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ABSTRACT
LAser Detection And Ranging (LADAR) imagers operate by mea-
suring the distance to an object by timing how long a transmitted
pulse takes to make a round trip between the transmitter and the re-
ceiver. LADAR images are often characterized by a multiplicative
noise known as speckle which often makes the interpretation of data
difficult. In this paper, we propose a more general formulation of the
problem of reconstructing the piecewise smooth and texture compo-
nent (speckle) directly from a set of LADAR measurements. The
proposed method is evaluated on the real data collected by using a
new agile-beam LADAR architecture.

Index Terms— Agile-beam LADAR imaging, image recon-
struction, computational imaging.

1. INTRODUCTION

LAser Detection And Ranging (LADAR) is a technology that uses
laser light to measure the distance to an object. The idea is that when
light shines onto an object, a portion of that light is reflected back.
The time between when the laser is fired and when the reflected light
is received is used to measure the range of a target. Many LADAR
systems use some form of beam scanning, such as a spot or line, to
resolve transverse features of an object. If the laser is scanned over
a region of interest, 3D image of the object can be reconstructed [1].
Other systems, often called Flash LADAR, use a relatively uniform
beam to illuminate an object and an array of detectors to resolve
transverse features. Our Agile-beam LADAR concept uses illumi-
nation modulation in time (i.e., a pulse along the direction of propa-
gation) and space (i.e., a beam with patterning in the plane perpen-
dicular to the direction of propagation) to measure a series of inner
products so that they may reconstruct a three dimensional image of
objects in a scene.

Our concept is intended for robotic perception to minimize size,
weight, power and cost. Our initial effort explores the system design
and computational imaging algorithms as we look forward toward
nanophotonic optical phased array devices. In contrast to contem-
porary systems implemented in bulk optics, such optical phased ar-
rays suggest future LADAR systems bearing greater similarity to to-
day’s active electronically-scanned radar systems and enabling con-
siderable advantages in moving operations that are presently imple-
mented in optical hardware to software in digital electronic comput-
ers.

Recent progress in phased arrays at optical frequencies has been
encouraging [2]. We expect that continued device development will
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attain high densities, rapid modulation, and high efficiencies needed
to use a single array for transmission and reception in a monostatic
configuration. The wavefront control to be afforded by this technol-
ogy will go beyond beam steering to allow the formation of arbitrary
patterns with frequency, phase, and amplitude agility to create scan
patterns that adapt to changing environments and mission require-
ments. Moreover, the size and weight envelope of a phase-array-
based LADAR is attractive, since the optics of the system suggest the
form factor of a thin disk [3]. Our approach to suppressing speckle
in reconstructed images is especially significant to imaging concepts
using optical phased arrays. Practical implementations of these de-
vices may (initially and perhaps persistently) only afford phase mod-
ulation which results in speckle intrinsic to the illumination pattern,
in addition to speckle imparted by a rough scattering surface. The
algorithm we present here may greatly simplify optical device con-
struction and overcome physical limitations of wavefront generation.

The combination of arbitrary wavefront control, ample compu-
tational resources (the cornerstone of any robotic platform), and the
nature of the desired output product suggests that this approach, and
perhaps computational imaging in general, is remarkably well suited
to robotic applications. In one sense, all robotic perception is com-
putational by default, at least on the interpretation side where im-
age fusion, stereo vision, and object recognition algorithms are used
to build an output product: a semantic world model of the robots
surroundings, which is a sparse representation compared to the in-
put measurements. The Agile-beam LADAR concept envisions a
computational approach on both the measurement apparatus, which
currently is performed by the analog optical operation of lenses and
focal planes, and the subsequent interpretation apparatus, which is
performed on digital electronic computers. A seamless, software-
based architecture melding measurement and interpretation suggests
more efficient measurements that may be performed in a basis other
than the pixel basis, which is otherwise rigidly defined in optical
hardware. The precedent set by software-defined radio and cogni-
tive radio is a useful analogy.

Compressive sensing (CS) implemented in the Rice single-pixel
camera is one example of how measurement in a non-pixel basis
yields both measurement efficiency and permits advantageous hard-
ware architectures (i.e., a focal point receiver rather than a focal
plane array) [4]. It is important to note that pixel-basis reconstruc-
tion considered essential in many computational imaging approaches
is mostly superfluous in a robotic perception system. To the extent
that objects and surfaces can be measured and identified in a com-
pressed or alternative basis, as demonstrated by smashed-filter ap-
proaches, pixel basis reconstruction is unnecessary [5]. Moreover,
the intelligence sub-systems of robotic vehicles are able to feed the
perception-sub system with a set of priors based on the robots under-
standing of the environment and its situational awareness, thereby
simplifying the identification process and allow tuning of the optical



parameters that would otherwise be impossible if they were rigidly
defined in hardware.

