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ABSTRACT fewer than the number of measurements usually requiredider s
nals that are sparse in an orthonormal basis. In this papergu
kernel methods, we develop dictionary learning algoritttinas take
into account the nonlinear structure of data. Our dictigriaarn-
ing methods yield representations that are more compattkirael
PCA and able to handle non-linearity better than its lineamter-
parts. Fig. 1, presents an important comparison in the septation
power of kernel PCA and a learned kernel dictionary. A corisoar
of the mean-squared-error (MSE) of an image from the USP&dat
when approximated frorm kernel PCA components and kernel
dictionary atoms (denoted by kernel KSVD) shows that the M8E
cays much faster when a learned non-linear dictionary id.ugkis
Index Terms— Kernel methods, dictionary learning, method of example shows that the imagenisnlinearly sparse and learning a
optimal directions, K-SVD. dictionary in the high dimensional feature space can petietter
representation of data.

In this paper, we present dictionary learning methods farspand
redundant signal representations in high dimensionalifeatpace.
Using the kernel method, we describe how the well-knowniahct
nary learning approaches such as the method of optimaltidinsc
and K-SVD can be made nonlinear. We analyze these constngcti
and demonstrate their improved performance through Sexepar-
iments on classification problems. It is shown that nonlirdia-
tionary learning approaches can provide better discrititina&om-
pared to their linear counterparts and kernel PCA, espgcidien
the data is corrupted by noise.

1. INTRODUCTION
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Sparse and redundant signal representations have reackatin
much interest in vision, signal and image processing [1]s T§due
in part to the fact that signals and images of interest carphess
or compressible in some dictionary. The dictionary can lleeei
based on a mathematical model of the data or it can be leained d
rectly from the data. It has been observed that learningtéodary
directly from the training data rather than using a precheileed dic- ) ) Namber Of Dictonary Atorme ®
tionary (i.e. wavelet) usually leads to a more compact sgmation Fig. 1. Comparison of error percentage using kernel K-SVD and
and hence can provide improved results in many practicagéma kernel PCA.
processing applications such as restoration and clagmfidd].
Several algorithms have been developed for the task of-learn
ing dictionaries. Two of the most well-known algorithms dhe
method of optimal directions (MOD) [2] and the K-SVD algaburit
[3]. Given a set of exampleX = [y1,---,yn], the goal of the
K-SVD and MOD algorithms is to find a dictiona and a sparse
matrix X that minimize the following representation error
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Background and problem formulation: Let ® : RY — F be

a non-linear mapping froriRY into a higher dimensional feature
spaceF'. Since the feature spadeé can be very high dimensional,
in the kernel methods, Mercer kernels are usually employedutry
out the mapping implicitly. A Mercer kernel is a functiei{x, y)
that for all data{y} gives rise to a positive semidefinite matrix
Ki; = k(yi,y;). It can be shown that usinginstead of dot prod-
uct in input space corresponds to mapping the data with soape m
ping ® into a feature spacé&. That is,x(x,y) = (®(x), P(y)).
Some commonly used kernels include polynomial kerréks y) =

{(x,y) + ¢)* and Gaussian kernels(x,y) = exp(— Ix=yi?),
wherec and d are the parameters. Thus any algorithm that can
be formulated in terms of dot products can be carried out meso
feature spacé” without mapping the data explicitly by substituting
a chosen kernel.

In this paper, we will use the following model for the dictay
D: D = BA, whereB is some predefined base dictionary ahd
is the atom representation dictionary [7]. The base dietipi can
be chosen such that it incorporates some prior knowledgetabe
data. This model provides adaptivity via modification of thatrix
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(D, X) = arg 1]511)12 'Y — DX||3 subject to||x; o < To Vi,

wherex; represent the columns & and thel, sparsity measure
|I-llo counts the number of nonzero elements in the representatio
Here,||A||r denotes the Frobenius norm. Both MOD and K-SVD
are iterative methods and they alternate between spadiegcand
dictionary update steps.

