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ABSTRACT

A LAser Detection And Ranging (LADAR) apparatus obtains
range information from a three dimensional scene by emit-
ting laser beams and collecting the reflected rays from target
objects in the region of interest. The Agile Beam LADAR
concept makes the measurement and interpretation process
more efficient by a software-defined architecture that lever-
ages Computational Imaging principles to this end. Using
these techniques, we show that, the process of object identifi-
cation and scene understanding can be accurately performed
in the LADAR measurement domain thereby rendering the
efforts of pixel based scene reconstruction superfluous.

Index Terms— Agile-beam LADAR imaging, object
recognition, imaging.

1. INTRODUCTION

In the realm of three dimensional sensing, LAser Detection
And Ranging (LADAR) is a well known technology that pro-
vides a robust and efficient way to effectively construct 3D
scene by using laser light to measure distance to various ob-
jects in the scene [1]. The range of the target is measured us-
ing the time between the firing of the laser beam and receiving
the reflected rays from the target object. Transverse features
of the target are resolved by using some form of beam scan-
ning (e.g. a spot or a line) by the LADAR systems. Three-
dimensional image of the region of interest is thereafter re-
constructed. Other systems like Flash LADAR use a more
uniform beam to illuminate objects and an array of detectors
to resolve transverse features. The Agile beam LADAR con-
cept utilizes temporal (i.e. a pulse along the direction of prop-
agation) and spatial (i.e. a certain beam pattern in the plane
perpendicular to direction of propagation) illumination mod-
ulation information to measure a series of inner products and
thereafter reconstruct a three dimensional image of the objects
in the scene and/or perform object recognition.
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The Agile beam LADAR concept is particularly useful
in robotic perception of three dimensional world, to mini-
mize size, weight, power and cost simultaneously. To this
end we have explored the applications of system design and
computational imaging algorithms. Emerging technologies in
nanophotonic optical phased array devices [2] suggest that fu-
ture LADAR systems will closely resemble present day elec-
tronically scanned RADAR systems and that there is a consid-
erable gain in transferring operations currently implemented
in optical hardware to software systems running on digital
electronic computers.

An important feature of the Agile Beam LADAR con-
cept is the incorporation of computational approach both in
the measurement apparatus (implemented by analog optical
operation of lenses and focal planes) as well as the subse-
quent interpretation process (performed on digital electronic
computers). This software-based architecture combining the
measurement and interpretation stages has led to opportuni-
ties for more efficient measurement and interpretation tech-
niques than simply in the pixel basis rigidly defined in optical
hardware. Instances of such technologies include the Rice
single-pixel camera [3] which leverages Compressive Sens-
ing (CS) concepts for measurement efficiency and also sup-
ports advantageous and cost effective hardware architectures.
Some of the other compressive LADAR systems include [4],
[5], [6].

In several robotic perception applications, reconstruction
of the three dimensional scene on a pixel basis is more than
what is necessary, as long as measurement and identification
of objects and surfaces can be effectively performed in an al-
ternate basis (e.g. smashed filter approach [7]). Thus avoiding
reconstruction without necessarily degrading the quality of
perception can help us save computational time and cut down
on resource, size and cost requirements. Moreover, incorpo-
ration of prior knowledge about the environment in smart uti-
lization of the perception sub-system in a robotic system can
simplify and increase the efficacy of interpretation and help
with tuning optical parameters.

In this paper, we have explored the idea of object recogni-
tion in alternate domains (rather than one in the pixel basis).



Our findings suggest that it is possible to recognize the objects
directly in the measurement domain with sufficient levels of
accuracy and even attaining comparable performance with the
original domain. Our approach saves computational time and
resources by avoiding the operations related to reconstruction.

The rest of the paper is organized as follows. Section 2
presents a description of the Agile Beam LADAR concept
and the reconstruction process. Section 3 describes how ob-
ject recognition can be done in the measurement domain. We
discuss our experiments and the results obtained in those in-
vestigations. Section 4 concludes the paper with a brief sum-
mary of the observations and their implications.