With the Agile-beam concept, we take a prospective step toward
phase array architectures using more efficient non-pixel basis sam-
pling. In the case of active sensing with LADAR, compressive sens-
ing techniques are especially beneficial since voxels are quite ex-
pensive owing to the laser power, signature emission, and avalanche
photodiode arrays with sophisticated read-out electronics required to
produce them. However, one of the assumptions made when apply-
ing CS theory for imaging is that the underlying image is sparse in
some basis. This was shown to be a somewhat adequate assump-
tion for LADAR imaging in [6], [7], [8]. However, LADAR im-
ages are often characterized by a multiplicative component known
as speckle. Speckle can make the compressibility and interpretation
of LADAR images more difficult. In this paper, we present an im-
proved algorithm that can reconstruct LADAR images by recovering
two components of a LADAR image directly from a set of measure-
ments. These components represent piecewise smooth and textured
(speckle) parts of a LADAR image.

The rest of the paper is organized as follows. In Section 2, we
describe our agile-beam LADAR system architecture. The LADAR
observation model and the optimization algorithms are described in
Section 3. Experimental results are presented in Section 4 and Sec-
tion 5 concludes the paper with a brief summary and discussion.

2. AGILE-BEAM LADAR ARCHITECTURE

The concept described in this paper was implemented using off-the-
shelf components, including the “bucket detector” receiver used in
the ARL MEMS-scanned LADAR [9]. A key compromise versus an
ideal implementation is the use of a liquid-crystal-on-silicon (LCoS)
spatial light modulator as a surrogate for a bona-fide optical phased
array described in the introduction. While this liquid crystal SLM
implements the essential function of an optical phased array, wave-
front modulation / generation, it lacks amplitude control, requires an
externally formed Gaussian beam for illumination, and is limited to
relatively slow switching speeds (less than 1 kHz). Despite these
shortcomings, it is an effective surrogate to demonstrate the concept.

The arrangement of components is shown in Figure 1. A
linearly-polarized transmitter beam at 1550 nm, shown in red, is
generated by a 2-ns pulsed fiber laser and collimated using a multi-
element lens (not shown). A mirror is positioned to align the beam
to the center of the SLM and remains fixed in that position. The
beam reflects from the SLM, passes through baffles intended to
block stray light, and illuminates a distant target which is about 3
meters from the aperture. The backscatter is collected by the bucket
detector receiver, which has a field of view that subtends the entire
area projected by the SLM-generated far field patterns. The receiver
feeds a high speed digitizer.

Three dimensional images are generated by recording time-
domain inner product measurements between the three dimensional
scene and a series of pulsed far-field illumination patterns whose
time properties are defined by a laser pulse and whose cross-range
spatial properties are defined by a computer-generated hologram
written to the SLM. The system is configured to generate voxels in a
n-by-n-by-T data cube, where n is the number of cross-range image
elements in each of two spatial dimensions and T is the number of
image elements in the direction of beam propagation (i.e., time).
For the tests in this paper, a 32 × 32 × 301 image datacube was
generated. The 301 elements in time are fully sampled and digitized
as with any other full-waveform LADAR system, and each sample
is one range “slice”. The 32×32 cross-range elements may be mea-

Fig. 1: Block diagram of a prototype agile-beam LADAR architec-
ture.

sured in a variety of modes. The first mode, meant for comparison
to classic techniques and to demonstrate flexibility, is raster scan-
ning. In raster mode, 1024 wavefront-generating digital holograms
are generated, each defining one beam deflection in the 32 × 32
cross-range sampling grid. Naturally, the digital holograms required
to affect these wavefronts have Fresnel prism-like 2D phase profiles.
As an alternative to raster scanning using the identity matrix, we
define 1024 digital holograms whose far-field illumination patterns
are rows of the discrete cosine transform matrix and another mode
with 1024 digital holograms that project patterns of the rows of the
Hadamard transform matrix [10]. Each of the 1024 patterns in any
mode generates a 301 sample time domain waveform, recording the
backscatter range profile for a given illumination pattern. Inverting
the measurement matrix transforms the measurements to the pixel
basis.

Operating the prototype in a CS mode is similar to the other
modes, except a random (rather than orthonormal) measurement ma-
trix is used, and fewer than 1024 laser pulses are used to generate the
full 32× 32× 301 image data cube.

