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Abstract— Distance metric learning is a significant technique
that can improve the similarity accuracy in verification systems.
In this paper, we propose a multi-metric learning algorithm
with the triplet distance constraints for multi-modal verification
problems. The main feature of our algorithm is that when
learning multi-metric, we not only enforce the distance between
the anchor and the positive samples to be less than the distance
between the anchor and the negative samples but we also make
the distance between the anchor and the positive samples as
small as possible. A simple iterative procedure is introduced to
solve the proposed optimization problem. Extensive experiments
on three publicly available multi-modal datasets show that our
method can perform significantly better than many state-of-
the-art multi-modal metric learning methods.

I. INTRODUCTION

Due to recent advances in sensing, communication and
storage technologies, we have seen an explosion in the avail-
ability of visual data from multiple sources and modalities
in recent years. Millions of cameras have been installed in
buildings, streets, and airports around the world. Further-
more, people are using billions of handheld devices that are
capable of capturing multi-modal information such as light,
heat and depth. Multi-modal data is drastically increasing
with the significant use of social media. For instance, in
many social networking sites, images and videos are often
described by user comments, image contents, audio, tags and
meta data information such as albums and groups. These
information from different sources and modalities such as
text, audio and image frames, can be used to develop better
detection, classification, and retrieval algorithms.

One of the biggest challenges in designing classifica-
tion or retrieval algorithms for unimodal as well as multi-
modal data is to choose a proper similarity or distance
measure function. Various metric learning algorithms have
been developed in the literature for unimodal data [23], [21],
[8], [1], [3], [10], [20] [6]. The main idea is to learn an
optimal metric which minimizes the distance between similar
data and simultaneously maximizes the distance between
dissimilar data [14], [24]. Some of these algorithms learn
the metric from data pairs and side information indicating
the relationship of the data pairs [23]. The constraints used
by these methods are either pairwise constraints or triplet
constraints. In the pairwise constraint [23], similar set S and
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dissimilar set D are used to train a metric. In other words,
a pair of data (xi,xj) ∈ S if xi is similar to xj otherwise
(xi,xj) ∈ D. In the case of triplet constraint [21], a triplet
set T = (xa

i ,x
p
i ,x

n
i ) is given, where (xa

i ,x
p
i ) ∈ S and

(xa
i ,x

n
i ) ∈ D for i = 1, . . . , L. In other words, the anchor

sample, xa
i , is similar to the positive sample, xp

i , and the
anchor sample, xa

i , is dissimilar to the negative sample, xn
i .

Here, L denotes the total number of triplets in T . Recent
metric learning algorithms also explore the structure of the
metric by enforcing sparse and/or low-rank constrains [7],
[17], [25], [19], [16], [15]. Some of the other unimodal
metric learning algorithms include joint Bayesian metric
leaning [2],[3] and Discriminative Deep Metric Learning
(DDML) [10].

One way to extend these unimodal metric learning al-
gorithms for multi-modal data is to simply concatenate
the feature vectors from different modalities into a long
vector and then feed them directly to one of the unimodal
metric learning algorithms. However, this simple method
of learning multi-modal metric suffers from the following
two limitations [22]: 1) Some features often dominate in
the final concatenated feature. As a result, they are biased
and can weaken the potential of all the other features.
2) Since the dimensionality of the resulting concatenated
feature vector can be very large, it makes the overall metric
learning algorithm computationally very expensive. In fact,
our experiments indicate that in some cases when the metric
is learned by simply concatenating multi-modal features, we
often get a metric whose performance is much worse than
when a single feature is used for metric learning.

In [27], a heterogeneous multi-metric learning algorithm
was proposed which essentially extends the Large Margin
Nearest Neighbor (LMNN) algorithm [21] for multi-metric
leaning. Similarly, in [11] a Large Margin Multi-Metric
Learning (LM3L) was proposed for face and kinship ver-
ification which learns multiple distance metrics under which
the correlations of different feature representations of each
sample are maximized. Some of the other multi-modal met-
ric learning algorithms include Pairwise-constrained Multi-
ple Metric Learning (PMML) [5]. More recently, a triplet
constraint-based online multi-modal distance metric learning
algorithm was proposed for image retrieval in [22].