2. AGILE BEAM LADAR IMAGING

The agile beam imaging architecture we used in this work is
shown in Figure 1. A linearly-polarized transmitter beam at
1550 nm, shown in blue, is generated by a 2-ns pulsed fiber
laser and collimated using a multi-element lens (not shown).
A mirror is positioned to align the beam to the center of the
spatial light modulators (SLM) and remains fixed in that posi-
tion. The beam reflects from the SLM, passes through baffles
intended to block stray light, and illuminates a distant target
which is about 3 meters from the aperture. The backscatter
is collected by a so-called bucket detector receiver, which has
a field of view that subtends the entire area projected by the
SLM-generated far field patterns. The receiver feeds a high
speed digitizer.

Fig. 1: Block diagram of a prototype agile-beam LADAR ar-
chitecture.

Three dimensional images are generated by recording
time-domain inner product measurements between the three
dimensional scene and a series of pulsed far-field illumination
patterns whose time properties are defined by a laser pulse
and whose cross-range spatial properties are defined by a
computer-generated hologram written to the SLM. The sys-
tem is configured to generate voxels in a n-by-n-by-T data

cube, where n is the number of cross-range image elements in
each of two spatial dimensions and T is the number of image
elements in the direction of beam propagation (i.e., time). For
the tests in this paper, 32 × 32 × 301 image data cubes were
generated. The 301 elements in time are fully sampled and
digitized as with any other full-waveform LADAR system,
and each sample is one range “slice”.

The 32 × 32 cross-range elements may be measured in
a variety of modes. The first mode, meant for comparison
to classic techniques and to demonstrate flexibility, is raster
scanning. In raster mode, 1024 wavefront-generating digital
holograms are generated, each defining one beam deflection
in the 32 × 32 cross-range sampling grid. Naturally, the dig-
ital holograms required to affect these wavefronts have Fres-
nel prism-like 2D phase profiles. As an alternative to raster
scanning using the identity matrix, we define 1024 digital
holograms whose far-field illumination patterns are rows of
the discrete cosine transform (DCT) matrix and another mode
with 1024 digital holograms that project patterns of the rows
of the Hadamard transform matrix [8]. Sample patterns are
shown in Fig. 2. Each of the 1024 patterns in any mode gen-
erates a 301 sample time domain waveform, recording the
backscatter range profile for a given illumination pattern. In-
verting the measurement matrix transforms the measurements
to the pixel basis.

(a)

(b)
Fig. 2: Sample patterns used in our experimental prototype.
(a) Hadamard (b) DCT.

2.1. Image Recovery

Assuming that we know the range of interest a priori, the agile
beam LADAR measurement process can be written as

y = Ax+ b, (1)

where x ∈ RN , N = n2 is the cross-range element, A ∈
N ×N is the measurement matrix and b is the additive mea-
surement noise. Given y and A, the general problem is to
recover x. Direct inversion of the matrix in (1) leads to noisy
outputs [9]. As a result robust solutions are usually sought.
Assuming that the scene or object of interest is sparse, the



following sparsity promoting `1-minimization algorithm can
be used to robustly recover x

x̂ = argmin
x
λ‖x‖1 +

1

2
‖y −Ax‖22. (2)

We employed a highly efficient algorithm that is suited for
large scale applications known as spectral projected gradient
(spgl1) for solving the above problem [10].

Fig. 3: Objects used for collecting data.

Figure 3 shows two shapes, “8” and “E”, that were used
for collecting data using the experimental prototype. These
shapes were cut from white cardboard and attached to a black
post. The first and second shapes were placed about 3 and 4
meters away from the sensor within its field of view, respec-
tively. Peaks in the time histograms were used to identify the
slice containing the objects. Peaks at 184 and 229 correspond
to the foreground object “8” and background object “E”, re-
spectively. The peak at 265 represents the back wall.
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Fig. 4: Timing histogram. Peaks at 184 and 229 represent
the foreground object “8” and background object “E”, respec-
tively. The peak at 265 represents the back wall.

Reconstructions corresponding to different modes are
shown in Figure 5. As can be seen from this figure, the
reconstruction quality depends on the mode used for data
collection. Furthermore, as the reconstruction procedure in-
volves solving an `1-minimization problem, it can be very
time consuming making it not suitable for real-time process-
ing. For instance, in robotics applications, one might be
interested in recognizing objects seen by the LADAR in real
time. For this application, reconstructing an image from the
LADAR measurements then recognizing the object may not
be feasible.

