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Abstract. In recent years there has been growing interest in designing
dictionaries for image classification. These methods, however, neglect the
fact that data of interest often has non-linear structure. Motivated by the
fact that this non-linearity can be handled by the kernel trick, we pro-
pose learning of dictionaries in the high-dimensional feature space which
are simultaneously reconstructive and discriminative. The proposed op-
timization approach consists of two main stages- coefficient update and
dictionary update. We propose a kernel driven simultaneous orthogonal
matching pursuit algorithm for the task of sparse coding in the feature
space. The dictionary update step is performed using an efficient approx-
imate KSVD algorithm in feature space. Extensive experiments on image
classification demonstrate that the proposed non-linear dictionary learn-
ing method is robust and can perform significantly better than many
competitive discriminative dictionary learning algorithms.

1 Introduction

Sparse and redundant signal representations have recently drawn much interest
in vision and image processing fields [1]. This is due in part to the fact that
objects and images of interest can be sparse or compressible in some basis of
a dictionary. We say a signal x is sparse in dictionary D when it can be well
represented as x = Dα, where α is the sparse representation vector and D is
a dictionary that contains atoms as its columns. The dictionary D can be an-
alytic such as a redundant Gabor dictionary or it can be trained directly from
data. It has been observed that learning a dictionary directly from training data
rather than using a predetermined dictionary usually leads to better representa-
tion and hence can provide improved results in many practical image processing
applications such as restoration and classification [1], [2], [3]. Two of the most
well-known algorithms for learning a dictionary are the method of optimal di-
rections (MOD) [4] and the KSVD algorithm [5]. While these approaches are
purely generative, the design of discriminative dictionaries has also gained a lot
of interest in recent years. Linear discriminant analysis (LDA) based basis selec-
tion and feature extraction algorithm for classification using wavelet packets was
originally proposed in [6]. More recently, many other methods have shown signif-
icant improvements over purely reconstructive dictionaries, e.g. [7], [8], [9], [10].
One of the major advantages of learning dictionaries which are simultaneously
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reconstructive and discriminative is that they are known to be less sensitive to
noise.

In many practical applications, data of interest lies on a non-linear struc-
ture. Linear dictionary learning methods such as MOD and KSVD are almost
always inadequate for representing these nonlinear data. In [11], Nguyen et al.

address this issue by learning dictionaries in the high dimensional feature space.
Using kernel methods, they developed dictionary learning algorithms that take
into account the nonlinear structure of data. They showed that their non-linear
dictionary learning methods yield representations that are more compact than
kernel PCA (Principal Component Analysis) and are able to handle the non-
linearity better than their linear counterparts.

Several other methods have also been proposed that essentially exploit the
non-linear structure of data by sparse coding in the feature space [12], [13]. In
[14], Yuan and Yan propose a multi-task joint sparse representation for visual
recognition. Their method is formulated as the solution to the problem of multi-
task least squares regression problem with ℓ1,2 mixed-norm regularization. In
[13], Zhang et al. propose a kernel version of the sparse representation-based
classification algorithm which was originally proposed for robust face recognition
[15].
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Fig. 1. A synthetic example showing the significance of the proposed method for clas-
sification. (a) Synthetic data which consists of linearly non separable 3D points on a
sphere. Different classes are represented by different colors. (b) Sparse coefficients from
KSVD projected onto learned SVM (Support Vector Machine) hyperplanes. (c) Sparse
coefficients from a non-linear dictionary projected onto learned SVM hyperplanes. (d)
Sparse coefficients from the proposed method projected onto learned SVM hyperplanes.
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The optimization approach presented in [11] is purely generative. It does
not explicitly contain the discrimination term which is important for many clas-
sification tasks. Using the kernel trick, when the data is transformed into a
high dimensional feature space, the data from different classes may still over-
lap. Hence, by learning generative dictionaries for different classes in the feature
space, one may not be able to capture the internal structure of the data in each
class. This may lead to poor performance in classification. Motivated by this
fact, we propose a method for designing dictionaries in the feature space which
are simultaneously reconstructive and discriminative.