Inspired by the LMNN formulation in [21], in this paper,
we propose a novel multi-modal metric learning algorithm
for the multi-modal verification problems using the triplet978-1-5090-4023-0/17/$31.00 c©2017 IEEE
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Fig. 1: An overview of the proposed LMMTML method. The
dotted green circles refer to the distance between the anchor
xa
i and the positive sample xp

i . The distance between the
green circle and the red circle is the margin distance.

constraint. Note that triplet constraint-based multi-modal
metric learning algorithms such as [5] [22] learn metric by
enforcing the distance between the anchor and the positive
samples to be less than the distance between the anchor and
the negative samples. However, in some cases, the distance
between the anchor and the positive pairs in different triplet
pairs may have a large intra-class distance [4]. Thus, to learn
a better metric, the loss function based on the conventional
triplet constraint should not only keep its original feature, but
also should make the distance between the anchor and the
positive samples as small as possible (see Figure 1). This is
essentially the main motivation behind the proposed Large
Margin Multi-modal Triplet Metric Learning (LMMTML)
algorithm.

This paper is organized as follows. In Section II, we
give a brief background on distance metric learning. The
proposed LMMTML algorithm is presented in Section III.
Experimental results are presented in Section IV. Finally,
Section V concludes the paper with a brief summary.

II. BACKGROUND

In this section, we give a brief background on distance
metric learning. A number of different metric leaning algo-
rithms can be developed by using a linear projection W of
data x ∈ Rn, as x̂ = Wx. The squared Euclidean distance
between two samples x̂i, x̂j in the transformed space can be
calculated as

d(x̂i, x̂j) = (Wxi −Wxj)
>(Wxi −Wxj)

= (xi − xj)
>W>W(xi − xj)

= (xi − xj)
>M(xi − xj),

(1)

where M = W>W. As a result, a linear projection W
results in a Mahalanobis like metric M in the original
space. Hence, d(x̂i, x̂j) = dMahal(xi,xj). Note that often
M is required to be a positive semi-definite (PSD) matrix
when leaning this metric. In the case when W is chosen to
be the identity matrix I, the above formulation reduces to
squared Euclidean distance. When learning this metric, side
information based on the pairwise constraints is often used.

In other words, the metric should be leaned such that the
distance between similar pairs (xi,xj) ∈ S should be less
than the distance between dissimilar pairs (xi,xk) ∈ D.

One can also lean the above metric by enforcing triplet
constrains while training the metric. In this case, (1) can be
rewritten in terms of triplet loss as

E =
∑

xa,xp,xn

[
‖Wxa −Wxp‖22 − ‖Wxa −Wxn‖22 + α

]
+

=
∑

xa,xp,xn

[
(xa − xp)>M(xa − xp)− (xa − xn)>M(xa − xn) + α

]
+
,

(2)

where [·]+ = max(., 0) donates the hinge loss and α is a
margin parameter. The first term of the above formulation
captures the distance between the anchor and the positive
samples while the second term captures the distance between
the anchor and the negative samples. As before, the purpose
of this loss function is to make the distance between similar
samples smaller than the distance between dissimilar sam-
ples.

The distance metric learning method for LMNN classifi-
cation is an algorithm to learn a Mahalanobis distance metric
for kNN classification from labeled examples [21]. In their
formulation, two kinds of for energies were considered -
εpull(W) and εpush(W). They are defined as follows

εpull(W) =
∑
j−>i

‖W(xi − xj)‖2,

εpush(W) =
∑

i,j−>i

∑
l

(1− yil)[1 + ‖W(xi − xj)‖2

−||W(xi − xl)‖2]+,

(3)

where W is the linear projection, j− > i denotes the set of
target neighbors of xi (i.e. k nearest neighbors with the same
label as xi) and yil ∈ {0, 1} is a binary number indicating
whether xi and xl correspond to the same class or not. The
overall energy function is defined as the linear combination
of the two enrages as

