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a b s t r a c t 
In this paper, we propose multimodal extensions of the recently introduced sparse subspace clustering 
(SSC) and low-rank representation (LRR) based subspace clustering algorithms for clustering data lying in 
a union of subspaces. Given multimodal data, our method simultaneously clusters data in the individual 
modalities according to their subspaces. In our formulation, we exploit the self expressiveness property 
of each sample in its respective modality and enforce the common representation across the modalities. 
We modify our model so that it is robust to noise. Furthermore, we kernelize the proposed algorithms 
to handle nonlinearities in data. The optimization problems are solved efficiently using the alternative 
direction method of multiplier (ADMM). Experiments on face clustering indicate the proposed method 
performs favorably compared to state-of-the-art subspace clustering methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 
In many practical computer vision and image processing appli- 

cations one has to process very high-dimensional data. In prac- 
tice, these high-dimensional data can be represented by a low- 
dimensional subspace. For instance, face images under all possi- 
ble illumination conditions, handwritten digits with different vari- 
ations and trajectories of a rigidly moving object in a video can 
all be represented by low-dimensional subspaces [1–3] . One can 
view the collection of data from different classes as samples from 
a union of low-dimensional subspaces. In subspace clustering, the 
objective is to find the number of subspaces, their dimensions, the 
segmentation of the data and a basis for each subspace [4] . 

Various methods have been developed for subspace clustering 
in the literature. These methods can be categorized into four main 
groups - algebraic methods [5,6] , iterative methods [7,8] , statistical 
methods [9–11] , and the methods based on spectral clustering 
[12–16] . In particular, sparse and low-rank representation-based 
subspace clustering methods [17–20] have gained a lot of interest 
in recent years. 

Some of the multimodal spectral clustering and segmentation 
methods developed in recent years include [21–29] . Note that 
some of these algorithms use dimensionality reduction methods 
such as Canonical Correlation Analysis (CCA) to project the multi- 
view data onto a low-dimensional subspace for clustering [22,28] . 
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Also, some of these techniques are specifically designed for two 
views and cannot be easily generalized to multiple views [25,29] . 

Various multiview sparse and low-rank representation-based 
subspace clustering methods have also been proposed in the liter- 
ature. In particular, a multiview subspace clustering method, called 
Low-rank Tensor constrained Multiview Subspace Clustering (LT- 
MSC) was recently proposed in [30] . In the LT-MSC method, all 
the subspace representations are integrated into a low-rank ten- 
sor, which captures the high order correlations underlying multi- 
view data. In [31] , a diversity-induced multiview subspace clus- 
tering was proposed in which the Hilbert Schmidt independence 
criterion was utilized to explore the complementarity of multi- 
view representations. Recently, [32] proposed a Constrained Multi- 
view Video Face Clustering (CMVFC) framework in which pairwise 
constraints are employed in both sparse subspace representation 
and spectral clustering procedures for multimodal face clustering. 
A collaborative image segmentation framework, called Multi-task 
Low-rank Affinity Pursuit (MLAP) was proposed in [21] . In this 
method, the sparsity-consistent low-rank affinities from the joint 
decompositions of multiple feature matrices into pairs of sparse 
and low-rank matrices are exploited for segmentation. 

In this paper, we extend the Sparse Subspace Clustering (SSC) 
[17] , Low-rank Representation-based (LRR) [18] subspace cluster- 
ing and Low-Rank Sparse Subspace Clustering (LRSSC) [19] meth- 
ods for multimodal data. In our formulation, we exploit the self ex- 
pressiveness property [17] of each sample in its respective modal- 
ity and enforce the common representation across the modalities. 
As a result, we are able to exploit the correlations as well as cou- 
pling among different modalities. Furthermore, we kernelize the 
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Fig. 1. An overview of the proposed multimodal sparse and low-rank subspace clustering framework. 
proposed algorithms to handle nonlinearity in the data samples. 
The proposed optimization problems are solved using the Alternat- 
ing Direction Method of Multipliers (ADMM) [33] . Fig. 1 presents 
an overview of our multimodal subspace clustering framework. 

This paper is organized as follows. Section 2 gives a brief back- 
ground on SSC, LRR and LRSSC algorithms. Details of the proposed 
multimodal subspace clustering algorithms are given in Section 3 . 
Nonlinear extension of the proposed algorithms are presented in 
Section 4 . Experimental results are presented in Section 5 , and fi- 
nally, Section 6 concludes the paper with a brief summary. 
2. Background 

In this section, we give a brief background on sparse and low- 
rank subspace clustering methods such as SSC [17] , LRR [18] and 
LRSC [19] . 