The representation obtained by learning a dictionary cauke
ther enhanced by exploiting the nonlinearities presertérdata [4],
[5]. For instance, in [6] it is shown that if the nonlinear spty is
properly exploited then one can accurately recowvaniinearly K-
sparse signals from approximatel2 X' measurements, which is far




space using the mapping Thatis,®(Y) = [®(y1), -, P(yn)]-
Furthermore, we denote the learned dictionary in the feaspace
as® (D). Since dictionary atoms lie within the subspace spanned b
the input data, we can writg(D) = ®(Y)A, whereA is the atom
representation dictionary arle(Y) is the base dictionary.

Our goal is to find the best dictionady(D) via A to represent
the data in the feature spa¢®(y;)};—, as sparse compositions by
solving the following optimization problem

argmin ||®(Y) — ®(Y)AX||7 s.t ||xi|lo < To,Vi. (1)
A, X
The objective function in (1) can be rewritten as in Eq. (2hick
explicitly depends on the kernel matii& but not the mapping
12(Y)~2(Y)AX||F = tr((I-AX)"K(Y, Y)(1-AX)), (2)

whereK(Y,Y) € R"*" is a positive semidefinite matrix whose
elements are computed from the Mercer kernel

K(Y,Y)]i; = {2(Y), (Y )]ij = K(Yi, y5)-

Equipped with the above notation, in the following sectiove
present two algorithms for learning a dictionary in the fieatspace.

2. KERNEL DICTIONARY LEARNING

Just as in the case of K-SVD and MOD, our method of learning dic
tionaries involve two stages: sparse coding and dictionadate.
In what follows, we describe them in detail.

Sparse coding:In this stage, the matriA is assumed to be fixed.

With this, we seek for the sparse codes contained in the xnXtri
Note that, the penalty termin (1) can be re-written as

[2(Y) — ®(Y)AX||F = Z [2(y:) — 2(Y)Ax]3.

Hence, the problem in (1) can be reformulated as soluidifferent
problems of the following form

Input: A signalz, a kernel functions, A, and a sparsity level.

Task: Find a coefficient vectax € R with at mostT, non-zero coefficients sud
that®(Y') Ax approximatesp(z).

Y Initialize: s =0,1p =0,x0 = 0,20 =0

Procedure:

Lo = (K2 Y) - ‘ZK(Y,Y)) a;, Vig I 1

2.
3.

imar = argmax,|7i|, Vi & Is_1

Update the index sdt, = Is—1 U tmax

-1
4 x. = (ALK(Y,Y)AL)  (K(z Y)A)"
5.
6.

Output: Sparse vectox € R satisfyingx (I (5)) = x.(j),Vj € I and zero
elsewhere.

25 = Asts

s < s + 1; Repeat steps 1-B, times

Fig. 2. The KOMP algorithm.

The algorithm then selects a new dictionary atom in the reingi
set that gives largest projection coefficient in Ef). (This selection
guarantees the biggest reduction of approximation error.

Let A, indicates the set of dictionary atoms whose indices are
from the sefl;. We want to project the signél(z) onto the subspace
spanned by the selected dictionary atoh{¥ ) A ;,. The projection
coefficients are simply obtained as follows:

(@(Y)AL) (®(Y)AL)) ' (2(Y)Ar)  ®(2)

(ATK(Y,Y)Ar) ' (K(z, Y)AL)"

Xs =

Q)

Note that the computation in Eg. (5) can be efficiently impdened
in a recursive manner as in [9]. Once the coefficientsare found,
the approximating signats, are updated as in the stéf Fig. 2.
The procedure is repeated urifj atoms are selected.

Dictionary Update: Once the sparse codes for each training data
are calculated, the dictionary can be updated such thatrtoe e
|®(Y) — ®(Y)AX]|% is minimized. Taking the derivative of this
error with respect taA and after some manipulations, we obtain the
relation A = X7 (XXT)~* which leads to the following update:

min [ B(y:) - (V)AxE st [xilo <To, @) Awr = XE(XX]) ™ = X].
' This way of updating the dictionary is essentially the idekibd
fori =1,--- ,n. The above problem can be solved by any pursuitthe MOD method [2]. As discussed in [3], one of the major draw-

algorithms [8, 9], with the modification that signals are niowthe
feature space with a very high dimension. In the followingties,
we show how the well-known orthogonal matching pursuit algo
rithm (OMP) [9, 10] can be generalized using kernels to s¢®)e

Kernel Orthogonal Matching Pursuit (KOMP): Given a signal
z € RY and the kernel dictionary represented a we seek a
sparse combinations of dictionary atoms that approxinfeesignal
in the feature spaceb(z) = ®(Y)zs +rs. Here,z, € R™ indicates
the current estimate of the signalandr; is the current residual.