ε(W) = (1− µ)εpull(W) + µεpush(W), (4)

where µ ∈ [0, 1] is the parameter balancing the two energies.
Note that εpush(W) quantifies the energy between samples
from different classes which gives large energy to the small
distance kNN samples from a different class. On the other
hand, εpull(W) gives large energy to the large distances of
the kNN samples belonging to the same class. In contrast to
the other metric learning algorithms, LMNN is coupled with
the kNN classifier and hence it is specifically designed for the
classification problems. In order to solve the above problem
efficiently, one can reformulate it into an SDP problem as



follows

Minimize

(1− µ)
∑

i,j−>i

(xi − xj)
>M(xi − xj)+

µ
∑

i,j−>i,l

(1− yil)εi,j,l

s.t.

(xi − xl)
>M(xi − xl)− (xi − xj)

>M

(xi − xj) ≥ 1− εi,j,l
εi,j,l ≥ 0, M � 0.

(5)

A multi-modal extension of this algorithm for multi-modal
sensor classification problems was recently proposed in [27].

III. LARGE MARGIN MULTI-MODAL TRIPLET MATRICES
LEARNING (LMMTML)

Inspired by the elegant framework of LMNN algorithm,
we propose a multi-modal extension of this algorithm for
multi-modal verification problems. In the biometrics context,
a verification problem is the one in which given two samples
xi and xj , we have to determine whether they belong to the
same person or not. In the multi-modal verification problem,
we essentially do the same but now based on multi-modal
data. Multi-modal verification is very important in various
biometrics and computer vision problems. Note that the
verification problem is different than the classification (or
the identification problem). In the classification problem we
identify the class label of a test sample based on a classifier
and the training samples. This is clearly not the case in
verification. In verification, receiver operating curve (ROC)
is normally used to evaluate the performance of a matching
algorithm. Before we define our LMMTML problem, we
briefly define the notation used in this paper.

A. Notation

We use bold upper case letters and bold lower case letters
to denote matrices and vectors, respectively. The terms and
operates used in this paper are defined as follows.
• s: the total number of modalities.
• N : the total number of similar (anchor and positive)

pairs.
• nk: the dimensionality of the kth modality feature, k =

1, 2, 3, ..., s.
• S: a positive constraint set, where (xi,xj) ∈ S if and

only if xi is similar to xj .
• D: a negative constraint set, where (xi,xj) ∈ D if and

only if xi is dissimilar to xj .
• Triplets Ti,j = (xa

i ,x
p
i ,x

n
j−>i), j = 1, 2, 3, ..., L, i =

1, 2, 3, ..., N , where L is the number of negatives
corresponding to the ith anchor, (xa

i ,x
p
i ) ∈ S, and

(xa
i ,x

n
j−>i) ∈ D.

• {xa
i }k ∈ Rnk : the kth type of modality feature of the

anchor image in the Triplets Ti,j .
• {xp

i }k ∈ Rnk : the kth type of modality feature of the
positive image in the Triplets Ti,j .

• {xn
j−>i}k ∈ Rnk : the kth type of modality feature in

the jth negative image in Triplets Ti,j .
• Wk ∈ Rrk×nk : the linear projection matrix.
• Mk: the optimal Mahalanobis matrix we want to learn,

such that Mk = W>
k Wk.

• ck: the parameter to balance the influence caused by the
unequal scale of the kth modality.

• d2k(p,q): the squared distance between two samples p
and q from the kth modality.

• α: the margin for the triplet constraint.
• Nt: a set of triplets such that the jth negative in Ti,j :

(xa
i ,x

p
i ,x

n
j−>i) triggers the triplet constraint at the tth

iteration.

{Ca,p
i }

k = ({xa
i }k − {x

p
i }

k)({xa
i }k − {x

p
i }

k)>

{Ca,n
j−>i}

k = ({xa
i }k − {xn

j−>i}k)({xa
i }k − {xn

j−>i}k)>.