Figure 1 presents an important comparison in terms of discriminative power
of our approach with a few other methods. A scatter plot of the sparse coeffi-
cients obtained using different approaches show that our method is able to learn
the underlying non-linear sparsity of data as well provide more discriminative
representation.
This paper makes the following contributions:

– A non linear coefficient update has been proposed which provides discrimi-
native capability to the dictionary learning algorithm.

– A novel non-linear dictionary update algorithm based on approximate KSVD
has been presented.

– These two stages provide the framework of non-linear dictionary learning to
classify data in feature space.

2 Problem Formulation

We represent the data matrix as X = [X1, . . . ,XC ] = [x1, . . . ,xN ] ∈ R
d×N

where xi ∈ R
d is a d dimensional data sample, Xc ∈ R

d×Nc is the matrix
of data samples in cth class, and y = [y1, . . . , yN ], where yi is the class label
of data sample xi and C is the number of classes. We denote the number of
samples in cth class by Nc and total number of training samples by N , i.e.
N = N1+· · ·+NC . Linear dictionary D is denoted as the concatenation of C sub-
dictionaries D = [D1D2 . . .DC ] ∈ R

d×K where Dc ∈ R
d×Kc is the dictionary for

class c and Kc is the number of atoms in this dictionary. Here, K(= K1+· · ·+KC)
is the total number of atoms in the dictionary D. Similarly, the coefficient matrix

is denoted by Γ =







Γ1

...
ΓC






= [γ1, . . . γN ] ∈ R

K×N , where Γc ∈ R
Kc×N is the

coefficient matrix corresponding to the cth class and γi is the coefficient vector
for the ith data sample.

In the following sub-sections, we first present our formulation for designing
a linear discriminative dictionary which, then, sets the ground for non-linear
discriminative dictionary.
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2.1 Linear discriminative dictionary learning model

In the linear case, we propose the following discriminative dictionary learning
model

D̂, Γ̂ = min
D,Γ

J(D,Γ;X,y) subject to ‖γi‖0 ≤ T0, (1)

where the ℓ0 norm ‖γ‖0 counts the number of nonzero elements in the repre-
sentation γ and T0 is a sparsity measure. The objective function J is designed
such that it captures discrimination as well as representation. It imposes Fisher
type of discrimination on the sparse coefficients and enforces separability among
dictionary atoms of different classes. It is defined as follows

J(D,Γ;X,y) =
C

∑

c=1

‖Xc − DcΓc‖
2
F − λ1F1(D,X) + λ2F2(D), (2)

Here, ‖.‖F denotes the Frobenius norm. The first term in Eq. (2) reduces
the representation error. The second term essentially ensures that the sparse
coding coefficients have small within-class scatter but large between-class scatter.
Mathematically, it is defined as follows

F1(D,X) = trace(DT SbD− DT SwD), (3)

where Sb = 1
N

∑C

1 Nc(mc − m)(mc − m)T and Sw = 1
N

∑C

c=1

∑N
i=1
yi=c

(mc −

m)(mc − m)T are the between-class and within-class data scatter matrices, re-

spectively. Here, mc = 1
Nc

∑N
i=1
yi=c

xi is the mean of cth class data samples and

m = 1
N

∑N

i=1 xi is the mean of all the data samples. With this, F1 can be
rewritten as

F1(D,X) =
K

∑

k=1

dT
k Sbdk −

K
∑

k=1

dT
k Swdk. (4)

Where, dk is the kth atom of dictionary D. Finally, the third term in (2) is
defined such that it enforces dissimilarity among atoms of different classes

F2(D) =

C
∑

c=1
j 6=c

‖DT
c Dj‖

2
F , (5)

where Dc refers to the set of those atoms which belong to class c. This enforces
dissimilarity between the atoms of different classes.

