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Abstract 
Biometric authentication relies on an individual’s inner 
characteristics and traits. We propose an active 
authentication system on a mobile device that relies on 
two biometric modalities: 3D gestures and face 
recognition.  The novelty of our approach is to combine 
3D gesture and face recognition in a nonintrusive and 
unconstrained environment; the active authentication 
system is running in the background while the user is 
performing his/her main task. 

Author Keywords 
3D gesture recognition; behavioral biometric authen-
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ACM Classification Keywords 
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Introduction 
The most common user identification techniques on 
mobile devices are based on passwords or on graphical 
puzzles. However, there are three shortcomings with 
these techniques. First, passwords in memory-based 
approaches can be forgotten, stolen, or hacked. 
Second, after the initial login there is no further 
identification procedure as long as the device remains 
active. An impostor could gain physical access to the 
device if the legitimate user leaves it unlocked and 
unattended. Third, the authentication mechanism is 

Copyright is held by the owner/author(s). 

 

MobileHCI '14, Sept. 23–26, 2014, Toronto, ON, Canada 

ACM 978-1-4503-3004-6/14/09. 
http://dx.doi.org/10.1145/2628363.2634223  

Esther Vasiete 
Department of Computer Science  
University of Colorado Boulder 
esther.vasiete@colorado.edu 
 
 
Yan Chen 
Department of Computer Science  
University of Colorado Boulder 
yan.chen@colorado.edu 
 
 
Ian Char 
Department of Computer Science  
University of Colorado Boulder 
ian.char@colorado.edu 
 
 
Tom Yeh 
Department of Computer Science  
University of Colorado Boulder 
tom.yeh@colorado.edu 
 

Vishal Patel 
UMIACS 
University of Maryland  
College Park 
pvishalm@umiacs.umd.edu 
 
 
Larry Davis 
UMIACS 
University of Maryland  
College Park 
lsd@umiacs.umd.edu 
 
 
Rama Chellappa 
UMIACS 
University of Maryland  
College Park 
rama@umiacs.umd.edu 
 
 
 



 

often intrusive and disruptive; users can be 
momentarily forced away from their main task to enter 
passwords and/or perform gestures. 

We propose a new approach that can address these 
three shortcomings (Fig. 1). Our approach is behavior-
based (rather than memory-based), active (rather than 
login-only), and, most importantly, nonintrusive. The 
property of being nonintrusive is valuable from a mobile 
HCI perspective, as it would greatly increase the 
usability of the authentication procedure. On the 
technical side, our approach will fuse physiological and 
behavioral biometrics. Biometric authentication relies 
on an individual’s personal characteristics and traits 
that cannot be forgotten and could be difficult to steal 
or mimic. 

Today’s smartphones come with a growing number of 
embedded sensors such as an accelerometer, 
gyroscope, digital compass, front and rear cameras, 
and ambient light and proximity sensors. We take 
advantage of the variety of available sensors to fuse 
two forms of biometrics: face recognition and 
behavioral movement dynamics. This fusion creates a 
unique signature that is constantly being extracted and 
analyzed to determine whether the current user 
matches the previously stored signature for the 
authorized user. If the current biometric measurements 
do not match the reference signature, the mobile 
device can lock itself to prevent further unauthorized 
use 

Other highly reliable forms of biometric authentication 
exist, such as fingerprint identification and retinal or iris 
scans, but these require the subject’s participation and 
the use of external, often expensive, equipment. Our 
proposed biometric fusion authentication technique is 

nonintrusive (face recognition and behavioral 
movement analysis is performed in the background 
while users are performing their main tasks) and does 
not require any extra equipment—only the existing 
sensors are needed. 

Related Work 
Accelerometer and gyroscope sensors have been 
exploited extensively to capture mobile users’ 
behavioral characteristics. In [1], a set of 43 generated 
features from 10-second interval accelerometer 
readings produced a positive authentication rate of 
82.1%-92.9%. These features were independent of the 
user state (walking, jogging, going upstairs or 
downstairs). Wolff [2] also studied the accelerometer 
dynamics by extracting the variance in acceleration and 
orientation across the three dimensions (x, y, and z) 
and used a Gaussian distribution model to achieve a 
user classification accuracy of 83%. In [3], researchers 
used accelerometer and gyroscope readings during 
screen taps and an ensemble of machine learning 
classifiers to predict the letters and icons that were 
pressed with an accuracy of up to 80% and 90%, 
respectively. These findings further justify the need to 
increase security systems on our mobile devices. 

The main drawback of 3D gesture recognition is that it 
is highly task-dependent and authentication is achieved 
by means of knowing the task context. Face 
recognition, on the other hand, does not require 
context information although it requires a partial face 
to be captured by the camera.  

The utilization of almost real-time face recognition 
techniques in mobile devices is now feasible due to the 
increases in processing power [4, 5, 6]. To date, 
biometric authentication in mobile devices is used for 

 

Figure 1. Proposed physio-behavioral 
biometric for nonintrusive active 
authentication. 