B. Problem Formulation

The basic idea of our algorithm is that we want to learn a
metric that can pull the similar samples (anchor and positive)
closer while pushing away the dissimilar pairs (anchor and
negative) whose distance is apparently closer than the similar
pairs (see Figure 1). The proposed LMMTML formulation
is as follows

{Mk} = argmin
{Mk}

(1− µ)
N∑
i=1

s∑
k=1

ck({xa
i }k − {xp

i }
k)>Mk

({xa
i }k − {xp

i }
k) + µ

N∑
i=1

L∑
j−>i

[

s∑
k=1

ck[({xa
i }k − {xp

i }
k)>

Mk({xa
i }k − {xp

i }
k)− ({xa

i }k − {xn
j−>i}k)>Mk

({xa
i }k − {xn

j−>i}k)] + α]+.
(6)

The above formulation can be rewritten as

{Mk} = argmin
{Mk}

(1− µ)
N∑
i=1

s∑
k=1

ckd
2
k(x

a
i ,x

p
i )

+µ
N∑
i=1

L∑
j−>i

[
s∑

k=1

ck[d
2
k(x

a
i ,x

p
i )− d

2
k(x

a
i ,x

n
j−>i)] + α

]
+

,

(7)

where µ is a parameter. The first term in (7) corresponds to
the pull energy between the anchors and positive samples.
The second term corresponds to the push energy which
essentially is the energy of the triplet loss constraint. From
the overall energy function, we see that the first term enforces
the sum of the distance between anchor and positive samples
to be as small as possible, while the second term makes the
distance between anchors and their corresponding negatives
larger than the distance between anchors and positives. The
overall problem (7) is not convex. We formulate it into a



PSD problem by using a slack variable as follows

argmin
Mk

(1− µ)
N∑
i=1

s∑
k=1

ckd
2
k(x

a
i ,x

p
i ) + µ

N∑
i=1

L∑
j−>i

εij

s.t.
s∑

k=1

ckd
2
k(x

a
i ,x

p
i ) + α− εij ≤

s∑
k=1

ckd
2
k(x

a
i ,x

n
j−>i),

εij ≥ 0, Mk � 0,
(8)

where M � 0 denotes that M is a PSD matrix.

C. Optimization

The SPD optimization problem (8) can be solved iter-
atively by first taking the gradient descent of the metrics
and then projecting the metrics onto the SPD cone. In what
follows, we describe these individual steps in detail.

1) Gradient Direction Computation: Using the notations
{Ca,p

i }k and {Ca,n
j−>i}k into (8), we can rewrite it at the tth

iteration as

argmin
Mk

(1− µ)
N∑
i=1

s∑
k=1

cktr(M
t
k{C

a,p
i }

k)+

µ

N∑
i=1

L∑
j−>i

[

s∑
k=1

ck[tr(M
t
k{C

a,p
i }

k)− tr(Mt
k{C

a,n
j−>i}

k)] + α]+.

(9)

The gradient of (9) with respect to Mt
k is

Gt
k = (1−µ)ck

N∑
i=1

{Ca,p
i }

k+µ ck
∑

(i,j)∈Nt

({Ca,p
i }

k−{Ca,n
j−>i}

k).

(10)
In order to save the computational expense, we reformulate
(10) as [21]

Gt+1
k = Gt

k − µ ck
∑

(i,j)∈(Nt−Nt+1)

({Ca,p
i }

k − {Ca,n
j−>i}

k)

+µ ck
∑

(i,j)∈(Nt+1−Nt)

({Ca,p
i }

k − {Ca,n
j−>i}

k),

(11)

where Nt−Nt+1 donates the samples in Nt but not in Nt+1

and similarly Nt+1 − Nt donates the samples in Nt+1 but
not in Nt.

2) PSD Projection: The minimization of (8) must ensure
that the metric Mk is PSD. This can be achieved by
projecting the current estimate onto the cone of all positive
semidefinite matrices. We perform the eigen decomposition
of the current estimate Mt

k as

Mt
k = V∆V>, (12)

where V consists of the eigenvectors of Mt
k and ∆ is the

diagonal matrix with the corresponding eigen values. Then,
Mt

k can be projected onto the PSD cone as

PSD(Mt
k) = V∆+V>, (13)

where ∆+ = max(0,∆). The overall LMMTML learning
procedure is described in Algorithm 1.