(a)

(b)

(c)
Fig. 5: Measured data. From left to right: reconstructed fore-
ground object “8”, reconstructed background object “E” and
background clutter. (a) Raster scan. (b) Hadamard. (c) DCT.

3. MEASUREMENT DOMAIN OBJECT
RECOGNITION

In this section, we investigate whether it is possible to rec-
ognize objects directly in the LADAR measurement domain.
For the experiments, we use the Binary Alphadigits dataset.
1 The Binary Alphadigits dataset contains binary digits of
0 through 9 and capital A through Z. Each digit is of size
20× 16. There are 39 examples of each class. For the experi-
ments in this paper, we used only 10 classes corresponding to
digits 0 through 9. We simulated the LADAR measurements
using the measured point spread functions (psf) from our ag-
ile beam LADAR prototype. In order to simulate the measure-
ments, we first resized the digits to 32×32 and then convolved
the digits with the measured psfs. Optimization problem (2)
was solved to reconstruct the image from the LADAR mea-
surements.

We compared the performance of three well known clas-
sifiers - nearest neighbor (NN), nearest subspace (NS) and
linear SVM on this data. We studied the effect of varying the
training dataset size on the performance of the classifiers. We
took various combinations of training and test datasets and
obtained average accuracy rates for various ratios of train-
ing set vs. test set size. Moreover we compared the perfor-
mance achieved in the measurement domains with the figures
attained in the original domain of the binary numeric data.

The plots in Figure 6 show the average performance of
the classifiers (Linear SVM, NN and NS) in various types of
measurement domains. The broken lines in black show the
average performance achieved for corresponding training sets

1Available at http://www.cs.toronto.edu/∼roweis/data.html



in the original binary numeric dataset. While good perfor-
mance is achieved in most cases, performance in the raster
scan mode is uniformly dominated by the performances in
the Hadamard and DCT domains. Moreover, the accuracy in
these domains are nearly as good, or in some cases slightly
better than the original domain. Especially, when the training
set size is more than 20, using all three classifiers, we ob-
served similar accuracy levels in the original, Hadamard and
DCT measurement domains. These results indicate the effec-
tiveness of classification in the measurement domain thereby
bypassing the computational effort in reconstruction of the
scene.
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Fig. 6: Performance comparison of different classifiers in the
measurement domain and the original pixel domain. (a) Near-
est neighbor. (b) Nearest subspace. (c) Linear SVM.

In another set of experiments, we investigated the classifi-
cation performance in the case where we inverted the transfor-
mation of the data in the Hadamard and DCT domains to the
visual domain. We compared the performance with accuracy
level achieved in classifying the data in the raster domain.
The plots in Figure 7 indicate that inversion of transformation
from the Hadamard and DCT domains result in equally good
classification performance than classification in the raster do-
main in the case of NN and NS classifiers. However these
values, again, are similar to the accuracy levels achieved by
direct classification in the Hadamard and DCT domain which
can be observed by comparing the corresponding (blue and
green) curves in Figure 6 and Figure 7 for the particular type
of classifier. For example, in the case of our small dataset with
250 training and 110 test samples the average time for NN-
classification in the measurement domain was 0.5050 while

that for the inverted domain was 0.5247 which showed a 3.9%
increase. In the case where we have more samples to invert,
the inversion time will be higher. Therefore, the observations
made from the above experiments suggest that LADAR data
measurement in the DCT or Hadamard domains followed by
classification in the same domain itself yields very good per-
formance and cuts down the requirement of computational
time and resources.
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Fig. 7: Performance comparison of different classifiers when
the images are recovered by inverting the sensing matrix. (a)
Nearest neighbor. (b) Nearest subspace. (c) Linear SVM.

4. CONCLUSION

In this paper, we studied whether is it possible to directly rec-
ognize objects in the LADAR domain. Empirical results ob-
tained from experiments with three different classifiers show
that indeed it is possible to recognize objects in the measure-
ment domain without explicitly reconstructing them. Classifi-
cation accuracy in the measurement domain is as good as the
original and reconstructed domains. This speeds up the pro-
cess of interpretation and perception of the three dimensional
scene and does away with the necessicity of the reconstruc-
tion. In future work, we will investigate the mathematical
principles behind the effectiveness of this approach in greater
detail.
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