2.2 Non-linear discriminative dictionary (NLDD)

Let Φ : R
N → G be a non-linear mapping from R

N into a higher dimensional
feature space G. Since the feature space G can be very high dimensional, in the
kernel methods, Mercer kernels are usually employed to carry out the mapping
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implicitly. A Mercer kernel is a function τ(x1,x2) that for all data {xi} gives rise
to a positive semidefinite matrix K(i, j) = τ(xi,xj). It can be shown that using
τ instead of dot product in input space corresponds to mapping the data with
some mapping Φ into a feature space G. That is, τ(xi,xj) = 〈Φ(xi),Φ(xj)〉.
Some commonly used kernels include polynomial kernels τ(x,y) = 〈(x,y〉 + c)d

and Gaussian kernels τ(x,y) = exp(− ‖x−y‖2

c
), where c and d are the parameters.

We now show how the discriminative dictionary learning framework (1) can be
kernelized.

We will use the following model for the dictionary in the feature space

Φ(D) = Φ(X)A,

where A = [a1,a2, . . . ,aK ] ∈ R
N×K and Φ(X) = [Φ(x1)Φ(x2) . . .Φ(xN )]. This

model provides adaptivity via modification of the matrix A [16],[11]. First note
that ‖Φ(xi) − Φ(X)Aiγi‖

2
2 can be kernelized as follows,

‖Φ(xi) − Φ(X)Aiγi‖
2
2 = K(xi,xi) + γ

T
i AT

i KAiγi − 2γiAiK(X,xi) (6)

Next, the term dT
k Sbdk in (2) can be written in the feature space as

(Φ(X)ak)T
( 1

N

C
∑

c=1

Nc(m
feat
c − mfeat)(mfeat

c − mfeat)T
)

Φ(X)ak, (7)

where mfeat
c = 1

Nc

∑N
i=1
yi=c

Φ(xi) and mfeat = 1
N

∑N
i=1 Φ(xi) are the mean vec-

tors in the feature space. Equation (7) can be simplified as, aT
k Sker

b ak, where

Sker
b =

1

N

C
∑

c=1

Nc(m
ker
c − mker)(mker

c − mker)T , (8)

mker
c = 1

Nc

∑N
i=1
yi=c

K(X,xi) and mker = 1
N

∑N

i=1 K(X,xi). Similarly, dT
k Swdk

(2) can be kernelized as aT
k Sker

w ak, where

Sker
w =

1

N

C
∑

c=1

N
∑

i=1
yi=c

(K(X,xi) − mker
c )(K(X,xi) − mker

c )T . (9)

Finally, to kernelize the term in (5), we observe that the dot product of any two
dictionary atoms in feature space can be written as

(Φ(X)ai)
T (Φ(X)aj) = aT

i Kaj . (10)

Equipped with the above notations, the main problem can be formally stated
as follows

Â, Γ̂ = min
A,Γ

J(A,Γ;X,y) subject to ‖γi‖0 ≤ T0, ∀i ∈ {1, . . . , N}, (11)
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where

J(A,Γ;X,y) =

C
∑

c=1

‖Φ(Xc)−Φ(X)AcΓc‖
2
F −λ1F1(A,Sker

b ,Sker
w )+λ2F2(A, K),

(12)

F1(A,Sker
b ,Sker

w ) =

K
∑

k=1

aT
k Sker

b ak −

K
∑

k=1

aT
k Sker

w ak, (13)

F2(A, K) =

C
∑

c=1
j 6=c

‖AT
c KAj‖

2
F . (14)

Here, Ac correspond to the atoms corresponding to class c. As the cost function
(12) is jointly non-convex in A and Γ, we adopt alternating optimization between
coefficients Γ and A. In what follows, we described these steps in detail.

3 Computing Coefficients

To compute coefficients, we fix A and find the best atoms indexed by I on which
we project the data. Hence, we solve the following optimization problem

Γ∗ = argmin
Γ

‖Φ(X) − Φ(X)AΓ‖2
F − λ1F1(A,Sker

b ,Sker
w ) + λ2F2(A)

subject to ‖γi‖0 ≤ T0, ∀i ∈ {1, . . . , N}. (15)

In what follows, we describe how the well-known Simultaneous Orthogonal Match-
ing Pursuit (SOMP) algorithm [17] can be extended to solve (15).

