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Abstract. We introduce a novel framework, called sparse embedding
(SE), for simultaneous dimensionality reduction and dictionary learn-
ing. We formulate an optimization problem for learning a transformation
from the original signal domain to a lower-dimensional one in a way that
preserves the sparse structure of data. We propose an efficient optimiza-
tion algorithm and present its non-linear extension based on the kernel
methods. One of the key features of our method is that it is computa-
tionally efficient as the learning is done in the lower-dimensional space
and it discards the irrelevant part of the signal that derails the dictionary
learning process. Various experiments show that our method is able to
capture the meaningful structure of data and can perform significantly
better than many competitive algorithms on signal recovery and object
classification tasks.

1 Introduction

Signals are usually assumed to lie on a low-dimensional manifold embedded in
a high dimensional space. Dealing with the high-dimension is not practical for
both learning and inference tasks. As an example of the effect of dimension on
learning, Stone [1] showed that, under certain regularity assumption including
that samples are identically independent distributed, the optimal rate of conver-
gence for non-parametric regression decreases exponentially with the dimension
of the data. As the dimension increases, the Euclidean distances between feature
vectors become closer to each other making the inference task harder. This is
known as the concentration phenomenon [2]. To address these issues, various
linear and non-linear dimensionality reduction (DR) techniques have been de-
veloped (see [3] and references therein). In general, these techniques map data
to a lower-dimensional space such that non-informative or irrelevant information
in the data are discarded.

Recently, there has been an explosion of activities in modeling a signal us-
ing appropriate sparse representations (see [4] and references therein). This ap-
proach is motivated by the observation that most signals encountered in prac-
tical applications are compressible. In other words, their sorted coefficient mag-
nitudes in some basis obey power law decay. For this reason, signals can be
well-approximated by linear combinations of a few columns of some appropriate
basis or dictionary D. Although predefined basis such as wavelets or Fourier
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basis give rather good performances in signal compression, it has been shown
that dictionaries learned directly from data can be more compact leading to
better performances in many important tasks such as reconstruction and classi-
fication [5–7].

However, existing algorithms for finding a good dictionary have some draw-
backs. The learning of D is challenging due to the high dimensional nature of the
training data, as well as the lack of training samples. Therefore, DR seems to be
a natural solution. Unfortunately, the current DR techniques are not designed
to respect and promote underlying sparse structures of data. Therefore, they
cannot help the process of learning the dictionary D. Note that the recently de-
veloped DR technique [8, 9] based on the sparse linear model is also not suitable
for the purpose of sparse learning since it assumes that the dictionary is given.
Ideally, we want an algorithm that can discard non-informative part of the signal
and yet does not destroy the useful sparse structures present in the data.

The second disadvantage of the existing sparse learning framework is its in-
ability to handle sparse signals within non-linear models. Linear models used for
learning D are often inadequate to capture the non-linear relationships within
the data that naturally arise in many important applications. For example, in
[10–12] it has been shown that by taking into account non-linearity, one can
do better in reconstruction and classification. In addition, spatial pyramid [13],
a popular descriptor for object and scene classification, and region of covari-
ance [14], a popular descriptor for object detection and tracking, both have
non-linear distance measures thus making the current sparse representation in-
appropriate.

In this paper, we propose a novel framework, called sparse embedding (SE),
that brings the strength of both dimensionality reduction and sparse learning
together. In this framework, the dimension of signals is reduced in a way such
that the sparse structures of signals are promoted. The algorithm simultane-
ously learns a dictionary in the reduced space, yet, allows the recovery of the
dictionary in the original domain. This empowers the algorithm with two im-
portant advantages: 1) Ability to remove the distracting part of the signal that
negatively interferes with the learning process, and 2) Learning in the reduced
space with smaller computational complexity. In addition, our framework is able
to handle sparsity in non-linear models through the use of Mercer kernels.