Let Y = [ y 1 , · · · , y N ] ∈ R D ×N be a collection of N signals { y i ∈ 
R D } N 

i =1 drawn from a union of n linear subspaces S 1 ∪ S 2 ∪ · · · ∪ S n 
of dimensions { d ℓ } n ℓ =1 in R D . Let Y ℓ ∈ R D ×N ℓ be a sub-matrix of Y of 
rank d ℓ with N ℓ > d ℓ points that lie in S ℓ with N 1 + N 2 + · · · + N n = 
N. Given Y , the task of subspace clustering is to cluster the signals 
according to their subspaces. 
2.1. Sparse Subspace Clustering 

The SSC algorithm [17] , which exploits the fact that noiseless 
data in a union of subspaces are self-expressive , i.e. each data point 
can be expressed as a sparse linear combination of other data 
points. Hence, SSC aims to find a sparse matrix C ∈ R N×N by solv- 
ing the following optimization problem 
min ∥ C ∥ 1 s.t. Y = YC , diag (C ) = 0 (1) 
where ∥ C ∥ 1 = ∑ 

i, j | C i, j | is the ℓ 1 -norm of C . In the case when the 
data is contaminated by noise and outliers, one can model the data 
as Y = YC + N + E , where N is arbitrary noise and E is a sparse ma- 
trix containing outliers. In this case, the following problem can be 
solved to estimate the sparse coefficient matrix C 
min 

C , E λ
2 ∥ Y − YC − E ∥ 2 F + ∥ C ∥ 1 + λe ∥ E ∥ 1 

s.t. diag (C ) = 0 , (2) 

where λ and λe are positive regulation parameters [34] . 
2.2. Low-Rank Representation-based Subspace Clustering 

The LRR algorithm [18] for subspace clustering is very similar to 
the SSC algorithm except that a low-rank representation is found 
instead of a sparse representation. In particular, in the presence 
of noisy and occluded data, the following optimization problem is 
solved 
min 

C , E λ
2 ∥ Y − YC − E ∥ 2 F + ∥ C ∥ ∗ + λe ∥ E ∥ 2 , 1 , (3) 

where ∥ C ∥ ∗ is the nuclear-norm of C which is defined as the sum 
of its singular values, ∥ E ∥ 2 , 1 = ∑ 

j √ ∑ 
i (E i, j ) 2 is the ℓ 2, 1 -norm of 

E and λ and λe are two positive regularization parameters. 
2.3. Low-Rank Sparse Subspace Clustering 

The representation matrix C can be simultaneously sparse and 
low-rank. Thus, LRSSC seeks to find a sparse and low-rank matrix 
C by solving the following optimization problem 
min 

C , E λ2 ∥ Y − YC − E ∥ 2 F + ∥ C ∥ 1 (4) 
+ λr ∥ C ∥ ∗ + λe ∥ E ∥ 1 s.t. diag (C ) = 0 

where λ, λr and λe are positive regularization parameters [19] . 
In SSC, LRR and LRSSC, once C is estimated, spectral clustering 

methods [35] are applied on the affinity matrix W = | C | + | C | T to 
obtain the segmentation of the data Y . 
3. Multimodal Sparse and Low-Rank Representation-based 
Subspace Clustering 

As discussed earlier, classical subspace clustering methods are 
specifically designed for unimodal data. These methods cannot 
be easily extended to the case where we have heterogeneous 
data. Hence, in what follows, we present a multimodal exten- 
sion of the sparse and low-rank subspace clustering algorithms. 
Given N paired data samples { (y 1 i , y 2 i , · · · , y m 

i ) } N i =1 from m differ- 
ent modalities, define the corresponding data matrices as { Y i = 
[ y i 1 , y i 2 , · · · , y i N ] ∈ R D i ×N } m 

i =1 , respectively. We assume the m paired 



170 M. Abavisani, V.M. Patel / Information Fusion 39 (2018) 168–177 
set of sample points are drawn from a union of n linear subspaces 
in { R D i } m 

i =1 , respectively. 
Given { Y i } m 

i =1 , the task of multimodal subspace clustering is to 
simultaneously cluster the signals in distinct modalities according 
to their subspaces. In our formulation, we exploit the self expres- 
siveness property of each sample in its respective modality, and 
enforce the common representation across the modalities. 

In the case of data contaminated by noise and outliers, the data 
can be written as 
{ Y i = Y i C i + N i + E i } m 

i =1 , (5) 
where { C i } m 

i =1 , { N i } m 
i =1 and { E i } m 

i =1 are the corresponding sparse co- 
efficient matrix, noise and error terms, respectively. Essentially 
based on this model, [30] proposed to integrate the subspace rep- 
resentations { C i } m 

i =1 using a low-rank tensor model, while [31] used 
a diversity induced framework to combine the representation co- 
efficients from different modalities. Similarly, [21] proposed ℓ 2, 1 
regularization on the concatenated subspace representations to 
enforce the affinities to have the consistent magnitudes. Finally, 
[32] proposed to minimize the distances between the normalized 
affinity matrices that are obtained by subspace clustering from 
each modality. 

The key difference among the proposed method and the above 
mentioned methods is that in this paper, the subspace represen- 
tations of different modalities are enforced to be the same while 
in some of the previous methods, the subspace representations of 
different modalities are different, but somehow combined by en- 
forcing some type of regularization (i.e. tensor, ℓ 2, 1 , diversity links, 
etc.) on the representations. By extracting the common sparse 
and/or low-rank representation structure of data across different 
modalities, we are able to exploit the correlations and coupling 
among different modalities. As a result, we can obtain a more ro- 
bust subspace sparse and/or low-rank representations. In particu- 
lar, we model the data as follows 
{ Y i = Y i C + N i + E i } m 

i =1 , (6) 
where common subspace representation C is enforced among 
all modalities. Our model is motivated by [36] and [37,38] in 
which common sparse representation is enforced for image super- 
resolution and multimodal biometrics recognition, respectively. 