Algorithm 1 Large Margin Multi-Modal Triplet Matrices
Learning (LMMTML) Algorithm

Input: similar pairwise {xa
i }k, {x

p
i }k, and parameters

α, µ, ck, and learning rate θ
Output: learned metrics Mk, k = 1, . . . , s.
Initialize M0

k = I,G0
k = (1−λ)ck

∑i=N
i=1 {C

a,p
i, }k, t← 0,

Nt = {}
while iteration t ≤ max iteration
for i = 1, 2, 3, ..., N

Find all the dissimilar pairwise in triplets Ti,j =
(xa

i ,x
p
i ,x

n
j−>i), which violate the hinge loss in (6), in

order to update the set Nt+1.
end
for k = 1, 2, 3, ..., s
Compute the gradient of Mt

k

Gt+1
k ← Gt

k − µ ck
∑

(i,j)∈Nt−Nt+1

({Ca,p
i }

k − {Ca,n
j−>i}

k)

+µ ck
∑

(i,j)∈Nt+1−Nt

({Ca,p
i }

k − {Ca,n
j−>i}

k)

Project onto the PSD cone and update
Mt+1

k = PSD(Mt
k − θG

t+1
k )

end
t← t+ 1
end

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of our method, we present
experimental results on three publicly available multi-modal
datasets: Long Distance Heterogeneous Face Database con-
sisting of visible (VIS) and near infrared (NIR) face im-
ages [13], Multi-Modal UMD Active Authentication Dataset
UMDAA-01 [9], [26], ARL Multi-Modal Visible and Po-
larimetric Face Database [12]. We compare the performance
of our method with several recently introduced multi-modal
metric leaning algorithms. We also compare the performance
of our method with many state-of-the-art unimodal metric
leaning algorithms where we simply concatenate the features
from different modalities and feed them into the unimodal
metric leaning algorithms (i.e. feature level fusion). The
algorithms used in this paper for comparisons are described
as follows:
• LMMTML (multi-metric): This is the proposed

LMMTML algorithm for multi-modal verification. We
learn Mk, k = 1, . . . , s using Algorithm 1. Then,
the squared distance between two multi-modal feature
vectors is calculated as

d(xi,xj) =

s∑
k=1

(xi − xj)
>Mk(xi − xj). (14)

• LMMTML (fusion): We set the number of modalities s
equal to one in our metric learning algorithm. Features
from different modalities are concatenated into a long
vector. Then this multiple modality feature vector is fed



into our LMMTML algorithm with s = 1 for learning
a single metric. Finally, (1) is used to determine the
distance between two vectors.

• LMMTML (feature): The objective here is to study how
much information each feature vector brings in the final
verification. We learn only one metric based on a certain
individual modality feature vector. This corresponds to
the LMTML when s = 1 and only a single modality is
used for learning a metric. (1) is used to determine the
distance between two vectors.

• JB: We implemented the joint Bayesian unimodal metric
learning algorithm proposed in [3] for face verification.
In this algorithm, the concatenated features are treated
as a single fusion-feature, and learn the metric based on
that fusion-feature.

• TDE: We implemented the triplet distance embedding
metric learning algorithm proposed [20] for face verifi-
cation. In this algorithm, the concatenated features are
treated as a single fusion-feature, and learn the metric
based on that fusion-feature.

• LM3L: We implemented the large margin multi-metric
learning algorithm proposed in [11]. In this algorithm,
multiple metrics are learned for each individual modal-
ity features.

• PMML: We implemented the pairwise constraint-based
multiple metric learning algorithm proposed in [5]. In
this algorithm, multiple metrics are learned for each
individual modality features.

• SML: We implemented the similarity metric learning
algorithm proposed in [1]. In this algorithm, the con-
catenated features are treated as a single fusion-feature,
and learn the metric based on that fusion-feature.

• DDML: We implemented the discriminative deep metric
learning algorithm proposed in [10]. In this algorithm,
the concatenated features are treated as a single fusion-
feature, and learn the deep neural network-based metric
on that fusion-feature.