1.1 Notations

Vectors are denoted by bold lower case letters and matrices by bold upper case
letters. The ℓ0-pseudo-norm, denoted by ∥∥0, is defined as the number of non-
zero elements in a vector. The Frobenius norm of a matrix X in Rn×m is defined
as ∥X∥2F = (

∑n
i=1

∑m
j=1 X(i, j)2)1/2. We denote the dimension of input signal

by n, output signals by d, dictionary size by K. Input space (in Rn) refers to
the ambient space of the original input signal. Feature space (in Rñ) indicates
the high dimensional space of the signal after being transformed through some
mapping Φ. Reduced space and output space (in Rd) are used interchangeably to
refer to the space of output signals after dimensionality reduction.
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2 Sparse Embedding Framework

The classical approach to learn sparse representations [15] is by minimizing the
reconstruction error over a finite set of signals subject to some sparsity con-
straint. Let Y = [y1, . . . ,yN ] ∈ Rn×N denotes the matrix of N input signals,
where yi ∈ Rn. A popular formulation is:

{D∗,X∗} = argmin
D,X

∥Y −DX∥2F , (1)

subject to: ∥xi∥0 ≤ T0, ∀i

where D = [d1,d2, . . . ,dK ] ∈ Rn×K is called the dictionary that we seek to
learn, X = [x1,x2, . . . ,xN ] ∈ RK×N is the sparse representation of Y over D,
and T0 is the sparsity level. The cost function in (1) promotes a dictionary D
that can best represent Y by linearly combining only a few of its columns. This
type of optimization can be done efficiently using the current methods [12, 15].

Different from the classical approaches, we develop an algorithm that em-
beds input signals into a low-dimensional space, and simultaneously learns an
optimized dictionary. Let M denote the mapping that transforms input signals
into the output space. In general, M can be non-linear. However, for simplicity
of notations, we temporarily restrict our discussions to linear transformations.
The extension to the non-linear case will be presented in section 4. As a result,
the mapping M is characterized using a matrix P ∈ Rd×n. We can learn the
mapping together with the dictionary through minimizing some appropriate cost
function CY:

{P∗,D∗,X∗} = argmin
P,D,X

CY(P,D,X) (2)

This cost function CY needs to have several desirable properties. First, it has
to promote sparsity within the reduced space. At the same time, the transfor-
mation P resulting from optimizing CY must preserve the useful information
present in original signals. The second criterion is needed in order to prevent the
pathological case of mapping into the origin, which obtains the sparsest solu-
tion but is obviously of no interest. Towards this end, we propose the following
optimization:

{P∗,D∗,X∗} = argmin
P,D,X

(
∥PY −DX∥2F + λ∥Y −PTPY∥2F

)
(3)

subject to: PPT = I, and ∥xi∥0 ≤ T0, ∀i

where I ∈ Rd×d is the identity matrix, λ is a non-negative constant, and the
dictionary is now in the reduced space, i.e., D = [d1,d2, . . . ,dK ] ∈ Rd×K . The
first term of the cost function promotes sparsity of signals in the reduced space.
The second term is the amount of energy discarded by the transformation P, or
the difference between low-dimensional approximations and the original signals.
In fact, the second term is closely related to PCA as by removing the first
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term in (3), it can be shown that the solution of P coincides with the principal
components of the largest eigenvalues, when the data are centered.

In addition, we also require rows of P to be orthogonal and normalized to
unit norm. P plays the role of selecting the right subspace, or equivalently the
right features, in which the useful sparse structures within data are revealed.
There are several compelling reasons to keep the orthogonality constraint. First,
this constraint leads to a computationally efficient scheme for optimization and
classification. Second, it allows the extension of SE to the non-linear case. Note
that the columns of dictionary D still form a non-orthogonal basis in the output
space despite the orthogonality constraint of P.

3 Optimization Procedure

Proposition 1 There exists an optimal solution P∗ and D∗ to (3), for suffi-
ciently large λ, that has the following form:

P∗ = (YA)T ; D∗ = ATYTYB (4)

for some A ∈ RN×d, and some B ∈ RN×K . Moreover, P∗ and D∗ have min-
imum Frobenius norm among all optimal solutions of P and D, respectively.

Proof. See the appendix in the attachment.