If the errors are sparse, then one can find C and E = { E i } m 
i =1 by 

solving the following optimization problem 
min 

C , E J ( C , E ) + λ
2 

2 ∑ 
i =1 ∥ Y i − Y i C − E i ∥ 2 F 

s.t. diag (C ) = 0 . (7) 
Depending on the choice of J , we get different algorithms for 
multimodal subspace clustering. For instance, if J ( C , E ) = ∥ C ∥ 1 + 
λe ∥ E ∥ 1 , we get multimodal SSC (MSSC), and the resulting opti- 
mization problem becomes 
min 

C , E ∥ C ∥ 1 + λe ∥ E ∥ 1 + λ
2 

2 ∑ 
i =1 ∥ Y i − Y i C − E i ∥ 2 F 

s.t. diag (C ) = 0 . (8) 
When J ( C , E ) = ∥ C ∥ ∗ + λe ∥ E ∥ 1 , we get multimodal LRR 

(MLRR). Note that in the case of MLRR, the term diag (C ) = 0 
in (7) is not required. Hence, we get the following optimization 
problem 
min 

C , E ∥ C ∥ ∗ + λe ∥ E ∥ 1 + λ
2 

2 ∑ 
i =1 ∥ Y i − Y i C − E i ∥ 2 F . (9) 

Finally, when J ( C , E ) = ∥ C ∥ 1 + λr ∥ C ∥ ∗ + λe ∥ E ∥ 1 , we get multi- 
modal LRSSC (MLRSSC). In some cases, especially when the data is 

noisy, the term diag (C ) = 0 may make the resulting representation 
matrix C not very low-rank. As a result, enforcing rank minimiza- 
tion along with the sparsity constraint with diag (C ) = 0 in MLRSSC 
may not be that meaningful. Hence, we slightly modify the formu- 
lation in (7) for MLRSSC as follows 
min 

C , E λ2 
m ∑ 

i =1 ∥ Y i − Y i A − E i ∥ 2 F + ∥ A ∥ 1 
+ λr ∥ C ∥ ∗ + λe ∥ E ∥ 1 s.t. A = C − diag (C ) . (10) 

Note that in our formulation, E is just a compact representation 
for { E i } m 

i =1 . As will become apparent later, we solve each E i sepa- 
rately since their dimensions may be different due to the different 
dimensionality of features in each modality (See Fig. 1 ). Another 
interesting point to note here is that when m = 1 , the proposed 
multimodal algorithms reduce to their unimodal counterparts. 

Similar to the unimodal subspace clustering algorithms, once 
C is estimated, spectral clustering methods can be applied on 
the affinity matrix W = | C | + | C | T to obtain the simultaneous seg- 
mentation of the data { Y i } m 

i =1 . Different steps of the proposed 
multimodal subspace clustering algorithms are summarized in 
Algorithm 1 . 
Algorithm 1 MSSC, MLRR, and MLRSSC Algorithms. 

1: procedure Multimodal Subspace Clustering ( { Y i } m 
i =1 , 

λe , λ, λr , ‘Algorithm’ ) 
2: if Algorithm = MSSC then ◃ Obtaining C 
3: Find C by solving (8). 
4: else if Algorithm = MLRR then 
5: Find C by solving (9). 
6: else if Algorithm = MLRSSC then 
7: Find C by solving (10). 
8: end if 
9: Normalize the columns of C as c i ← c i 

∥ c i ∥ ∞ . 
10: Form a similarity graph with N nodes and set the weights 

on the edges between the nodes by W = | C | + | C T | . 
11: Apply spectral clustering to the similarity graph. 
12: end procedure 
13: Output: Segmented multimodal data. 
3.1. Optimization 

We present an approach based on the ADMM method [33] for 
solving the proposed multimodal subspace clustering problems. 
Due to the similarity of MSSC, MLRR and MLRSSC problems, we 
only provide details on the optimization of the MSSC problem. 

By introducing the auxiliary variables U , and Z , the MSSC prob- 
lem (8) can be reformulated as 
arg min 

C , E , U , Z λ2 
m ∑ 

i =1 ∥ Y i − Y i C − E i ∥ 2 F + ∥ Z ∥ 1 + λe ∥ U ∥ 1 
s.t. C = Z , E = U , diag (C ) = 0 . (11) 

Let f αC ,αE (C , E , Z , U ; A E , A C ) be the augmented Lagrangian function 
defined as 
arg min 

C , E , U , Z λn 
2 

m ∑ 
i =1 ∥ Y i − Y i C − E i ∥ 2 F 

+ ∥ Z ∥ 1 + αC 
2 ∥ C − (Z − diag (Z )) ∥ 2 F (12) 

+ ⟨ A C , C − (Z − diag (Z )) ⟩ 
+ λe m ∑ 

i =1 ∥ U i ∥ 1 + αE 
2 

m ∑ 
i =1 ∥ E i − U i ∥ 2 F 
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+ m ∑ 

i =1 ⟨ A E i , E i − U i ⟩ , 
where A C and A E are the multipliers of the constrains, αC and 
αE are positive parameters and ⟨ A, B ⟩ denotes trace( A T B ). The re- 
sulting problem can be solved using the Augmented Lagrangian 
Method (ALM) [39] by keeping multipliers fixed, and updating C, 
E, Z, U , and then updating multipliers A C and A E while keeping 
the other terms fixed. This process is repeated until convergence 
or maximum number of iterations is reached. 
3.1.1. Update step for C 