3.1 Supervised SOMP

Given a fixed dictionary D and examples X, SOMP approximates all these
samples at once using different linear combinations of the dictionary elements,
while balancing the error in approximating the data against the total number of
atoms that are used. It is a greedy algorithm that essentially solves the following
optimization problem

Γ∗ = argmin
Γ

‖X− DΓ‖2
F s. t. ‖Γ‖row-0 ≤ T0, (16)

The SOMP algorithm can be extended to the supervised case where it in-
cludes the second and third terms of the cost function (2). The supervised SOMP
can be obtained by changing the atom selection stage as follows

m = arg max
p∈U

N
∑

i=1
yi=c

|〈r
(t−1)
i ,dp〉|+λ1(d

T
p Sbdp−dT

p Swdp)−λ2

C
∑

j=1
j 6=c

‖DT
j dp‖

2
2. (17)

where m is the index of the selected atom at the current iteration and r
(t−1)
i

is the residual for ith sample at (t − 1)th iteration. In the next section, we show
how this supervised SOMP algorithm can be kernelized to solve (15).
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3.2 Supervised Kernel SOMP (KSOMP)

Note that residue for the ith sample in the feature space is

resi = Φ(xi) − Φ(X)AIγ
R
i , (18)

where AI is the set of selected elements indexed by I and γ
R
i is the corresponding

coefficient vector. Here, superscript R denotes that the vector has been reduced
to length of I so that the remaining elements correspond to the atoms in AI .
As will be evident later, this residue always appear as a dot product with Φ(X).
Hence we define,

ri = Φ(X)T
(

Φ(xi) − Φ(X)AIγ
R
i

)

(19)

= K(X,xi) − K(X,X)AIγ
R
i (20)

The projection of the residue on the dictionary atom ap can be computed as,

〈Φ(X)ap, resi〉 = aT
p

(

K(X,xi) − K(X,X)AIγ
R
i

)

= 〈ri,ap〉. (21)

Equation 21 is the counter part of the dot product of candidate atom and residual
in the feature space. Combining (21), with the definitions of scatter matrices in
(8) and (9) we can write the atom selection stage of supervised kernel SOMP as

m = arg max
p∈U

N
∑

i=1
yi=c

|〈r
(t−1)
i ,ap〉| + λ1(a

T
p Sker

b ap − aT
p Sker

w ap) + λ2

C
∑

j=1
j 6=c

‖AT
j Kap‖

2
2.

(22)
Finally, after selecting Ic atoms of the cth class, the coefficients of the ith data
sample can be computed as,

γ
R
i =

(

(Φ(X)AIc
)T (Φ(X)AIc

)
)−1

(

(Φ(X)AIc
)T Φ(xi)

)

=
(

AT
Ic

KAIc

)−1(

AT
Ic

K(X,xi)
)

. (23)

The supervised kernel SOMP algorithm to compute coefficients Γ is summa-
rized in Algorithm 1.

4 Dictionary update

When Γ is fixed, we ignore F1 and F2 and solve the following optimization
problem to update the dictionary

A∗ = arg min
A

‖Φ(X) − Φ(X)AΓ‖2
F . (24)

This update can be computed efficiently by utilizing approximate kernel-KSVD
algorithm [16] in the feature space.
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Algorithm 1: supervised KSOMP

Input: A,h, K,y, T0 .
Output: Γ

Initialization: residual (∀i, )ri = K(:, i), Set (∀c), Ic = [ ], Γ = 0K×N , Qc = [ ]
for t = 1, . . . T0 do

for c = 1, . . . C do
U = {p = 1, . . . , K}\Ic

compute m using Eq. 22
Set Ic = Ic ∪m

Compute γ
R

i using Eq 23 ∀i, such that yi = c.
Set ri = K(:, i)−KAIc

γ
R

i
∀i, such that yi = c

Γ(Ic, i)← γ
R

i
, ∀i, such that yi = c

end

end

return Γ

4.1 Approximate kernel KSVD

The following optimization problem is solved for each ak,

a∗
k = argmin

ak

‖Φ(X) − Φ(X)
(

∑

i6=k

aiγ
i
T + akγ

k
T

)

‖2
F (25)

= argmin
ak

‖Φ(X)Ek − Φ(X)akγ
k
T ‖

2
F , (26)

where Ek = I−
∑

i6=k aiγ
i
T . Furthermore, we need to consider only those samples

which use ak. To do this we define the index set Ik = {j|1 ≤ j ≤ K, γk
T (j) 6= 0}

and a matrix Ωk ∈ R
N×|Ik| with 1’s in the (Ik(j), j)th entry and 0’s elsewhere.