As a corollary of the proposition 1, it is sufficient to seek an optimal solution
for the optimization in Eq. (3) through A and B. By substituting Eq. (4) into
Eq. (3), we have:

CY(P,D,X) = ∥ATK(I−BX)∥2F + λ∥Y(I−AATK)∥2F (5)

where K = YTY and λ is a regularization parameter. The equality constraint
becomes

PPT = ATKA = I (6)

The solution can be derived as

{A∗,B∗,X∗} = argmin
A,B,X

(
∥ATK(I−BX)∥2F + λ∥Y(I−AATK)∥2F

)
(7)

subject to: ATKA = I, and ∥xi∥0 ≤ T0

The advantage of this formulation will become clear later. Basically, this formu-
lation allows a joint update of P and D via A. As we shall see later in section 4,
because the objective function is not explicitly represented in terms of Y, it is
then possible to use the kernel method to make the algorithm non-linear. De-
spite (7) being non-convex, our experiments show that effective solutions can be
found through iterative minimization.
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3.1 Solving for A

In this stage, we assume that (B,X) are fixed. As a result, we can remove the
sparsity constraint of (7). The following proposition shows that A can be solved
efficiently after some algebraic manipulation:

Proposition 2 The optimal solution of (7) when B and X are fixed is:

A∗ = VS− 1
2G∗ (8)

where V and S come from the eigendecomposition of K = VSVT , and G∗ ∈
RN×d is the optimal solution of the following minimum eigenvalues problem:

{G∗} = argmin
G

tr
[
GTHG

]
(9)

subject to: GTG = I

where H = S
1
2VT ((I−BX)(I−BX)T − λI)VS

1
2 ∈ RN×N .

Proof. The cost function can be expanded as follows:

CY(P,D,X) = ∥ATK(I−BX)∥2F + λ∥Y(I−AATK)∥2F (10)

= tr
[
(I−BX)(I−BX)TKTQTK+ λ(K− 2KTQTK+KTQTKQK)

]
(11)

where Q = AAT ∈ RN×N . The constraint ATKA = I leads to the new con-
straint AATKAAT = AAT or QKQT = Q. Using this equality constraint,
and also notice that tr(K) is a constant, the objective function in (11) can be
simplified to a more elegant form:

C̃Y(P,D,X) = tr
[
((I−BX)(I−BX)T − λI)KTQTK

]
(12)

With a simple change of variable G = S
1
2VTA, and noting that Q = AAT , the

cost function can be further simplified as:

C̃Y(P,D,X) = tr
[
((I−BX)(I−BX)T − λI)VS

1
2 (S

1
2VTA)(ATVS

1
2 )S

1
2VT

]
= tr

[
GTS

1
2VT ((I−BX)(I−BX)T − λI)VS

1
2G

]
= tr

[
GTHG

]
(13)

On the other hand, the equality constraint can also be simplified as:

ATKA = ATVS
1
2S

1
2VTA = GTG = I (14)

Eqs. (13) and (14) show that the original optimization in (7) is equivalent to (9),

and the optimal solutionA∗ can be recovered as in (8), i.e.,A∗ = VS− 1
2G∗. Note

that since K is a positive semidefinite matrix, the diagonal matrix S has non-
negative entries. S− 1

2 is obtained by setting non-zero entries along the diagonal
of S to the inverse of their square root and keeping zero elements the same. This
completes the proof.
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3.2 Solving for B and X

In order to solve for B, we keep A and X fixed. The second term in (7) disap-
pears, and the objective function reduces to:

∥ATK(I−BX)∥2F = tr
(
KTQK− 2XTBTKTQK+XTBTKTQKBX

)
(15)

A possible way of solving for B is by taking the derivative of the objective
function with respect to B and setting it to zero, which yields:

−2(KTQK)XT + 2(KTQK)B(XXT ) = 0 (16)

B = XT (XXT )† (17)

This is similar to the method of optimal direction (MOD) [16] updating step
except that B is not the dictionary but its representation coefficients over the
training data Y.
It is also possible to update B using the KSVD algorithm [15]. First, let us
rewrite the objective function (15) to a more KSVD-friendly form:

∥ATK(I−BX)∥2F = ∥Z−DX∥2F (18)

where Z = ATK ∈ Rd×N is the set of output signals. We can solve for B in
two steps. First, we apply the KSVD algorithm to learn a dictionary Dksvd from
Z. Second, we try to recover B from Dksvd. From Proposition 1, it follows that
the optimal dictionary has to be in the columns subspace of the input signals
Z. We can observe from the KSVD algorithm that its output dictionary also
obeys this property. As a result, we can recover B exactly by simply taking the
pseudo-inverse:

B = (Z)†Dksvd (19)

In this paper, we choose a KSVD-like updating strategy because it is more
computationally efficient. Our experiments show that both updating strategies
produce similar performances for applications like object classification.

Sparse coding that solves for X can be done by any off-the-shelves pursuit
algorithms. We use the orthogonal matching pursuit (OMP) [17] due to its high
efficiency and effectiveness. Note that sparse coding is the most expensive step
in many dictionary learning algorithms. Kernel KSVD [11] is an extreme exam-
ple where sparse coding has to be done in the high-dimensional feature space.
Our algorithm performs sparse coding in the reduced space leading to a huge
computational advantage, yet, is capable of taking into account the non-linearity
as we shall demonstrate in the next section.

4 Non-linear Extension of Sparse Embedding

There are many important applications of computer vision that deal with non-
linear data [13, 14]. Non-linear structures in data can be exploited by transform-
ing the data into a high-dimensional feature space where they may exist as a
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Input: A kernel matrix K, sparse setting T0, dictionary size K, dimension d, and λ.
Task: Find A∗ and B∗ by solving Eq. (4).
Initialize:
- Set iteration J = 1. Perform eigendecomposition K = VSVT

- Set A = V(:, I0), where I0 is the index set of d largest eigenvalues of K
Stage 1: Dictionary Update
- Learn a dictionary D and X from the reduced signals Z = ATK using KSVD
- Update B = (Z)†D
Stage 2: Embedding update

- Compute H = S
1
2VT ((I−BX)(I−BX)T − λI)VS

1
2

- Perform eigendecomposition of H = UΛUT

- Set G = U(:, IJ), where IJ is the index set of d smallest eigenvalues of H

- Update A = VS− 1
2G

- Increment J = J + 1. Repeat from stage 1 until stopping conditions reached.
Output: A, B and X.

Fig. 1. The SE algorithm for both linear and non-linear cases.

simple Euclidean geometry. In order to avoid the computational issues related
to high-dimensional mapping, Mercer kernels are often used to carry out the
mapping implicitly. We adopt the use of Mercer kernels to extend our analysis
to the non-linear case.

Let Φ : Rn → H be a mapping from the input space to the reproducing kernel
Hilbert space H. Let k : Rn ×Rn → R be the kernel function associated with Φ.
The mapping M from the input space to the reduced space is no longer linear.
It, however, can be characterized by a compact, linear operator P : H → Rd

that maps every input signal s ∈ Rn to PΦ(s) ∈ Rd. Similar to the proposition
1, by letting K = ⟨Φ(Y), Φ(Y)⟩H = [k(yi,yj)]

N
i,j=1, we can show that:

P∗ = ATΦ(Y)T ; D∗ = ATKB. (20)

Using Eq. (20), we can write the mapping M in an explicit form:

M : s ∈ Rn → PΦ(s) = AT ⟨Φ(Y), Φ(s)⟩H = AT [k(y1, s), . . . , k(yN , s)]T (21)

Similar to the linear case, the non-linear SE gives rise to the following cost
function:

∥PΦ(Y)−DX∥2F + λ∥Φ(Y)−PTPΦ(Y)∥2H (22)

which can be expressed in terms ofA andB using Eq. (20), yielding an equivalent
optimization:

{A∗,B∗,X∗} = argmin
A,B,X

∥ATK(I−BX)∥2F + λtr
[
(I−AATK)TK(I−AATK)

]
subject to: ATKA = I, and ∥xi∥0 ≤ T0,∀i (23)

