, we

assigned one correct label and 3 randomly chosen incorrect class labels. We

compare our method with the Convex Learning from Partial Labels (CLPL)

presented in [9], and various dictionary learning-based methods proposed

in [7]. DLHD [7] clusters training data into various clusters based on the

reconstruction error, and then learn dictionary for each cluster. DLSD [7]

assigns a soft label to each sample based on the the reconstruction error and

learns a dictionary for each class based on the assigned soft labels. Equally-

weighted K-SVD [7] learns a dictionary using K-SVD for each class by giving

equal weight to each ambiguous class. We compare our method with the other

methods in Table 4. We use a polynomial kernel of degree 4 and set sparsity
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Algorithms Accuracy(%)

CLPL [9] 78.53

Equally-Weighted K-SVD[7] 81.67

DLHD [7] 86.17

DLSD [7] 86.63

Proposed Method 88.33

Table 4: Recognition accuracy for the proposed method, compared to competing ones for

TV LOST dataset.

parameter λ1 = 0.05. Furthermore, discriminative parameters τ1, and τ2 are

set equal to 1 and 0.1, respectively. In order to visualize the dictionary atoms,

we plot pre-images of the dictionary atoms for each class in Figure 4. As we

can see the learned dictionary atoms capture the variations present in each

class. Furthermore, we analyze the convergence of our algorithm. In Figure

5, we display the probability matrices at the start, end and intermediate

iterations. We can clearly visualize how the label accuracy improves over

iterations. We also plot the total cost over iterations in Figure 6. As can be

seen from this figure, our cost decreases with increase in iterations.

5. Conclusion

We proposed a method that utilizes unlabeled and ambiguously labeled

training data for learning non-linear discriminative dictionaries. The pro-

posed method iteratively estimates the confidence of unlabeled samples be-

longing to each of the classes and uses it to refine the learned dictionaries.

Experiments using various publicly available datasets demonstrate the im-
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Figure 4: Pre-images of dictionary atoms for TV LOST dataset.
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Figure 5: Convergence of probability matrices for TV LOST dataset. Figures (a), (b), (c),

(d) show the probability matrix P at intermediate iterations.
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proved accuracy and robustness to noise and missing information of the pro-

posed method compared to state-of-the-art dictionary learning techniques.
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