Fixing E k , Z k , and U k , C k +1 can be obtained by minimizing f αC ,αE 
with respect to C . Therefore, C k +1 is updated by solving the follow- 
ing linear system of equations 
( 

m ∑ 
i =1 λn Y i T Y i + αC I 

) 
C k +1 = 

( 
m ∑ 

i =1 λn Y i T (Y i − E i )
) 

+ αC ( Z k + diag ( Z k ) ) − A C,k , (13) 
where I is an N × N identity matrix. When N is not very large, one 
can simply apply matrix inversion to update C k +1 from (13) . For 
large values of N , gradient-based methods can be used to solve for 
C k +1 . 
3.1.2. Update step for E 

As different modalities can have features with different dimen- 
sions, E i s are updated separately by minimizing f αC ,αE with respect 
to E i as follows 
E i k +1 = (1 + αE ) −1 (Y i − Y i C k +1 + αE U i k − A i E,k ), 
where A i 

E,k is the k th update of the i th modality’s multiplier. 
3.1.3. Update step for Z 

The variable Z can be updated as follows 
Z k +1 = J − diag (J ) , 

where 
J $= S 2 

αC 
(

C k +1 + 2 A C,k 
αC )

, 
S η( ν) = ( | ν| − η) + + sgn (ν) , 
(. ) + = { (| ν| − η) , | ν| − η ≥ 0 

0 , Otherwise . 
3.1.4. Update step for U 

The update step for U takes the following form 
U i k +1 = S λe 

αE (E i k +1 + α−1 
E A i E,k , ), 

where S η is the shrinkage-thresholding operator defined in the 
previous step. 
3.1.5. Update steps for A E and A C 

Finally, the multipliers are updated by gradient ascent with step 
sizes of αC and αE as follows 

A C,k +1 = A C,k + αC ( C k +1 − Z k +1 ) , 
A i E,k +1 = A i E,k + αE (E i k +1 − U i k +1 ). 

3.2. Computational complexity 
In this section we analyze the computational complexity of the 

proposed multimodal subspace clustering algorithms. We denote 
the number of available data points in each modality as N , the di- 
mension of multimodal features as { D i } m 

i =1 with D t = ∑ m 
i =1 D i , and 

the number of subspaces as n . We also assume that the needed 
number of iterations to reach the convergence in solving the prob- 
lems (8), (9) and (10) are t 1 , and spectral clustering algorithm at 
the final step of the Algorithm 1 needs t 2 iterations. 

In general, matrix multiplication of an M × N matrix with an 
N × N matrix has the complexity of O ( MN 2 ), and matrix addition 
of two M × N matrices has the complexity of O ( MN ). In addition, 
both singular value decomposition (SVD) and matrix inversion of 
an N × N matrix has the complexity of O ( N 3 ). 

The first step of the MSSC algorithm involves updating C , which 
requires a matrix inversion, matrix multiplications and addiction 
operations. However, among the operations for updating C , the ma- 
trix inversion with the complexity of O ( N 3 ), and the multiplica- 
tions with the Gram matrices with the computational complexities 
of { O (D i N 2 )} m 

i =1 can be calculated in advance, and can be used di- 
rectly in the iterations. Therefore, assuming that the inverse matrix 
and the Gram matrices are available, updating C has the dominant 
complexity of O (N 3 + D t N 2 ) in each iteration. In the next step, up- 
dating each E i has the dominant complexity of O ( D i N 2 ). Updating 
Z has the complexity of O ( N 2 ) as it requires a matrix addition and 
thresholding each element for computing J . Similarly, update step 
for U requires O ( D t N ) computations. Afterward, updating multipli- 
ers A C , and A E have the complexities of O ( N 2 ) and O ( D t N ), respec- 
tively. Therefore, as the coefficient matrix is obtained after t 1 it- 
erations, updating steps are iterated t 1 times, which results in the 
overall complexity of O (t 1 (D t N 2 + N 3 ) ). Finally, the spectral clus- 
tering step has the computational complexity of O ( t 2 nN ). There- 
fore, the overall computational complexity of the MSSC algorithm 
including the inversion task at the beginning of the algorithm is 
O (N 3 + t 1 (D t N 2 + N 3 ) + t 2 nN ). 

The computations in the MLRR and the MLRSSC algorithms are 
very similar to the MSSC algorithm, except that they have an addi- 
tional step of the SVD where they calculate Z . However, their dom- 
inant complexities are in the same order as with the MSSC algo- 
rithm. 
4. Non-Linear Multimodal Subspace Clustering 

While the linear multimodal subspace clustering models (8), 
(9) and (10) are good approximations, in practice many datasets 
are better modeled by non-linear manifolds. One approach to deal- 
ing with nonlinear manifolds is to use kernel methods. Kernel- 
based sparse representations have been exploited before in the 
context of sparse coding [40] , dictionary learning [41] , compressed 
sensing [42] , and subspace clustering [20,43] . It has been shown 
that the non-linear mapping using the kernel trick can group the 
data with the same distribution and make them linearly separable. 
In this section, we present nonlinear extensions of the proposed 
multimodal subspace clustering algorithms using the kernel trick. 