The resulting optimization can be solved in the same way as in the linear case.
Fig. 1 summarizes the SE algorithm. Note that in the non-linear case, the dimen-
sion of the output space can be higher than the dimension of the input space,
and is only upper bounded by the number of training samples.
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5 Experiments

In this section, we evaluate our algorithm on both synthetic and real datasets.
In addition, we propose a novel classification scheme that leads to competitive
performances on 3 different datasets: USPS, Caltech-101, and Caltech-256. We
also analyse and compare our method with the state of the art. For all the
experiments in this section, we set the maximum number of iteration J for our
SE algorithm shown in Fig. 1 and that of the KSVD algorithm to 5 and 80,
respectively.

5.1 Recovery of Dictionary Atoms

Similar to the previous works [15, 17], we first run our algorithm on a set of
synthetic signals. The goal is to verify if our algorithm is able to learn the sparse
patterns from a set of training data that comes with distortions.

Generation of Training Signals: Let D ∈ R80×50 be a generating dictio-
nary. The first 30 elements in each column of D are generated randomly, and
the last 50 elements are set to zero. Each column of D, which we will call a
dictionary atom, is normalized to unit norm. 2000 training signals are generated
by linearly combining 3 random atoms from this dictionary and superimposed
with distortion signals:

Y = DX+ αE (24)

where α is the distortion level; X ∈ R50×2000 is a matrix where each of its column
has at most 3 non-zero elements at independent locations with random values;
E ∈ R80×2000 is a matrix where each of its column is called a distortion signal
and generated as follows: The first 30 elements in each column of E are set to
zero, and the last 50 elements are generated randomly and independently under
Gaussian distribution. Each column of E is also normalized to unit norm.

Our task is to recoverD fromY. We will first use SE to simultaneously reduce
the dimension via A and learn a dictionary via B. The original dictionary can be
estimated as D̂ = YB. We compare our results with KSVD. To demonstrate the
benefit of our proposed joint dimensionality reduction and dictionary learning,
we also compare our results with the approach when the dimensionality reduction
is done using PCA before learning the dictionary using KSVD.

Let Ppca represent the PCA transformation. We learn a dictionary, denoted
Dpca, using KSVD on the set of reduced signals PpcaY. The original dictionary
is recovered by first computing the coefficient matrix Bpca = (PpcaY)†Dpca,

and then D̂ = YBpca. Note that since the columns of Dpca are in the column
subspace of PpcaY, the computation of the coefficient matrix Bpca is exact.

Verification of Recovered Dictionaries: For all methods, the computed
dictionary was compared against the generating dictionary. This comparison
is done by sweeping through the columns of the generating dictionary to find

the closest column (in ℓ2 distance). The distance is measured by
(
1− |dT

i d̂i|
)
,

where d̂i is the i-th estimated dictionary atom, and di is its closest atom in the
original dictionary. A distance of less than 0.01 is considered a success. We learn
dictionaries with sparsity level T0 = 3, the dictionary size K = 50, and λ = 1.1.
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Fig. 2. Comparison of number of recovered dictionary atoms over 40 trials.
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Fig. 3. Average number of successfully recovered dictionary atoms versus the dimension
of the reduced space for different distortion level α. Blue color line corresponds to results
for PCA+KSVD scheme, green color line for KSVD, and red color line for SE.

Fig. 2 compares the number of successes over 40 trials. Fig. 3 plots the av-
erage number of success versus the dimension of the output space for different
distortion levels. SE consistently outperforms both KSVD and PCA+KSVD
with larger and larger performance gaps as the distortion level increases. Fig. 3
shows that the performance of PCA+KSVD decreases drastically not only when
the level of distortion level increases, but also when the dimension gets smaller
than 30, which is the true dimension of our sparse signals. In contrast, SE out-
performs KSVD even when the dimension goes below 30. Interestingly, for the
high distortion level like α = 1.2, it is beneficial to reduce the dimension to even
below the true dimension of sparse signals (see the right most chart of Fig. 3).

In order to understand the reason behind the good results of SE, we visually
inspect the transformation P. Fig. 4 shows the images of P and the PCA map-
ping. The first 30 rows of the P weight heavily on the first 30 dimensions of Y.

