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Abstract—We propose a realistic high dimensional sparse
Fourier transform (RSFT) algorithm, which detects frequencies
in multidimensional data, provided that the data is sparse in the
frequency domain. Although sparsity has been exploited before to
reduce the complexity of the Discrete Fourier Transform, unlike
previous approaches, the RSFT allows for off-grid frequencies.
We provide a concrete application example on short range
ubiquitous radar signal processing, and verify the feasibility of
the RSFT in that scenario via simulations.

Index Terms—Array signal processing, sparse Fourier trans-
form, radar signal processing.

I. INTRODUCTION

Many practical applications in radar, communications and
imaging require one to take the Discrete Fourier Transform
(DFT) of high-dimensional signals in order to identify frequen-
cies in the data. The DFT is usually implemented via the Fast
Fourier Transform (FFT), whose computational complexity
is O(NlogN) for N data points. Recently, by leveraging
the sparsity of signals in the frequency domain, the Sparse
Fourier Transform (SFT) [1], [2] can further reduce the
complexity required to identify the underlying frequencies.
Different versions of the SFT related techniques have been
successfully applied in several practical applications, such as
a fast Global Positioning System (GPS) receiver, wide-band
spectrum sensing, light field reconstruction, etc. [3]-[5].

High order extension of the SFT has also been considered.
Andre et al. [6] extended the exactly-K -sparse SFT algorithm
from [1] into two dimensions. Ghazi et al. [7] proposed a
sample optimal 2-D SFT both for exactly sparse and approx-
imately sparse signals. Ong et al. [8] proposed a 2-D SFT
algorithm based on sparse-graph decoding. An extension to an
arbitrary constant dimension is reported in [9]. However, all
the aforementioned algorithms rely on a grid, and assume that
the signal frequencies are on the grid. In practice, however, the
signal frequencies lie in the continuous space of [0, 27), and
are usually off-grid. The consequence of off-grid frequencies
is leakage to other frequency bins, which essentially destroys
the sparsity of the signal. To refine the estimation of off-grid
frequencies, in [5], Shi et al. proposed a gradient descent-
based method to find off-grid frequencies from the initial SFT

estimates. However, the computation of gradient descent is
not efficient, due to the unknown gradient of the signal in the
frequency domain. An SFT algorithm for off-grid frequencies
was proposed by Boufounos et al. in [10]. The underlying
assumption in [10] is that signal and noise are well separated
by predefined gaps in the frequency domain. However, this
assumption does not hold for many practical signal processing
applications.

In this paper, we propose a new algorithm called Realistic
Sparse Fourier Transform (RSFT), which does not requires the
frequencies to be on-grid and does not rely on the restrictive
assumption that signal and noise are well separated by prede-
fined gaps in the Fourier domain. Furthermore, we extend the
proposed algorithm to arbitrary fixed high dimensions so that
it can be used to replace the /N-dimensional FFT (N-D FFT)
in a sparse setting. To the best of our knowledge, the RSFT
algorithm is the first SFT algorithm, which addresses the issue
of off-grid frequencies for arbitrary high dimensional signals.
Finally, we present an application of the RSFT algorithm in
multi-dimensional radar signal processing, in which a 3-D
RSFT is applied on short range ubiquitous radar [11] (SRUR)
to detect targets and estimate their range, velocity and direction
of arrival (DOA). Due to the computational efficiency of RSFT,
a faster reaction or lower cost of hardware for this kind of radar
is expected.

Notation: We use lower-case and upper-case bold letters to
denote vectors and matrices, respectively. [S] refers to the set
of indices {0,---,S —1}. The DFT of signal s is denoted as
S.

This paper is organized as follows. A brief background
on the SFT algorithm is given in Section II. Details of
the proposed RSFT algorithm are given in Section III. An
application of the RSFT algorithm in radar signal processing
is presented in Section IV. Section V concludes the paper with
a brief summary and discussion.

II. BACKGROUND

As opposed to the FFT that computes the coefficients of
all N frequency components of a N-samples long signal, the



SFT [2] computes only the K frequency components of a K-
sparse signals. At a high level, the SFT consists of two kinds
of loops, i.e., the Location loop and the Estimation loop. The
former finds the indices of the K most significant frequencies
in the input signal, while the latter estimates the corresponding
Fourier coefficients. Here we emphasize on Location more
than Estimation, since the former is more relevant to the
radar application that we consider. The Location step provides
frequency locations, which in the radar case is directly related
to target parameters.