 



 

access control (rather than a PIN or password) that 
corresponds to a highly constrained scenario. The 
combination of more than one biometric modality can 
increase the robustness of the authentication system. A 
combination of face and speech recognition in [7] 
outperforms either modality on its own and provides a 
performance gain of more than 25%. However, these 
existing authentication methods are still conducted 
intrusively during login time. 

The novelty of our approach is to combine 3D gesture 
and face recognition in a nonintrusive and non-
constrained environment—the active authentication 
system runs in the background while the user performs 
any other task (Fig. 1). Furthermore, sensor data such 
as proximity and ambient light will serve as inputs to 
the face recognition system to provide a novel way of 
dealing with pose and illumination variation, which still 
constitute the main issues in unconstrained face 
recognition [8, 9, 10]. 

Increasing Robustness 
Previous work shows promises of physio-behavioral 
biometric data for authentication under constraint 
scenarios, but there are still diverse technical 
challenges and problems when dealing with non-
intrusive authentication. Here, we outline our approach 
to providing robustness by combining state-of-the-art 
face recognition and 3D gesture recognition methods. 

Face Recognition  
Holistic approaches that use the whole face region as 
the raw data have received substantial attention among 
all face recognition studies in recent years [11]. Turk 
and Pentland [12] used principal component analysis 
(PCA) for face recognition by projecting face images 
onto a dimensionality-reduced feature space, creating 

the so-called Eigenfaces. Other feature spaces such as 
linear discriminant analysis (LDA) and independent 
component analysis (ICA) have also been successful. 
However, recent work has shown that PCA performs 
better than LDA and ICA when the correct distance 
metric is used [13, 14].  

Recognition performance drastically drops when 
illumination and pose variations in face images are 
encountered. Significant work has been done to combat 
these issues [9, 10]. Other researchers have 
incorporated the extraction of key visual features to 
gain robustness. Instead, we propose the incorporation 
of sensorial features to compensate for changes in the 
illumination and to perform pose inference. 

The accelerometer and gyroscope sensors were used in 
[15] to infer and compensate tilted images for face 
detection. We propose using the sensors that follow: 
§ Proximity sensors measure the proximity of an 
object relative to the device screen They can help infer 
when a user is placing a call (images will be discarded) 
or when the user is tapping the screen (face might be 
occluded by a finger).  

§ Light sensors measure the illumination level. 
Knowing the real lighting conditions makes illumination 
compensation technique more accurate and efficient. 

§ Orientation sensors measure the device’s rotation 
around all three physical axes (x, y, z). These are used 
for tilt compensation in order to provide an image with 
an upright face to facilitate the face detection task and 
pose inference for view-based face recognition. 
Appearances can change depending on the subject’s 
position with respect to the phone’s orientation. 

§ Motion sensors such as the accelerometer, 
gyroscope, and gravity sensors will ease tracking of the 

Figure 2. Enrollment task. Users are 
asked to scan their faces (a) 
horizontally, (b) vertically, and, (c) 
rotationally.  

Figure 3. Snapshot from each of the 
five tasks performed by 30 subjects 
while the front-facing camera is non-
intrusively capturing in the 
background. 



 

face. For instance, intensity of motion can be used to 
discard images too blurry due to excessive vibration 

3D Gesture Recognition 
Subjects may be authenticated through gestures when 
using their mobiles. Motion sensors can be used to 
analyze each person’s movements or behavior. 
Although hierarchical probabilistic models have been 
popular for human behavior modeling, they could lead 
to over-fitting when dealing with sensor data over long 
periods [16], especially in real scenarios where 
abnormal behavior is usually present. Recent work has 
used supervised or unsupervised machine learning 
techniques for authentication under the smartphone 
platform. A Gaussian mixture model is used to model 
pedestrians’ behavioral trajectories in [17]. A user can 
be authenticated in [1] while walking, jogging, or 
climbing stairs with a phone inside a pocket. In active 
authentication, it is preferable to provide authentication 
security while the mobile device is being used. In [18], 
touch screen data such as pressure, size, and speed are 
analyzed to add an extra security layer to password 
patterns. Pinch and spread gestures have been found to 
fit a Fitts’s law model on a specific resizing task [19]. 

Until now, behavioral authentication systems on mobile 
devices have been task-specific. It is important to 
acknowledge that 3D gestures vary greatly depending 
on the task (e.g., web browsing and playing a car 
racing game show two distinct movement dynamics). 
Rather than task-specific, we build models that are 
gesture-specific by grouping similar actions into four 
main classes: 

1. Low-motion gestures such as carrying the 
phone while reading the news, checking social 
networks, or watching a video. 