3. OBSERVATION MODEL AND OPTIMIZATION

Assuming that the range of interest is known a priori, the measure-
ment process can be written as

y = Ax+ b, (1)

where x ∈ RN , N = n2 is the cross-range element, A ∈ M × N
with M < N is the measurement matrix when CS used and b is the
additive measurement noise. Furthermore, assuming that the range
slice is a superposition of two different signals, (1) can be rewritten
as1

y = A(xp + xt) + b = Axp +Axt + b, (2)

where xp and xt are the piecewise smooth component and texture
component of x, respectively. We further assume that xp is sparse in
anN×Np dictionary represented in matrix as Dp, and similarly, xt
is sparse in an N ×Nt dictionary represented in matrix form as Dt

so that xp = Dpαp and xt = Dtαt for the piecewise smooth and

1See [11], [12] for theoretical details on decomposing an image into the
sum of a piecewise smooth part and a textural part.



the texture component, respectively. The sizes Np and Nt are typi-
cally much larger than N . The texture dictionary Dt should contain
atoms that are oscillatory in nature such as those found in the dis-
crete cosine/sine transform and the Gabor transform. The dictionary
Dp should be able to process images with geometric features such
as edges. The matrix Dp should be some type of wavelet, shearlet,
curvelet, or contourlet dictionary.

Using this decomposition, the LADAR measurement process at
a given range slice can be reformulated as

y = ADpαp +ADtαt + b

= Bpαp +Btαt + b, (3)

where Bp = ADp and Bt = ADt. We propose to recover the
LADAR image x by estimating the components xp and xt by solv-
ing the following problem:

α̂p, α̂t = arg min
αp,αt

λ‖αp‖1 + λ‖αt‖1 + γTV (Dpαp)

+
1

2
‖y −Bpαp −Btαt‖22, (4)

where γ and λ are two regularization parameters and TV is the total
variation (i.e. sum of the absolute variations in the image). The two
components are the corresponding representations of the two parts
and can be obtained by x̂p = Dpα̂p and x̂t = Dtα̂t. Once the two
components of x are recovered, we obtain the final estimate as

x̂ = x̂p + x̂t. (5)

This notion of separating a signal into different morphologies using
sparse representations is often known as Morphological Component
Analysis (MCA) [12].

3.1. Speckle

In LADAR imaging, the multiplicative speckle noise model is often
given by z = x · v, where z,x and v are the noisy LADAR im-
age, the noise free image and speckle considered as a random vec-
tor, respectively. Here, · represents the point wise multiplication.
See [13] for an extensive investigation of the statistics and the ori-
gins of speckle. This multiplicative noise model can be rewritten as
a sum of the noise free image and a signal dependent additive noise
as

z = x · v = x+ (v − 1)x, (6)

where 1 = [1, · · · , 1]T . In this setting, when the underlying image
contains no textures, the first and the second terms in (6) can be
viewed as xp and xt, respectively.

3.2. Optimization

Various methods can be used to obtain the solution of (4). In this
paper, we adapt an iterative shrinkage algorithm known as the Sep-
arable Surrogate Functionals (SSF) to solve the separation problem
[14], [15]. Figure 2 summarizes the different steps of the SSF algo-
rithm, where Sλ(x) = sign(x)(|x| − λ)+ is the element-wise soft-
thresholding operator with threshold λ, (a)+ denotes the function
max(a, 0) and H denotes the undecimated Haar wavelet dictionary.
Note that we have replaced the TV correction term by a redundant
Haar wavelet-based shrinkage estimate as this seems to give the best
results. This adjustment is applied only to the piecewise smooth
component to control the ringing artifacts near the edges caused by
the oscillations of the atoms in the dictionary Dp. The same adjust-
ment was used in [12] and the substitution was partially motivated by

observing the connecting between TV and the Haar wavelet given
in [16]. See [14], [15] for more details on the derivation of this algo-
rithm.
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2. Update the residual as
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until: stopping criterion is satisfied.
Output: The two components α̂p = αkp and α̂t = αkt .

Fig. 2: The SSF iterative shrinkage algorithm to solve (4).

4. EXPERIMENTAL RESULTS

In this section, we present results of our method using the proto-
type agile-beam LADAR architecture described in Section 2. In our
experiments, we use a dictionary corresponding to the undecimated
wavelet transform (Daubechies wavelet with 6 vanishing moments)
for the piecewise smooth part and the local DCT dictionary for the
texture part. We decay the threshold value of λ = λk during each
iteration and stop the iterations when λk = 2.1ε, where ε is the
additive noise level [17].