Let ' : R D → H be the mapping from the input space to the 
reproducing kernel Hilbert space H. The kernel function κ : R D ×
R D → R is defined as the inner product κ(x i , x j ) = ⟨ '(x i ) , '(x j ) ⟩ . 
Then, the kernel extension of (7) without the sparse noise term E 
can be formulated as 
min 

C J (C ) + λ
2 

2 ∑ 
i =1 ∥ '(Y i ) − '(Y i ) C ∥ 2 F 

s.t. diag (C ) = 0 , (14) 
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where '(Y i ) = ['(y i 1 ) , '(y i 2 ) , · · · , '(y i N )] . This problem can be 
rewritten as 
min 

C λ
2 

m ∑ 
i =1 T r( K Y i Y i − 2 K Y i Y i C + C T K Y i Y i C ) (15) 

+ J (C ) s.t. diag (C ) = 0 , 
where [ K Y i Y i ] k,l = [ ⟨ '(Y i ) , '(Y i ) ⟩ ] k,l = κ(y i 

k , y i l ) , and Tr (.) denotes 
trace operation. Similar to the linear multimodal subspace clus- 
tering methods, we apply the ADMM method to efficiently solve 
the problem for kernel multimodal sparse and low-rank subspace 
clustering. We denote the nonlinear versions of MSSC, MLRR and 
MLRSSC as KMSSC, KMLRR and KMLRSSC, respectively. 
5. Experimental results 

We evaluate the performance of our multimodal subspace clus- 
tering algorithms on five publicly available face datasets. We com- 
pare the performance of our method with several state-of-the-art 
subspace clustering methods such as SSC [17] , LRR [15] , and LRSC 
[16] by concatenating features from different modalities and then 
feeding them into these unimodal algorithms. We denote these 
methods as SSC-C, LRR-C and LRSC-C. In addition, we compare the 
performance of our method with three recently introduced state- 
of-the-art multimodal subspace clustering algorithms - MLAP [21] , 
CMVFC [32] , and LT-MSC [30] . Cross validation is used for pa- 
rameter selection in all the experiments. Note that the MLAP al- 
gorithm requires all the modalities to have the same dimension. 
Therefore, the dimensions of different modalities are reduced to a 
common dimension (i.e. the smallest dimension among all modal- 
ities) using principal component analysis (PCA). For the experi- 
ments with the kernel multimodal subspace clustering algorithms 
such as KMSSC, KMLRR and KMLRSSC, we use the Gaussian ker- 
nel κ(x , y ) = exp (−σ∥ x − y ∥ 2 ) , where σ is the parameter of the 
kernel function. Subspace clustering error is used to measure the 
performance of different algorithms. It is defined as 
subspace clustering error = # of misclassified points 

total # of points × 100 . 
5.1. Face clustering using facial components 

In the first set of experiments, we use the Extended Yale B [44] , 
and AR face [45] datasets. We extracted four weak modalities from 
the face images: left and right periocular, mouth and nose regions. 
This was done by applying rectangular masks as shown in Fig. 2 , 
and cropping out the respective regions. These facial components, 
along with the whole face, were taken as different modalities for 
testing our multimodal subspace clustering methods. Simple pixel 
intensity values were used as features for all of them. 
5.1.1. Subspace clustering of the Extended Yale B dataset 

The Extended Yale B dataset [44] consists of 192 × 168 size 
images of 38 individuals. The dataset contains 64 frontal images 
of each subject under varying illumination conditions. The perfor- 
mance of SSC, LRR and LRSC on the individual facial components is 
summarized in Table 2 . It can be seen from this table that among 
all five modalities, face gives the best performance. This is not sur- 
prising as the other modalities such as mouth, nose and eyes are 
considered as weak modalities, and they are not as stable as faces 
[46] . Overall LRR and LRSC methods seem to perform better than 
SSC on this dataset using individual modalities. 

The first and sixth rows of Table 1 summarize the results ob- 
tained by different multimodal subspace cluttering methods on the 
Extended Yale B dataset. Once the data from different modalities 

Fig. 2. Face masks used to crop out different facial components. 
are concatenated, the dimension of the resulting multimodal vec- 
tor is very large. We reduce its dimension by using a random pro- 
jection matrix. We denote the resulting methods as C-RP LRR and 
C-RP SSC. It can be seen from this table that our proposed mul- 
timodal methods perform significantly better than MLAP, CMVFC, 
and LT-MSC. Furthermore, it is interesting to see that the fusion 
results of our multimodal methods are much better than the ones 
obtained using single modalities. This can be clearly seen by com- 
paring Table 2 with the first and sixth rows of Table 1 . This ex- 
periment clearly shows the significance of our common sparse 
and low-rank representation-based methods for subspace cluster- 
ing. Also, KMSSC, KMLRR and KMLRSSC further improve the per- 
formance over MSSC, MLRR and MLRSSC, respectively. 