In the Location loop, a permutation procedure reorders the
input data in the time domain, causing the frequencies to also
reorder. The permutation causes closely spaced frequencies
to appear in well separated locations with high probability.
Mathematically, the permutation is defined as

(Pa,-rx)i = Toi+T, (1

where z; is the iy, entry of input signal x € CV, o, 7 € [N],
and o is invertible mod N, i.e., there exists a o1 satisfying
oco~1 =1 (mod N). Consequently, the frequency is dilated
modularly by o times, and an additional phased rotation by 7
is introduced, i.e., (P x),, = #6797 1t is also assumed
that the data length for each dimension is a power of 2. Then,
a flat-window [2] is applied on the permuted signal for the
purpose of extending a single frequency into a (nearly) boxcar,
for a reason that will become apparent in the following. The
windowed data are aliased, by creating a periodic extension of
the data with period B with B << N, and B a power of 2. The
frequency domain equivalent of this aliasing is undersampling
by N/B. The window used at the previous step ensures that
no peaks are lost due to the effective undersampling in the
frequency domain. After this stage, a FFT of length B of one
period is employed.

The first detection stage finds the significant frequencies’
peaks and their indices are reverse mapped into the original
frequency space. However, the reverse mapping yields not
only the true location of the signal frequency, but also N/B
ambiguous locations for each significant frequency. To remove
the ambiguity, multiple iterations of Location with randomized
permutation are performed. Finally, the second stage detection
locates the K most significant frequencies from the accumu-
lated data for each iteration.

III. THE RSFT ALGORITHM

In this section, we introduce the proposed RSFT algorithm,
which is basically an SFT that is robust to off-grid frequencies
and present its extensions to high dimensional problems.

A. Leakage Suppression for Off-grid Frequencies

The SFT algorithm only holds for the discrete on-grid
frequencies. In real world applications, the frequencies are
continuous and can take any value in [0,27). When fitting
a grid on these frequencies, leakage occurs from off-grid
frequencies, which can jeopardize the natural sparsity of the
signal. As a result, it is difficult to determine the frequency
domain peaks after permutation, since the leakage of a strong

frequency component would easily mask the main lobe of a
weak frequency component (See Fig. 1 (c)). To address this
problem, we multiply the received time domain signal with
a window before permutation, and call this procedure Pre-
permutation Windowing. The idea is to confine the leakage
within a finite number of frequency bins, as illustrated in Fig.
1.

The choice of the pre-permutation window is determined
by dynamic range, frequency resolution and computational
complexity requirements. More specifically, the dynamic range
specification determines the attenuation of the side-lobes, and
the side-lobe level should be lower than the noise level after
windowing. However, the larger attenuation of the side-lobes,
the more wide would be the main-lobe, leading to a worsen
resolution in frequency domain. Meanwhile, a more broaden
main-lobe will cause greater computational overhead, which
will be discussed in Section III-D.
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Fig. 1. Effect of pre-permutation Windowing. The signal contains two
significant frequency components, one of which is 15dB stronger than the
other. A Dolph-Chebyshev window is applied to the time-domain signal.
Windowed signal after permutation is more sparse in the frequency domain as
compared to the permuted unwindowed signal. (a) Spectrum of unwindowed
signal. (b) Spectrum of windowed signal. (c) Spectrum of unwindowed signal
after permutation. (d) Spectrum of windowed signal after permutation.

B. High Dimensional Extensions

Due to the separability of the DFT, one could easily extend
the FFT to high dimensions by simply applying 1-D FFT
on each dimension of the data sequentially. For the SFT
algorithm, however, the extension is not obvious. In what
follows, we elaborate on the high dimensional extension for
its main stages.

1) Windowing: In the pre-permutation windowing and the
flat-windowing stages, the window for each dimension is
designed separately. After that, the high dimension widow is
generated by combining each 1-D window. For instance, in
the 2-D case, assuming that w, and w, are the two windows



in the x and y dimension, respectively, a 2D window can be
computed as
H
W,y = Wz W, 2

where (-) denotes for the conjugate transpose. Fig. 2 shows a
compound 2-D window which is a combination of a hamming
window and a Dolph-Chebyshev window. We apply those
windows on the data by point-wise multiplications.
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Fig. 2. Compound Window in 2-D. (a) Top: a 64-points Hamming window;
bottom: a 1024-points Dolph-Chebyshev window. (b) The 2D window.