Algorithm 2: Dictionary update stage using approximate kernel KSVD

Input: kernel matrix K ∈ R
N×N , input labels y ∈ R

1×N initial dictionary
A0 ∈ R

N×K , coefficients matrix Γ ∈ R
K×N .

Output: A

Initialization: A← A0,
for k = 1, . . . K do

J = {j | 1 ≤ j ≤ N, Γ(k, j) 6= 0}
IR = I(:, J)
γ

R

k = (Γ(k, J))T

ak = IR
γ

R

k
−AΓJγ

R

k

ak = ak√
a

T

k
Kak

γ
R

k
= (IR)T

Kak − (AΓJ )T
Kak

Γ(k, J) = (γR

k )T

A(:, k) = ak

end

return A
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Next, we define the reduced matrix ER
k , EkΩk, which consists of only those

columns that use ak. Similarly, we reduce the length of the coefficient vector γk

and define a new column vector as γ
R
k = (γk

TΩk)T . With this the optimization
problem can be rewritten as

a∗
k = arg min

ak

‖Φ(X)ER
k − Φ(X)ak(γR

k )T ‖2
F s.t. ‖Φ(X)ak‖2 = 1. (27)

We use alternate optimization (fixing one variable and differentiating with re-
spect to the other one) to compute ak and γ

R
k

ak =
ER

k γ
R
k

√

(ER
k γ

R
k )T KER

k γ
R
k

, γ
R
k = (ER

k )T
Kak. (28)

We summarize the procedure for approximate kernel KSVD in Algorithm 2.

Algorithm 3: Non-linear discriminative dictionary (NLDD) learning

Input: Training Data X = [x1, . . . ,xN ], class labels y = [y1, . . . , yN ], sparsity
level T0, parameters λ1, λ2.

Output: A = [A1, . . . ,AC ]
Step 1: (Initialization) Initialize each column of A with 1 at a random
location. Compute kernel matrix K, data scatter matrices Sker

b and Sker
w .

Step 2: Compute sparse coefficients using Algorithm 1.
Step 3: Using sparse coefficients from step 2, update A using Algorithm 2 .
Step 4: Repeat steps 2 and 4 for pre-specified number of iterations.
Step 5: Remove those columns of A which were not used in last iteration.
return A

The complete NLDD algorithm of dictionary learning has been summarized
in Algorithm 3

5 Classification

Once the dictionary has been learned, we use one of the following two methods
of classification depending on the number of training samples per class.

Case 1: (Large number of training samples per class) When we have a
large number of training samples per class (e.g digit recognition, gender recog-
nition), we compute the per class reconstruction errors as follows

ǫc(xt) = ‖Φ(xt) − Φ(X)Acγ
∗
t ‖2 subject to ‖γt‖0 = T0 (29)

where Ac is the matrix corresponding to class c, xt is the test sample, and γ
∗
t is

the corresponding sparse coefficient computed using the kernel OMP algorithm
[11] which solves the following problem

γ
∗
t = min

γ

‖xt − Φ(X)Acγ‖2 subject to ‖γt‖0 = T0. (30)
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Once the reconstruction errors are computed, the classification is done as follows

class of xt = arg min
c

ǫc(xt). (31)

Case 2: (Small number of training samples per class) When the number
of training samples per class is relatively small, one class is not expressive enough
for a given test sample. Hence, while computing the sparse coefficients, we use
the whole dictionary D and solve the following optimization problem,

γ
∗
t = min

γ

‖Φ(xt) − Φ(X)Aγ‖2 subject to ‖γt‖0 = T0. (32)