In Fig. 3 , we show the recovered common representations cor- 
responding to the MSSC, MLRR and MLRSSC methods. Only the 
images from the first four subjects are used in this experiment 
for better visualization. As can be seen from this figure, that the 
recovered coefficient matrices have block diagonal structures. In 
particular, the coefficient matrix corresponding to the MSSC algo- 
rithm (shown in Fig. 3 (a)) is very sparse. On the other hand, the 
coefficient matrix corresponding to the MLRR algorithm (shown 
in Fig. 3 (b)) has many nonzero coefficients that are grouped to- 
gether in a given block, which essentially corresponds to low rank- 
ness of the common coefficient matrix. Since the MLRSSC algo- 
rithm provides a trade-off between sparsity and low-rank struc- 
ture of the coefficient matrix, it has more non-zero coefficients 
that are grouped together than the matrix corresponding to the 
MSSC algorithm. This can be clearly seen by comparing Fig. 3 (a) 
with Fig. 3 (c). 
5.1.2. Subspace clustering of the AR face dataset 

The AR face dataset [45] consists of faces from 116 individu- 
als with varying illumination, expression and occlusion conditions, 
captured in two sessions. In this experiment, we choose 14 images 
per person from the publicly available cropped dataset. 1 These im- 
ages correspond to different illumination and expression variations. 
The performance of unimodal methods on individual components 
is summarized in Table 3 . It is interesting to see that the perfor- 
mance of different methods using individual components is much 

1 Available at http://www2.ece.ohio-state.edu/ ∼aleix/ARdatabase.html . 
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Table 1 
Multimodal subspace clustering performance of different methods. 

Experiment Used features SSC-C [17] LRR-C [15] LRSC-C [16] MLAP [21] CMVFC [32] LT-MSC [30] C-RP LRR 
1 - Yale B Facial Components Pixels 22.07 21.45 26.73 26.94 35.31 20.71 24.79 
2 - AR Facial Components Pixels 22.36 49.14 47.35 54.53 38.64 44.07 55.08 
3 - Fusion of Features Multiple features 25.14 20.13 25.45 23.63 34.61 18.76 22.69 
4 - UMD-AA01 Alexnet “fc7” 24.49 46.35 39.35 34.69 27.73 30.62 36.73 
5 - VIS NIR Pixels 37.37 55.74 54.79 58.59 38.13 50.50 58.41 

C-RP SSC MSSC MLRR MLRSSC KMSSC KMLRR KMLRSSC 
6 - Yale B Facial Components Pixels 29.54 18.73 19.02 18.52 12.67 15.78 13.47 
7 - AR Facial Components Pixels 33.07 17.35 38.43 17.52 10.58 32.78 16.85 
8 - Fusion of Features Multiple features 30.82 23.36 18.61 18.83 23.25 17.20 18.43 
9 - UMD-AA01 Alexnet “fc7” 23.12 22.45 32.56 27.11 22.16 26.23 27.89 
10 - VIS NIR Pixels 38.89 36.16 52.52 34.34 30.30 46.97 30.30 

Fig. 3. Common coefficient matrices corresponding to different multimodal subspace clustering methods. Only the images from the first four subjects are used in this 
experiment for better visualization. Ci denotes coefficients of all the samples belonging to the cluster i . (a) The coefficient matrix corresponding to the MSSC algorithm. (b) 
The coefficient matrix corresponding to the MLRR algorithm. (c) The coefficient matrix corresponding to the MLRSSC algorithm. 

Table 2 
Clustering errors on the individual facial components of the Ex- 
tended Yale B dataset. 

Left Eye Right Eye Nose Mouth Face 
SSC [17] 33.91 30.49 54.74 43.48 23.76 
LRR [15] 26.28 27.39 56.46 31.8 1 22.52 
LRSC [16] 29.62 25.86 51.93 32.30 23.96 

Table 3 
Clustering errors on the individual facial components of the AR 
database. 

Left Eye Right Eye Nose Mouth Face 
SSC [17] 43.92 37.50 72.78 68.07 19.64 
LRR [15] 54.42 52.36 61.79 61.21 43.77 
LRSC [16] 62.43 62.93 64.36 65.57 40.57 

worse than using the entire face. This is mainly due to the fact that 
the AR dataset contains faces with various expressions. As a result, 
the weak modalities do not work well on this dataset. 

The second and seventh rows of Table 1 summarize the results 
obtained by different multimodal subspace clustering methods on 
the AR face dataset. Although the facial components in the AR 
face dataset provide poor results individually, their fusion signifi- 
cantly enhances the performance of different subspace clustering 
methods. The KMSSC algorithm produces the best results on this 
dataset. Again this experiment shows the significance of our mul- 
timodal fusion method for subspace clustering. It is also interest- 
ing to note that MLRSSC algorithm provides a close performance 
to MSSC, but its nonlinear counterpart KMLRSSC cannot reach the 
performance of KMSSC. This can mainly happen because of sparse 
error subtraction in proposed linear methods that can significantly 
help satisfying low-rank constraints such as in MLRSSC. 

Table 4 
Results on the Yale B dataset: clustering errors using differ- 
ent facial features. 

Pixels LBP Gabor HOG PCA 
SSC [17] 23.76 41.58 33.66 27.76 24.71 
LRR [15] 22.52 27.31 20.66 19.05 18.81 
LRSC [16] 23.96 33.74 36.13 33.20 20.79 

5.2. Face clustering using different features 
We extract different features from the face images of the Ex- 

tended Yale B dataset and use them as different modalities. We 
extract the local binary pattern (LBP), Gabor, histogram of oriented 
gradients (HOG) and PCA features. Similar experiments have been 
conducted in [30] and [32] for face clustering. 