2) Permutation: The permutation parameters are generated
for each dimension in a random way according to (1). Then,
we carry the permutation on each dimension sequentially. An
example for the 2-D case is illustrated in Fig. 3.

space. The combination of the reverse mapped indices from
each dimension provides the tentative locations of the original
frequency components. Assuming the side-lobes are below the
noise level after pre-permutation windowing, empirically, we
can choose d as

d = round( H d;), 3)

i€[U]

where U is the number of dimensions, round(-) denotes for
rounding to the nearest integer, and d; is the 6.0-dB bandwidth
of the pre-permutation window for the 4., dimension. For
instance, according to [12], a Hamming window has its 6.0-dB
bandwidth approximately as 1.81. As a result, a 2-D Hamming
window gives d = 3.

5) Accumulation and second stage detection: The accumu-
lation stage collects the tentative frequency locations found
in the reverse mapping for each iteration, and the number of
occurrences for each location is calculated after running over
T iterations. The second stage detection finds K peaks in the
data with the highest number of occurrences.

C. The RSFT Algorithm

Based on the discussion above, we summarize the RSFT
method in Algorithm 1. We set 7 = 0 in each permutation,
since the random phase rotation does not affect the perfor-
mance of a detector after taking magnitude of the signal in
the intermediate stage.
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Fig. 3. Permutation and Aliasing in 2D. (a) Original 2D data forms a 4 X 8
matrix. (b) Permutation in z—dimension, oz = 3, 7, = 0. (¢) Permutation in
y—dimension, oy = 3,7y = 0. After permutation, data is divided into four
2 x 4 sub-matrices. (d) Aliasing by adding sub-matrices from (c).

3) Aliasing: The aliasing stage compresses the high dimen-
sional data into much smaller size. In 2-D, as shown in Fig.
3 (d), a periodic extension of the N, x N, data matrix is
created with period B, in the x dimension and B, in the y
dimension, with B, << N, and B, << N,, and the basic
period is extracted.

4) First stage detection and reverse mapping: We carry
first stage detection after taking the magnitude of N-D FFT
on the aliased data. Since the size of aliased data is much
smaller than original size, the saving of the computation
is remarkable. After that, we find the dK,d > 1 highest
peaks and then reverse map their indices back to the original

Algorithm 1 RSFT algorithm
Input: complex signal r in any fixed high dimension
Qutput: o, sparse frequency locations of input signal

1: procedure RSFT(r)

2: Pre-Permutation Windowing: y < Wr

3 Generate a set of ¢ randomly for each dimension
4: x+0

5: for i <~ 0 to T do

6 Permutation: p < P,y

7 Flat-windowing: z <~ W ¢p

8 Aliasing: a < Aliasing(z)

9: N-D FFT: 4 + FFT(a)

10: First-stage-detection: ¢ < Det1(|a|?)
11: Reverse-mapping: x; < Reverse(c)
12: Accumulation: X <+ X + X;

13: end for

14: Second-stage-detection: o < Det2(x)
15: return o

16: end procedure

D. Computational Complexity

We compute the computational complexity of the RSFT
algorithm by counting the number of operations in Algorithm
1, as shown in Table I. The RSFT yields a complexity of

O(T(N+B+BlogB+I<gjv)+N>, 4)



while the N-D FFT gives the complexity of O(N log N). Here
N, B denote for the total number of data points in the original
and shrunken high dimensional dataset, respectively. From Fig.
4, one can see that the complexity ratio of FFT over RSFT
rises almost linearly versus N, which grows exponentially.
For N = 20 B = 227 = 5 K = 100,d = 2,
the RSFT algorithm is approximately 8 times more efficient
than the FFT. Note that the core operation in RSFT is still
FFT but on a reduced dimensional space. By leveraging the
existing high performance FFT libraries such as FFTW [13],
the implementation of the RSFT algorithm could be further
improved.

As discussed in Section III-A, the choice of pre-permutation
window is a compromise between the resolution and dynamic
range specifications. Now, from Eq. (3) and (4), we can see
the pre-permutation window also affects the complexity of
the RSFT, i.e., a window with larger d will demand more
computation, as shown in Fig. 4.