PCA
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Fig. 4. Comparison of PCA mapping (left) and the transformation P learned from SE
(right). Distortion level α = 1, dimension of the reduced space is 40.
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In other words, SE efficiently preserves sparse structures of signals and discards
non-sparse distortions. In contrast, PCA does not preserve the sparse patterns
since it is attempting to capture more of the signal variation. Only around 24
rows of PCA focus on the first 30 dimensions and the rest put more emphasis on
non-sparse structures. Being able to get rid of distortions while preserving the
sparse structures enables SE to achieve a higher recovery rate.

5.2 Latent Sparse Embedding Residual Classifier (LASERC)

Classification is an important component in many computer vision applications.
In this section, we propose a novel classification scheme motivated by the SE
framework. For generality, we will consider the non-linear setting. Let there be C
different classes of signals {Yi = [yi

j ]
Ni
j=1 ∈ Rn×Ni}Ci=1. We use the SE algorithm

in Fig. 1 to learn {Ai,Bi}Ci=1, which implicitly provides {Pi,Di}Ci=1. Given a
new test sample st, the classification is done in three steps:
I) We compute output signals zi by mapping st via Mi,

Mi : st → zi = P iΦ(st) = AT
i ⟨Φ(Yi), Φ(st)⟩H = AT

i ki,t (25)

where: ki,t = [k(yi
1, st), . . . , k(y

i
Ni

, st)]
T ∈ RNi (26)

II) We obtain the sparse code xi for zi over the dictionary Di = AT
i KiBi using

the OMP algorithm, where

Ki = ⟨Φ(Yi), Φ(Yi)⟩H = [k(yi
j ,y

i
k)]

Ni

j,k=1 ∈ RNi×Ni (27)

III) We compute the residual for each class as follows:

ri = ∥Φ(st)−PT
i Dixi∥2H = k(st, st)− 2kT

i,tAiDixi + xT
i D

T
i A

T
i KiAiDixi (28)

Here, Dixi is the estimated signal in the output space, and PT
i Dixi is the

estimated signal in the feature space. The sparse coding step makes our algorithm
more resilient to noise. Finally, each signal is assigned to the class that yields
the smallest reconstruction residual. We call this latent sparse embedding residual
classifier (LASERC). The term “latent” comes from the fact that the residual
errors are computed in the feature space instead of the input space which does
not take into account the non-linearities of the signal. The output space is also
not suitable for classification because it does not retain sufficient discriminatory
power due to its low-dimensional nature.

USPS Digit Recognition We apply our classifier on the USPS database
which contains ten classes of 256-dimensional handwritten digits. A dictionary
is learned for each class using samples from the training set with the following
parameters setting: 500 dictionary atoms, T0 = 5, d = 100, λ = 1.1, and the
maximum number of iterations is set to 80. A polynomial kernel of degree 4 with
the constant of value 1 is used for SE, kernel KSVD, and kernel PCA.

Our first experiment presents the results for the case when the pixels are ran-
domly removed from the test images shown in Fig. 5(a), and when the test sam-
ples are corrupted by Gaussian noise with different standard deviations shown
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Fig. 5. (a,b) Comparison of classification accuracy against noise level. (c) Accuracy
versus dimension. (d) Projection coefficient of all samples onto a dictionary atom.

in Fig. 5(b). In both scenarios, LASERC consistently outperforms kernel KSVD,
linear KSVD, and kernel PCA. As the distortion level increases the performance
differences between sparse embedding and linear KSVD become more drastic.

It is also worthwhile to investigate cases when the objective function in (7)
has only the first term (λ = 0), denoted by LASERC1, and when there is only
the second term (λ → ∞), denoted by LASERC2. Fig 5(a) and 5(b) show that
LASERC2 performs better for the low-noise cases and worse for the high-noise
cases in comparison with LASERC1.