Table 4 compares the performance of different subspace clus- 
tering methods on the individual features. For comparison, results 
corresponding to pixels are also copied from Table 2 . This table 
clearly shows that extracting discriminative and robust features 
first and then applying subspace clustering algorithms can provide 
better performance over just using pixel values as features. 

The results obtained by different multimodal subspace clus- 
tering methods are summarized in the third and eighth rows of 
Table 1 . We observe that almost all methods perform much bet- 
ter when discriminative features are used as different modalities. 
Furthermore, when different features are fused using our method, 
their performance is significantly enhanced. Also, nonlinear kernel 
methods improve the performance over their linear counterparts. 
5.2.1. Mobile phone facial images clustering 

The UMD-AA01 dataset [47] is collected on mobile devices for 
the original purpose of active authentication, but as it contains var- 
ious ambient conditions, we use it for multimodal experiments in 
this paper. This dataset contains facial images of 50 users over 3 
sessions corresponding to different illumination conditions. In each 
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Fig. 4. Sample images from different sessions in the UMD-AA01 datasets. Each ses- 
sion has been considered as a modality in this paper. 

Table 5 
Clustering errors on the individual sessions of the 
UMD-AA01 dataset. 

Session 1 Session 2 Session 3 
SSC [17] 37.32 46.36 40.82 
LRR [15] 41.98 47.52 48.10 
LRSC [16] 44.31 48.98 44.60 

session more than 750 images have been taken from each face. We 
randomly selected seven samples per person in each session and 
used them in the experiments. We used the normalization method 
introduced in [48] , then extracted deep features corresponding to 
the “fc7” layer from the Alexnet convolutional neural network [49] . 
Fig. 4 shows some sample images from this dataset. 

Table 5 reports the performance of various unimodal subspace 
clustering methods on the UMD-AA01 dataset. The performance of 
multimodal methods is also shown in the fourth and ninth rows 
of Table 1 . As can be seen from this table the use of multimodal 
data can improve the subspace clustering performance over their 
unimodal counterparts. 
5.3. Visible and infrared face images clustering 

In this set of experiments, we use visible and infrared faces as 
different modalities. Long Distance Heterogeneous Face Database 
(LDHF) database [50] consists of visible and near-infrared face im- 
ages of 100 individuals (70 males and 30 females). The face images 
were captured in both daytime and nighttime at different stand- 
offs (e.g., 1 m, 60 m 100 m, and150 m) resulting in four VIS-NIR 
pairs per subject. Sample image pairs from this dataset are shown 
in Fig. 5 . In this experiment, the face area is cropped and resized 

Table 6 
Results on VIS-NIR: clustering errors us- 
ing visible and near infrared images. 

Visible Near-infrared 
SSC [17] 42.17 4 9.4 9 
LRR [15] 57.45 61.44 
LRSC [16] 58.83 60.85 

to a fixed size of 100 × 100 pixels. We simply use the pixel inten- 
sities as features. 

Results corresponding to different unimodal subspace cluster- 
ing methods are reported in Table 6 . It can be seen from the table 
that generally visible images provide better performance in terms 
of clustering error. In addition, this table shows that LRR has a poor 
performance on this dataset. This can be explained by the fact that 
in this dataset, we are dealing with too many number of subjects 
with a few samples from each subject. It has been observed that 
increasing the number of subjects makes subspace clustering diffi- 
cult [17] . 

The fifth and tenth rows of the Table 1 provide clustering errors 
of multimodal subspace clustering methods on the VIS-NIR dataset. 
We can observe that the proposed MSSC, MLRSSC, and their ker- 
nel extensions provide the best results. An interesting observation 
from the Table 1 is that the LT-MSC method, which is a linear 
low-rank representation-based method, has a slightly better per- 
formance on the VIS-NIR dataset compared to the MLRR method. 
Similar trend is also observed on the other datasets as well. How- 
ever, it should be noted that the LT-MSC needs m more parameters 
to select for balancing the representations from the m modalities. 
While this is not the case in our MLRR method. It is interesting 
to note that the MLRR and KMLRR algorithms do provide signifi- 
cant improvements over the unimodal LRR method and the other 
low-rank representation-based methods. 

The fact that low-rank representation-based methods in this 
experiment are showing weaker performances compared to the 
sparsity-based methods can be explained by the fact that there are 
a large number of subjects and low number of samples per sub- 
ject in VIS-NIR dataset. Fig. 6 shows the first 12 largest singular 
values corresponding to one subject’s data in the Extended Yale B, 
AR, session one in UMD-AA01 and VIS datasets. It is clear from this 
figure that samples in all four datasets do lie in a lower dimen- 
sional subspaces since the singular values drop quickly. In particu- 
lar, each subject in the Extended Yale B dataset, AR dataset, UMD- 
AA01 dat aset and VIS dat aset, correspond to a subspace of dimen- 
sion 9, 4, 4 and 3, respectively. However, considering the number 
of samples in each cluster one can see VIS dataset cannot show a 
low-rank structure as much as other datasets can show. 
5.4. Impact of illumination variation 

In this section, we compare the effect of illumination variations 
on the performance of different multimodal subspace clustering 
methods. We split the Yale B dataset according to different illu- 
mination variations. We choose one of the images per subject as 
a reference image, and the other images will be divided into four 
subsets according to the light angle difference from the reference. 
Fig. 7 shows the variation within different subsets. We apply the 
same rectangular masks shown in Fig. 2 for extracting the facial 
components. 