The complexity of RSFT is also influenced by B. With
other parameters fixed, we can solve the optimal B, which
minimizes f in Eq. (4). In the high dimensional setting, B
is the multiplication of the shrunken data length in each
dimension, i.e., B = Hie[U] B;, with B; a power of 2. And
in order to hash each significant frequency into a distinct
location of the shrunken space with high probability, we make
B >>dK.
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Fig. 4. Complexity Ratio, FFT over RSFT. B =22 T = 5.

IV. RSFT FOR UBIQUITOUS RADAR SIGNAL PROCESSING

The complexity analysis above reveals that the RSFT algo-
rithm can greatly reduce the complexity of certain high dimen-
sional problems. This can be signifiant in many applications,
since lower complexity means faster reaction time and more
economical hardware. However, in order to apply RSFT, the
signal to be processed should meet the following requirements:

o It should be sparse in some domain.

o It should be sampled uniformly whether in temporal or
spacial domain.

o The SNR should be moderately high so that the algorithm
can detect the peaks of significant frequencies reliably.

TABLE I
COMPUTATIONAL COMPLEXITY OF RSFT
Procedure Number of Operations
Pre-Permutation Win N
Permutation TN
Flat Win TN
Aliasing TB(N/B —1)
FFT T2 1og B
Square TB
First Stage Detection TB
Reverse Mapping TKdN/B
Second stage Detection N
Total Operations T(3N + B+ g log B + %) + 2N
Complexity o (T(N + B+ Blog B+ K48 4 N)

While many applications satisfy these requirements, in what
follows, we discuss an example in SRUR signal processing.

A. Short Range Ubiquitous Radar (SRUR)

An ubiquitous radar [11] or SIMO radar can see targets
everywhere at anytime without steering its beams as a tradi-
tional phased array radar does. In SRUR, a broad transmitting
beam patten is achieved by an omnidirectional transmitter
and multiple narrow beams are formed simultaneously after
receiving of the reflected signal. The beam pattens of an
ubiquitous radar is shown in Fig. 5 with an Uniform Linear
Array (ULA) configuration.

Tx Beam

Fig. 5. Ubiquitous Radar System Structure and Transmitting / Receiving
Beam Patten. A broad beam patten is transmitted with an omnidirectional
antenna, while multiple narrow beams are formed simultaneously by the
receiving array. Each receiving channel is mixed with a coupled signal from
the transmitter to de-chirp the LFMCW signal, before the A/D converting.

An SRUR with range coverage of several kilometers could
be important both in military and civilian vehicular applica-
tions. For instance, in an active protection system [14], sensors
on the protected vehicle have to detect and locate the warheads
from a closely fired rocket-propelled grenade (RPG) within
milliseconds. Among other sensors, SRUR’s simultaneous
wide angle coverage, high precision of measurement and all-
weather operation make it the ideal sensor for such situation.

In order to achieve high range resolution and cover near
range, SRUR utilizes a LFMCW waveform, as shown in Fig.
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Fig. 6. LFMCW Waveform. The signal frequency change linearly in time
with a repetition internal T},. A burst contains M repetitions. The range of
frequency changing is the bandwidth of the system. The received signal is a
delayed version of the transmitted signal.

6. Mathematically, the transmitted waveform can be expressed
as

s(t,v) = Acos(2n(fe(t —vT,) + ma(t — va)Q), (5)

where T}, is the repetition interval (RI), v € [M] denotes the
v, RI, A is amplitude of the signal, f. is the carrier frequency
and « is the chirp rate. Furthermore, without loss of generality,
we assume that the initial phase of the signal is zero.

Upon reception, a de-chirp process is implemented by mix-
ing the received signal with the transmitted signal, followed
by a lowpass filter. The received signal is a delayed version
of the transmitted one, hence by mixing the two signals, the
range information of the targets is linearly encoded in the
difference of the frequencies. Hence for the iy,,i € [N]
receiving channel, the de-chirped signal is expressed as

T = Z all cos (27r((fr[k] + fc[lk])(t —vT)y) +imsin Q[k])
ke[K]
+n(),
(6)

which is a superposition of K sinusoids and additive noise
n(t). For the ky, sinusoid, al¥! represents its amplitude and

T[k], (Ek] are the frequency components respect to target’s
range and velocity respectively, i.e.,
[K] (K]
f[k] _ 2ar; K _ vy 7
T c 9 d )\ 9

where rgk], vt[k] , c are the k¢, target’s range, velocity and speed

of wave propagation respectively.