In order to see the effect of dimension on the classification performance
of LASERC, we compare the results for different values of dimension d =
{5, 10, 100, 200, 500}. The corresponding sparsity level is T0 = {2, 3, 5, 5, 10}.
Fig. 5(c) shows that the classification result improves as the dimension increases
from 5 → 100. Beyond 100, the accuracy decreases slightly for the noiseless case,
but faster for the very noisy cases like Gaussian noise with σ = 1.2.

We project test samples onto a random dictionary atom of the first class
(digit 0). Fig. 5(d) plots the sorted projection coefficients of all the samples,
color-coded by their class labels. We can observe from the plot 5(d) that, in the
feature space, the dictionary atom is almost perpendicular to all samples except
those from the first class (orange color at the two ends). This implies that the
learned dictionary has taken into account the non-linearities of signals.
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(a) Okapi (100%) (b) Leopard (100%) (c) Face (100%)

(d) Mayfly (20%) (e) Cougar (35%) (f) Seahorse (42%)

Fig. 6. Sample images from the classes corresponding to the highest accuracy (top
row) and the lowest accuracy (bottom row) of LASERC.

# train samples 5 10 15 20 25 30

Malik [18] 46.6 55.8 59.1 62.0 - 66.2

Lazebnik [13] - - 56.4 - - 64.6

Griffin [19] 44.2 54.5 59.0 63.3 65.8 67.6

Irani [20] - - 65.0 - - 70.4

Yang [21] - - 67.0 - - 73.2

Wang [22] 51.15 59.77 65.43 67.74 70.16 73.44

SRC [6] 48.8 60.1 64.9 67.7 69.2 70.7

KSVD [15] 49.8 59.8 65.2 68.7 71.0 73.2

D-KSVD [23] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD [24] 54.0 63.1 67.7 70.5 72.3 73.6

LASERC 55.2 65.6 69.5 73.1 75.8 77.3

# train samples 15 30

Griffin [19] 28.3 34.1

Gemert [25] - 27.2

Yang [26] 34.4 41.2

LASERC 35.2 43.6

Time Train (s) Test (ms)

SVM 2.1 8.1

Ker. KSVD 2598 3578

SRC N/A 520

D-KSVD 450 12.8

LASERC 7.2 9.4

Table 1. Comparison of recognition results on Caltech-101 dataset (left), recognition
results on Caltech-256 dataset (upper right), and the computing time (lower right).

Caltech-101 and Caltech-256 Object Recognition We perform the second
set of object recognition experiments on the Caltech-101 database [27]. This
database comprises of 101 object classes, and 1 background class collected from
Internet. The database contains a diverse and challenging set of images from
buildings, musical instruments, animals and natural scenes, etc. We used the
combination of 39 descriptors as in [28].

We follow the suggested protocol in [13, 29], namely, we train on m images,
where m ∈ {5, 10, 15, 20, 25, 30}, and test on the rest. The corresponding pa-
rameters settings of SE are: T0 = {3, 4, 5, 7, 8, 9}, d = {5, 10, 15, 20, 25, 30}, and
λ = 1.1. To compensate for the variation of the class size, we normalize the recog-
nition results by the number of test images to get per-class accuracies. The final
recognition accuracy is then obtained by averaging per-class accuracies across
102 categories. We also repeat the same experiment on Caltech-256 dataset.

Table 1 shows the comparison of our classification accuracy with the state
of the art. It is interesting that our method significantly outperforms the other
discriminative approaches like LC-KSVD [24] and D-KSVD [23]. Thanks to the
efficiency of DR, our method achieves a significant speed-up in the training
process over the other sparse learning methods as shown in table 1. Fig. 6 shows
sample images from the easiest classes as well as the most difficult classes. Fig. 7
shows the recognition accuracy per class, and Fig. 8 shows their confusion matrix.
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6 Conclusions

This paper presented a novel framework for a joint dimensionality reduction
and sparse learning. It proposes an efficient algorithm for solving the resulting
optimization problem. It designs a novel classification scheme leading to a state-
of-the-art performance and robustness on several popular datasets. Through
extensive experimental results on real and synthetic data, we showed that sparse
learning techniques can benefit significantly from dimensionality reduction in
terms of both computation and accuracy.
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