Table 7 compares the performances of various methods on the 
different subsets. As expected, as illumination variations become 
intense, the performance of different methods drop significantly. 
It is interesting to see that the nonlinear methods show less de- 
pendency on the amount of variations in the sample sets. This is 
because kernel methods can find non-linear relations between the 



M. Abavisani, V.M. Patel / Information Fusion 39 (2018) 168–177 175 

Fig. 5. Sample images from the LDHF dataset at different standoffs (a) 1m, (b) 60m, (c) 100m and (d) 150m. Visible and near-infrared images are shown in the first and the 
second row, respectively. 

Table 7 
Multimodal subspace clustering performance of different methods vs illumination variation in the data points of the Yale 
B face dataset. 

SSC-C [17] LRR-C [15] LRSC-C [16] MLAP [21] CMVFC [32] LT-MSC [30] C-RP LRR 
1 - Subset 1 19.55 36.27 21.80 21.99 12.40 25.43 23.30 
2 - Subset 2 37.97 46.99 25.94 24.24 18.47 34.98 28.57 
3 - Subset 3 39.47 70.11 61.27 56.39 33.64 52.31 60.52 
4 - Subset 4 43.23 74.06 66.72 60.33 34.39 56.52 65.03 

C-RP SSC MSSC MLRR MLRSSC KMSSC KMLRR KMLRSSC 
5 - Subset 1 18.23 9.58 21.42 8.76 8.22 18.98 6.39 
6 - Subset 2 34.86 16.35 23.49 16.13 13.27 22.34 14.47 
7 - Subset 3 36.53 28.57 4 8.4 9 27.43 24.97 25.43 23.49 
8 - Subset 4 45.48 33.83 54.50 32.71 31.22 36.27 31.07 

Fig. 6. First largest singular values of samples corresponding to the first person in 
Yale B, AR, session one in UMD-AA01 and VIS datasets. 

Fig. 7. Illumination variation within the selected subsets in the Yale B dataset. 

samples, while linear methods cannot easily deal with these varia- 
tions. 
5.5. Runtime comparisons 

In order to compare the computational complexity of different 
multimodal subspace clustering methods, we measure the running 
time of different algorithms. Since all the compared and proposed 
methods are iterative algorithms, many factors such as step size 
of gradient descent, maximum number of iterations and choice of 
regulation parameters can affect their running time. Thus, we re- 
port the running time of the experiments on a specific dataset. In 
particular, we measure the runtime of the methods on the UMD- 
AA01 dat aset with the same settings that resulted in the reported 
clustering errors in the fourth and ninth rows of Table 1 . For the 
methods with publicly available software packages, we use their 
published codes. Regarding the nonlinear methods and random 
projection methods, calculations of finding Gram matrices and ex- 
tracting the projected features are also included in the reported 
runtimes. Besides, each experiment is conducted 10 times, and the 
average runtime is reported. All the simulations were done in Mat- 
lab on an Intel® Xeon(R) 16-core machine with 3.0 GHz CPU and 
32GB RAM, running Linux Ubuntu 14.04. Table 8 compares the run- 
time time of different methods. As can be seen from this table, the 
proposed methods are computationally efficient compared to some 
of the other subspace clustering methods. 
5.6. Convergence 

To empirically show the convergence of our method, in Fig. 8 
(a) and (b), we show the objective function vs iteration plots of 
the ADMM method for solving the MSSC and KMSSC problems, re- 
spectively with the experiments on the AR dataset. As can be seen 
from this figure, the proposed algorithms do converge in a few it- 
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Table 8 
Runtime of different multimodal subspace clustering algorithms on the UMD-AA01 dataset. 

Method: SSC-C [17] LRR-C [15] LRSC-C [16] MLAP [21] CMVFC [32] LT-MSC [30] C-RP LRR 
Time (Seconds) 45.05 3.85 0.29 20.49 167.42 1.18 1.72 
Method: C-RP SSC MSSC MLRR MLRSSC KMSSC KMLRR KMLRSSC 
Time (Seconds) 36.01 16.26 1.63 2.30 3.73 23.20 2.66 

Fig. 8. Objective function of proposed algorithms versus iterations. (a) Convergence plot of the MSSC algorithm. (b) Convergence plot of the KMSSC algorithm. 
erations. Experiments have shown that the MLRR, KMLRR, MLRSSC 
and KMLRSSC algorithms also converge in a few iterations. 
6. Conclusion 

We introduced multimodal extensions of the classical SSC, 
LRR and LRSSC methods for subspace clustering. The proposed 
optimization algorithms are efficiently solved using the ADMM 
method. Furthermore, using the kernel trick, we made the pro- 
posed multimodal subspace clustering methods nonlinear. Ex- 
tensive experiments on face clustering using publicly available 
datasets showed that the proposed methods can perform better 
than many state-of-the-art multimodal subspace clustering meth- 
ods. 
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