The DOA of the ky, target, i.e., 0% is defined as the
angle between the line of sight (from the array center to
the target) and the array normal. Assuming that the element
wise spacing is A\/2, under the narrowband signal assumption,
6[F will cause an increase of phase at the neighboring array
element equal to 7sin 8], We omit the constant phase term
in each sinusoids of Eq. (6), since they are irrelevant to the
performance of the algorithm.

After AD conversion of each receiving channel, we can use
the processing scheme shown in Fig. 7 to detect the targets
as well as estimate their range, velocity and DOA. More
specifically, grid-based versions of f,[.k], fc[lk],wsin %] can be
calculated by applying a 3-D FFT on the windowed data cube,
followed by a detection procedure.
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Fig. 7. Conventional Processing Scheme for SRUR.
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Fig. 8. RSFT Based Processing Scheme for SRUR.

B. RSFT-based SRUR Signal Processing

Although the number of samples of SRUR is reduced
significantly with the analog de-chirp processing, the realtime
processing with 3-D FFT is still challenging. The RSFT algo-
rithm is suitable for reducing the computational complexity of
SRUR since, 1) the number of targets is usually much smaller
than the number of spatial resolutions cells, which implies
that the signal is sparse after proper translation; 2) with an
ULA and digitization of each received element, the signal is
uniformly sampled both in spatial and temporal domain; and
3) the short range coverage implies that moderate high SNR
is easy to achieve.

The RSFT-based SRUR processing architecture is shown
in Fig. 8. Compared to the conventional processing, the 3-D
FFT is replaced with the looping block, in which the aliasing
procedure converts the data cube dimension from R x N x M
to B x C' x D. The 3-D FFT operated on the smaller data
cube could save the computation time significantly.

C. Simulations

In this section, we verify the feasibility of RSFT-based
SRUR processing and compare to the SFT-based processing
via simulations. The main parameters of the system are listed
in Table II. The design of the system can guarantee non-
ambiguous measurements of the target’s range and velocity,
assuming the maximum range and velocity are less than 1.5km
and 300m/s, respectively.

We generate a signal from 4 targets according to (6). The
parameters of targets can be arbitrarily chosen within the un-
ambiguous space, which implies the corresponding frequency
components do not necessarily lie on the grid points. The
targets’ parameters used in the simulation are listed in Table
1.

The SFT from [2] is 1-dimensional. In order to reconstruct
targets in the 3-D space, we extend the SFT to high dimension
with the techniques described in Section III-B. In the experi-
ment, we choose B, C, D equal to 64, 32, 16, respectively, and
gradually increase the number of counting peaks in the first



TABLE II
SRUR PARAMETERS
Parameter Symbol Value
Number of range bins R 2048
Number of receiving elements N 64
Number of RI M 32
Wave length A 0.03m
Wave propagation speed c 3 x 103m/s
Bandwidth Buw 150M H z
Repetition interval Tp 5x 107 °s
Maxima range Rmaz 1.5 x 10°m
Chirp rate @ 3x 1012Hz/s
Sampling frequency (IQ) fs 41MHz
TABLE III
TARGET PARAMETERS
Target | Range (m) | Velocity (m/s) | DOA (o) | SNR (dB)
1 1000 100 30 0
2 500 50 0 —10
3 350 240 —16 —20
4 350 240 —20 —20
Target 1
40 - }/
. o
L 20. ‘g
g \
o)
o
p 0 Side-lobes
8 Target 3
20 RSFT 4 . Target 4
1500 \ ‘ J
> Target 2 —
1000 = 3w
e _— 200
500 \\\A//// 100
Range /m 0o Velocity / m/s

Fig. 9. Target Reconstruction via 3-D SFT and RSFT. The SFT-based
processing recovers the side-lobes of the stronger targets, while the RSFT-
based method only recovers the main-lobes of targets.

stage detection until all the targets are recovered. Fig. 9 shows
the targets reconstruction results from both methods. The SFT-
based method shows the side-lobes of the stronger targets,
while the RSFT-based method only recovers the (extended)
main-lobes of all the targets.

V. DISCUSSION AND CONCLUSION

In this paper, we have addressed some practical limitations
of the SFT algorithm by developing the RSFT algorithm. It
has been shown that the RSFT algorithm is computationally
more efficient than N-D FFT in sparse settings and is robust
to off-grid frequencies. Furthermore, we have presented an
application of our RSFT algorithm in ubiquitous radar signal
processing.

Further work is needed to determine the ability of RSFT to
detect weak targets, and its behavior when the exact sparsity
is not known.
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