Now the reconstruction error for class c is computed by using elements of γ
∗
t

which correspond to the cth class. This can be written as,

ǫc(xt) = ‖Φ(xt) − Φ(X)Acδc(γ
∗
t )‖2 (33)

where δc(.) is a characteristic function that selects the coefficients corre-
sponding to class c. Classification based on only reconstruction error may be
misleading in cases where two classes have very similar reconstruction errors.
In such cases, we make the decision in favor of the class which gets the biggest
contribution from the coefficient vector. To quantify this, we define a quantity

wc(γ
∗
t ) ,

‖δc(γ
∗

t
)‖1

‖γ
∗

t
‖1

. The final classification is then done as

class of xt = arg min
c

(ǫc(xt) − η wc(γ
∗
t )), (34)

where η is a constant that measures the importance of coefficient based clas-
sification.

6 Experiments and results

In this section, we present several experimental results demonstrating the ef-
fectiveness of the proposed dictionary learning method for classification tasks.
In particular, we present classification results on the AR face dataset [18], the
extended Yale B face dataset [19][20], and the USPS digits [21] dataset. The
comparison with other existing discriminative dictionary learning methods for
image classification in [7] suggests that Fisher discrimination-based dictionary
learning (FDDL) algorithm is among the best. Hence, we treat it as state-of-the-
art and use it as a bench mark for comparisons in this paper. We also compare
our method with that of kernel PCA (KPCA) [22] and kernel LDA (KLDA)
[23]. In all of our experiments, we set the sparsity at test time to approximately
10% of the dictionary size. The dictionary size is chosen according to the size
of available training data. When available data samples per class are relatively
small (e.g. AR face recognition), we set the dictionary size same as the number of
training samples. Conversely, when we have a large number of training samples
per class, we limit the dictionary size to 100. The discriminative parameters λ1

and λ2 were experimentally selected so that they provide the best results. We
set λ1 and λ2 equal to 0.7 and 0.4, respectively for all the experiments. For all
the face recognition experiments we use the Gaussian kernel with σ = 1.6 and
for digit recognition experiments we use the polynomial kernel of degree 4.
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6.1 Digit Recognition

In the first set of experiments, we evaluate the performance of our method on the
USPS digit dataset and compare it with some recent state-of-the-art methods
namely, KSVD, FDDL [7], and kernel based methods KPCA, KLDA, kernel
KSVD [11]. This dataset consists of 7291 training and 2007 test images. In
this experiment, we randomly pick 200 training samples per class and 100 test
samples per class. The results are shown in Table 1. It can be seen from the table
that our method performs the best on this experiment with the USPS dataset.

Algorithm KSVD FDDL KPCA KLDA ker KSVD NLDD

Accuracy (%) 96.10 97.00 96.30 96.90 96.90 97.50

Table 1. Recognition accuracy for the proposed method, compared to competing ones
for digit recognition.

Pre-images of learned atoms: Recall that the kth kernel dictionary atom
is represented by Φ(X)ak, where ak ∈ R

N is the representation of the kernel
dictionary atom with respect to the base Φ(X) in the feature space G. The pre-
image of Φ(X)ak is obtained by seeking a vector in the input space dk ∈
mathbbRN that minimizes the cost function ‖Φ(dk) − Φ(X)ak‖

2. Due to var-
ious noise effects and the generally non-invertible mapping Φ, the exact pre-
image does not always exist. However, the approximated pre-image can be recon-
structed without venturing into the feature space using the techniques described
in [23].

(a) (b)
Fig. 2. Pre-images of the learned dictionary atoms corresponding to the NLDD
method. (a) class examples. (b) preimages of 10 dictionary atoms from each class.

Figure 2 shows the pre-images of the learned atoms corresponding the NLDD
method. Note that our method is able to capture the internal common structure
of data while maintaining the discriminative capability.