2. High-motion gestures often present when 
playing accelerometer games.  

3. Finger-tapping. Samples can be extracted from 
typing, icon selection, and similar actions. 

4. Swiping gestures, during scrolling, switching 
windows, or playing some games. 

The main challenge is to extract features for each of 
the four classes that will retain the most within-subject 
variability while discriminating between-subject varia-
bility; then, a classifier will be built to provide good 
predictions. By aggregating time series data into 
samples, we compute Fourier components, moments, 
mean acceleration per axis, and other information. 

Fused System 
We acknowledge that the noisy measurements, high 
variance of data, and difficulties derived from an 
unconstrained scenario (in which the user interacts with 
her device with total freedom) will cause authentication 
accuracy to drop in any modality; however, we can 
expect sufficiently high authentication accuracy when 
combining both modalities. To accomplish this, we 
represent new data as a sparse linear combination of 
concatenated features from two or more modalities 
[20]. Late fusion can also be applied by combining 
prediction scores from both modalities into a simple 
score: the fused score. Any of these solutions is 
expected to provide higher authentication accuracy 
than any single modality on its own. 

Preliminary Study 
Our main research question is to understand to what 
extent behavioral biometric data collected without user 
cooperation in a nonintrusive manner can capture a 
user’s unique characteristics for authentication. For 
instance, can the front-facing camera capture enough 
of a user’s face for reliable face recognition when the 



 

user is performing a main task (e.g., playing a game) 
rather than when being prompted?  

Data Collection 
To this end, we collected a dataset of 30 subjects (20 
males and 10 females). Our data collection was 
designed to monitor as many biometric qualities of a 
subject as possible while the subject performed a 
number of tasks (Fig. 3). We controlled for the device 
variation by providing each subject a Nexus 4 phone. 
The subjects were told to spend 5 minutes performing 
each of the following tasks: use a text editor application 
and write a response to a question that we chose, read 
news articles on the USA Today application, browse 
articles and pictures using Flipboard, play a ball 
balancing game called Labyrinth, and play a racecar 
game called Crime Racing City. Subjects performed 
these tasks with no further constraints (e.g., they could 
read whatever articles interested them and hold the 
phone however they wanted to). While the subjects 
were completing these tasks, three applications were 
collecting data in the background: one used the front 
camera to capture video of the subject’s face; one 
recorded what was being displayed on the screen; and 
the last one recorded a series of sensor data. This 
series of sensor features included an accelerometer, a 
gyroscope, the device’s orientation, linear acceleration, 
magnetic field and gravity across three dimensions, and 
ambient light, proximity, location, temperature, and air 
pressure. 

In addition, we included an enrollment task that 
required the subjects to hold the phone at different 
angles from their faces (Fig. 2). This enrollment task is 
cooperative and intrusive, and the data can be used as 
a baseline as well as training data to extract face 

images from different views and synchronize them with 
the device’s position using the sensor data. 

Challenges 
Because of the nature of the front camera recording, 
there are several inherent problems that arise with 
facial recognition. One of the problems comes from how 
the camera is positioned, which can cause a huge 
difference in the subject’s appearance (see Fig. 4). 
Other problems include partial faces due to the 
closeness of the phone, partial occlusion by a finger 
tapping the screen, or poor lighting, especially when 
the user leans over the phone and blocks out light 
sources. Fig. 5 demonstrates some of the afore-
mentioned scenarios.  

Baseline Performance Results 
So far we have experimented with Eigenfaces for face 
recognition and Gaussian mixture models for 3D 
gesture recognition. We obtained 98% face recognition 
accuracy when selecting face images with no or little 
variation in pose and illumination. This number drops 
significantly when no human selection is made on the 
face images. For instance, another experiment 
consisted of performing Eigenfaces (keeping 96% of the 
variance) on face images detected by a cascade 
classifier during the enrollment task and performing 
classification on face images detected from the 
remaining tasks. We used a k-nearest neighbor for 
classification with a k value from 1 to 100 to build the 
receiver-operating characteristic (ROC) in Fig. 6. These 
results are promising taking into account the challenges 
of our dataset. 

We also experimented with the sensor data to explore 
the potential of 3D gesture recognition. By extracting 
only three features—acceleration on the x axis, 

 

Figure 4: User appearance changes due 
to different pose and illumination 
conditions. 

 

 

Figure 5. Some images extracted from 
the front camera. Note variation in 
illumination, pose, expression and face 
size.  

 



 

gyroscope on the y axis, and orientation on the y—and 
modeling them using a Gaussian mixture model, we 
achieved 87% prediction accuracy when comparing the 
three features over the test data set for two different 
tasks. We aim to develop more robust models and take 
advantage of all the sensor data to provide features 
that will serve to authenticate the user under any task. 

This work was supported by a DARPA grant FA8750-13-
2-0279. 
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Figure 6. ROC for face recognition with 
Eigenfaces (face images during enrollment 
were used for training and face images 
from the remaining five tasks were used 
for testing). 

 

 

 