Equal error rate (EER) and the ROC curves are used
to measure the performance of different methods. All the
parameters of our algorithm are obtained by cross validation.

A. Heterogeneous NIR-VIS Face Dataset

In the first set of experiments, we use visible and near
infrared faces as different modalities. Long Distance Het-
erogeneous Face Database (LDHF) database [13] consists of
visible and near-infrared face images of 100 individuals (70
males and 30 females). The face images were captured in
both daytime and nighttime at different standoffs (e.g., 1m,
60m 100m, and150m) resulting in four VIS-NIR pairs per
subject. Sample image pairs from this dataset are shown in
Figure 3. The face area is cropped and resized to a fixed
size of 64 × 56 pixels. We reduce the dimensionality of
the VIS and NIR image features to 59 and 95, respectively
using principal component analysis (PCA) by capturing
95% energy in the corresponding principle components. We
randomly split 60 subjects’ data as training, 20 subjects’ data
as validation set and 20 subjects data as the test set with

no overlap among them. We repeat this process three times
and obtain the average ROC curves. In order to generate
triplets, we randomly choose two templates corresponding to
the same subject from the training set as positive and anchor
and another template from a different subject as negative
sample. This way, many triplets can be generated from the
training set.

Fig. 3: Sample NIR-VIS image pairs from the LDHF
database. The first row shows the VIS images and the second
row shows the NIR images.

The parameters we set for this experiment are: α =
0.1, µ = 0.5, θ = 0.01,maxiter = 51. The parameter ck
is uniformly chosen between [0, 1]. Here they are 0.5 and
0.5 for those two unit normalized features. The average
ROC curves and the EER values corresponding to this
experiment are shown in the first row of Figure 2, and
Table I, respectively. From the results shown on the left
column, we see that simple concatenation of visible and
near infrared features produce better results than using the
individual features. However, when the multi-modal metrics
are learned directly from multi-modal data using our method,
we achieve the best results.

From the ROC curves on the left column of the first raw of
this figure, we see that our method performs the best on this
data compared to some recent multi-modal metric learning
methods. Feature concatenation-based joint Bayesian metric
seems to produce comparable results. The PMML method
performs poorly on this dataset. This may be due to the
small data size problem in this dataset.

Also we plot the average imposter number (the negative,
xnj−>i ∈ Ti,j , which violate the hinge condition in (7))
vs the number of iterations in Figure 4 corresponding the
experiments with the NIR-VIS data. As can be seen from
this figure, that our method is able to decrease the number
of imposters in a few iterations, which means that our
algorithm pushes away the dissimilar pairs whose distance
is apparently closer than the similar pairs. As a result, our
method converges in a few iterations.

B. UMDAA-01 Multi-Modal Active Authentication Dataset

In mobile active authentication systems, users are con-
tinuously monitored after the initial access to the mobile
device by making use of their physiological and behavioral
biometrics captured by the built-in sensors and accessories
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Fig. 2: The average ROC curves correspond to different methods. The plots on the first column show the multiple-modality
vs single-modality results corresponding to our method. The plots on the second column show the comparison of our method
with other metric learning algorithms. These results are the average of three random trials.

LMMTML (ours) LMMTML (fusion) LM3L [11] JB [3] TDE [20] PMML [5] DDML [10] SML [1]
EER-NIRVIS 0.0500±0.0661 0.0750±0.1041 0.1250±0.0750 0.0750±0.0250 0.1500±0.0500 0.3000±0.0722 0.0750±0.0144 0.1250± 0.0520

EER-UMDAA-01 0.0920±0.0356 0.1320±0.0485 0.1360±0.0363 0.2040±0.0220 0.1320±0.0635 0.1840±0.0583 0.1640±0.1100 0.1840±0.0201
EER-ARL 0.0156±0.0184 0.0243±0.0076 0.0417±0.0148 0.0296±0.00460 0.0417±0.0020 0.0330±0.0490 0.0833±0.0135 0.0642±0.0096

TABLE I: Average (mean ± std) EER values corresponding to different methods.

such as gyroscope, front-facing camera, accelerometer, and pressure sensor [18]. In the second set or experiments, we use
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Fig. 4: The number of average negatives which violate the
hinge loss in (7).