(a) (b) (c)
Fig. 3: Measured data. (a) Objects used for experiments. (b) Recon-
structed objects at depth 3 meters. (c) Background clutter.

Four different measurement modes (raster, Hadamard, DCT and
CS) are used for collecting data. For CS, only 50% of random mea-
surements were collected (i.e. M = N/2). Two shapes, a square
and a triangle were cut from white cardboard and attached to a black
post. They were placed about 3 meters away from the sensor within
its field of view (See Figure 3 (a)). Peaks in the time histograms
were used to identify the slice containing the objects. In the time
histogram Figure 4, the first peak at 191 corresponds to the objects
and the other peak at 228 corresponds to the background clutter. Fig-
ure 3(b) and (c) show the range slices corresponding to objects and
clutter, respectively when raster scan is used for collecting data. One
can clearly see the presence of speckle in these images.
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Fig. 4: Timing histogram. Peaks represent the object (at 191) and
back wall (at 228) in left-to-right order.

4.1. Robust Recovery

In this section, we compare the reconstructions obtained by our
method with that of the original system (simply by inverting the sys-
tem matrix induced by the far-field illumination patterns) and using
a standard sparsity promoting `1-minimization algorithm where the
identity basis is used as the sparsifying transformation. In particular,
the following problem is solved to obtain the cross-range element
from (1)

x̂ = argmin
x
λ‖x‖1 +

1

2
‖y −Ax‖22. (7)

We employed a highly efficient algorithm that is suited for large scale
applications known as spectral projected gradient (spgl1) algorithm
for solving the above problem [18]. Note that we do not reduce the
number of measurements in this experiment (i.e. M = N ).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 5: Object reconstruction. First, second and third columns cor-
respond to raster scan, DCT and Hadamard mode reconstructions,
respectively. Images in (a)-(c) show the reconstructions obtained by
simply inverting the system matrix. Images in (d)-(f) show the re-
constructions obtained by solving (7). Images in (g)-(i) show the
reconstructions using our method.

Reconstruction results are shown in Figure 5. As can be seen
from the first row of this figure, simply by inverting the system ma-
trix, one obtains range slides that have high amount of speckle es-
pecially in the DCT and Hadamard modes. The sparsity promoting
reconstructions (second row) are able to remove some noise but the
best reconstructions are obtained by our method (last row). In this
figure, we only show the piecewise smooth component as the tex-
ture component contains the speckle noise. This experiment clearly
shows the significance of using structured representation for obtain-
ing speckle free reconstructions directly from the LADAR measure-
ments.

(a) (b) (c)
Fig. 6: Reconstructions from compressive measurements. (a) Re-
construction by simply inverting the system matrix (e.g. `2 recon-
struction). (b) Reconstruction by solving (7). (c) Reconstruction
using our method.

4.2. CS Recovery

In the second set of experiments, we use the compressive data col-
lected using a random Bernoulli (p = 0.5) matrix in our agile-
beam LADAR system. We retained only 50% of the measurements
(i.e. M=N/2). We compare the reconstructed range slices using
our method with the reconstruction obtained by solving (7) and by
simply inverting (`2 reconstruction) the measurement matrix in Fig-
ure 6. As expected, the `2 reconstruction completely fails to prop-
erly reconstruct the range slice. The `1-minimization algorithm does
reconstruct the range slice properly, however, it suffers from high
amount of speckle. In contrast, our method is able to not only recon-
struct the objects properly but it is also able to remove the speckle
from the range slice.

5. CONCLUSION

In this paper, we studied the problem of directly reconstructing two
separate components of LADAR range slices from the LADAR mea-
surements. The approach is based on an optimization formulation
that can be solved in the form of thresholding iteration scheme. One
of the important advantages of this approach is that the separate
components are more amenable to classification tasks yet most im-
portantly solving for these components individually provides an im-
proved reconstruction fidelity. Part of the improvement comes from
being able to estimate better the salient and speckle elements. This is
because these components are being estimated using separate dictio-
nary that is best adapted to these features unlike previous formula-
tion of this LADAR image recovery problem. More analysis on the
artifacts introduced by the random under-sampling in terms of the
point spread function and the sensitivity of our algorithms to differ-
ent amount of noise and sparsity levels will be discussed elsewhere.
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Mrázek, and Martin Welk, “On the equivalence of soft wavelet
shrinkage, total variation diffusion, total variation regulariza-
tion, and sides,” SIAM Journal on Numerical Analysis, vol. 42,
no. 2, pp. 686–713, feb 2004.
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