Robustness of NLDD: In this section, we evaluate the performance of the
proposed method in the presence of various degradations such as missing pixels
and noise. From each class, we randomly select 200 images for training and 100
images for testing. The first experiment presents the results for the situation
where the test samples are corrupted by random Gaussian noise with different
standard deviations as shown in Figure 3(a). The results obtained when pixels
are randomly removed from the test images are shown in Figure 3(b).
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(a) (b)
Fig. 3. Analysis of algorithms with noisy test data. (a) Accuracy with Gaussian noise.
(b) Accuracy with missing pixels.

In both experiments, Kernel-based dictionary learning methods such as ker-
nel KSVD and NLDD perform much better than the other methods. As the
distortion level increases the performance difference between kernel dictionaries
and linear dictionaries become more dramatic. This demonstrates that non-linear
dictionary learning can prove significantly better in some scenarios. Experiments
described later show that having discriminative power along with non-linearity
in dictinary learning can provide extra performance for classification.

6.2 AR Face Recognition

The AR dataset consists of 126 individuals with frontal faces captured in two
sessions with different illuminations, expressions and occlusions. We follow the
experimental setup of [7] and choose 50 male subjects and 50 female subjects
with lighting and expression variations. The 7 images per subject from session
1 were used for training and 7 images with same lighting and expressions from
session 2 were used for testing. The dimension of the images was reduced to 300
using PCA.

Datset SRC SVM DKSVD FDDL KPCA KLDA ker KSVD NLDD

AR Face 88.8 87.1 85.4 92.0 83.86 92.14 92.57 93.71

Yale B 90.0 88.8 75.3 91.9 88.09 92.02 91.84 94.62

Table 2. Recognition accuracy for the proposed method, compared to competing ones
for AR and Yale B face recognition.

The results are shown in Table 2 which shows around 2% improvement over
FDDL and more than 1% improvement over kernel KSVD-based classification.
Since the number of training images per class is only 7 we use the whole dictio-
nary (case 2) for classification. Sparsity at test time was set to 23 and η in (34)
was set equal to 0.5. As can be seen from the table, our kernel-based discrimi-
native dictionary learning method provides the best results. Here, SRC stands
for sparse representation-based classifier and DKSVD for discriminative KSVD.
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6.3 Extended Yale B Face Recognition

In this experiment we evaluate our algorithm on the extended Yale B dataset
which has 38 subjects and about 64 images per subject with various illumination
conditions. We follow the experimental set up as considered in [7]. We randomly
select 20 images per subject for training and the rest for testing. Dimension of
all the images have been reduced to 300 using PCA. Dictionary size of each class
was set to 20 and at the test time, we use sparsity T 0 = 35 and η = 0.5 for
classification.

As shown in Table 2, NLDD performs the best and shows an improvement of
about 3% over other competitive methods. This experiment shows that even in
the presence of extreme illumination, our method is able to provide reasonable
recognition performance.

6.4 Gender Recognition

In the final set of experiments, we evaluate the performance of our method on
a two class problem of gender recognition. We choose 50 male subjects and 50
female subjects of the AR face database. We choose 14 faces per subject from
both sessions. We train our algorithm, with first 25 males subjects and 25 female
subjects and test our method with the remaining 25 male and 25 female subjects.
The feature dimension was reduced to 300 using PCA. Results are presented in
Table 3.

Algo. SRC SVM DKSVD FDDL KPCA KLDA ker KSVD NLDD

Acc. (%) 93.0 92.4 86.1 95.4 94.57 94.57 95.07 95.71

Table 3. Recognition accuracy for the proposed method, compared to competing ones
for gender recognition recognition.

Since we have enough training samples per class, we classify based on the
reconstruction error from each class (case 1). In this experiment, the sparsity
was set equal to 30 for training as well as testing. As shown in the table, our
method performance favorably over some of the competitive methods.

7 Discussions and future work

We have proposed an approach for learning discriminative and reconstructive
dictionaries in a high dimensional features space. The proposed algorithm con-
sists of two steps that iteratively update sparse coefficients and dictionary atoms.
Sparse coefficients are updated using a variant of SOMP algorithm and the dic-
tionary atoms are updated using an efficient kernel KSVD algorithm. Various
experiments on popular face and digit recognition data sets have shown that
our method is robust and can perform significantly better than many existing
dictionary based recognition algorithms.
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