Fig. 5: Samples face images from the UMDAA-01 active
authentication dataset.

the UMDAA-01 multi-modal active authentication dataset
[9], [26] consisting of face images and touch gestures of 50
individuals collected from an iPhone 5 device. We extract the
Local Binary Patterns (LBP) features from the face images
and use PCA to reduce their dimension to 121 by keeping
only 72% energy in the corresponding principle components.
From each touch gesture, we extract a 27-dimensional feature
vector using the method described in [26]. Sample face
images from the UMDAA-01 are shown in Figure 5.

As before, we split the data by subject into 60%, 20%
and 20% for training, validating and testing without overlaps
among them. The parameters we set for this experiment are:
α = 0.1, µ = 0.5, θ = 0.1,maxiter = 51. The parameter
ck is uniformly chosen between [0, 1]. Here they are 0.5 and
0.5 for those two unit normalized features. The average ROC
curves and the EER values corresponding to this experiment
are shown in the second row of Figure 2, and Table I,
respectively.

As can be seen from these results that our method
performs the best compared to the other metric learning
methods. Due to the weak nature of touch gestures, they
perform worse than faces. Furthermore, a single metric
learning algorithm based on the concatenated features seems
to perform well on this dataset. This makes sense because the
face modality introduces a significant amount of bias in the
concatenated feature compared to touch gesture features. As

Visible S0 S1 S2 DoLP

Fig. 6: Sample images corresponding to two subjects from
the ARL multi-modal face database [12].

a result, face modality dominates in the concatenated feature.
This can be clearly seen by comparing the blue and the green
curves on the left sub-figure.

C. ARL Multi-Modal Visible and Polarimetric Face
Database

In the final set of experiments, we use the ARL multi-
modal visible and polarimetric face dataset [12] which
consists of visible and polarimetric face images from 60
subjects. In particular, for each subject there are visible
and S0, S1,S2, and DoLP (4 stroke parameters) images.
These images were taken at different ranges (i.e. 31m, 44m,
and 87m). Sample images from this dataset are shown in
Figure 6. In this experiment, we use visible images as one
modality and concatenating S0, S1,S2 as the polarimetric
modality. We extracted 4640 dimension LBP features from
all the visible and polarimetric images and use PCA to reduce
their dimension to 54 for both.

As before, we split the data by subject into 60%, 20%
and 20% for training, validating and testing without overlaps
among them. The parameters we set for this experiment
are: α = 0.1, µ = 0.5, θ = 0.01,maxiter = 101. The
parameter ck is uniformly chosen between [0, 1]. Here they
are 0.5 and 0.5 for those two unit normalized features. The
average ROC curves and the EER values corresponding to
this experiment are shown in the last row of Figure 2, and
Table I, respectively. As can be seen from these results,
our method performs comparably to some of the recent
metric learning algorithms such as Joint Bayesian, LM3L
and PMML. From the left-subfigure, we see that polarimetric
features perform slightly worse than the original visible fea-
tures. However, when they are combined, their performance
increases significantly.

These experiments clearly show the significance of using
our proposed LMMTML algorithm for multi-modal verifica-
tion problems. In particular, it shows that when learning a
metric based on a triplet loss, it is important to not only
enforce the distance between the anchor and the positive
samples to be less than the distance between the anchor and
the negative samples but also make the distance between the
anchor and the positive samples as small as possible.



V. CONCLUSION

We presented a multi-modal extension of the large margin
nearest neighbor algorithm for multi-metric leaning. A sim-
ple two step iterative procedure was developed to solve the
the proposed optimization problem. Extensive experiments
on three real-world verification datasets demonstrate that the
proposed method is very effective for multi-modal verifica-
tion compared to some of the recent state-of-the-art metric
learning methods.

In the future, we will investigate the possibility of applying
our LMMTML algorithm on various biometrics verification
problems such as video-based face verification and multi-
modal biometrics fusion.
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