The pseudo-code for KOMP is given in the Fig. 2. Letenote
the set of indices of selected atoms. In the first step, thduakis
projected onto the remaining dictionary atoms:

T
Ty

(@(Y)ai) = (9(z) - 2(Y)z,) " (2(Y)as)
(K(z,Y) - K(Y,Y)z )a;, i¢I,

= 4)

where, with a slight abuse of notation, we denote

K(z,Y) = [k(z,y1),5(2,y2), .. -, k(Z, yn)].

backs of the MOD method is that it suffers from the high comipje
of matrix inversion during the dictionary update stage.e®alother
methods have also been proposed that focus on reducingaiimis ¢
plexity. One such algorithm is K-SVD [3]. Following the pexture
of K-SVD, in what follows, we describe a more sophisticatealyw
of updating the dictionary.

Kernel K-SVD: Let a;, andxJ, denote thek-th column of A and
the j-th row of X, respectively. The errdt®(Y) — &(Y)AX||%
can be re-written as:
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O(Y) — ®(Y) ) a;xy
j=1 F
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B(Y) ( ) — B(Y)(
J#k

=[[2(Y)Ex — &(Y)Ml|7

)

F

(6)



where, fact that SVD decomposition is closely related to eigen dgmusi-
tion of the Gram matrix, which is independent of the row disien.
v It is easily seen that
Ek = I- Z anJT ; Mk = (akxfp). (7)
s (®(Y)ED)" (®(Y)EF) = (ED) ' K(Y,Y)(EF) =V A VT,

Ey, indicates the error between the approximated signals aniite  \yhereA = 7'y € R™ ", This gives usv; as the first column of

signals when removing thie-th dictionary atom.M;, indicates the V, ando, = /—A(L 1. Hence,x’}';. can be found using the relation
contribution of thek-th dictionary atom to the estimated signals. i, (11). '
In this stage, we assume that ondy.(x’) are variables and the To solve foray, we first observe that by right-multiplying both

rest are fixed, hencEy is also constant for each Minimization  gjges of (9) byV and considering only the first column, we get
of the above problem is equivalent to findifa., x%) such that the

rank-1 matrix®(Y)M;, best approximate® (Y )E;. The optimal ®(Y)Efvi = o1ui. (13)
solution can be obtained via SVD. However, there are twooreas
that make direct SVD decomposition inappropriate. Firétiyould The solution foray, is obtained by substituting Eq. (12) into Eq. (13)
yield a dense vectag”., which increases the number of non-zeros ®(Y)E{vi = 61®(Y)ax. Hence,a, = o7 'Eflvi. One can eas-
in the representatiolX. Secondly, the matrix might have infinitely ily verify that this updating procedure @, results in a dictionary
large row dimension, which is computationally prohibitive atom of unit-norm on the feature space. The pseudo-codesfoek
In order to minimize the objective function while keepingth K-SVD algorithm is given in Fig. 3.
sparsities of all the representations fixed, we work onhhwitsub-
set of columns. Note that the columns)df;, associated with zero- | Input: A setof signalsy, a kemnel functions. s
value elements okf. are all zero. These columns do not affect the R:'f‘é;'l;‘g2g£g’g;rsyo‘l’\'/?%tgf‘(’{§se”t these signals as sparse decompositigns in
minimization of the objective function. Therefore, we cdiisk Initialize: SetT, random elements of each columnXa to be 1. Set iteratio

the matrices€,, andM,, by discarding these zero columns. An ad-| J = 1. ,
Stage 1 Sparse coding

vantage of Working with the reduced matrices is that Only'nem Use the KOMP algorithm described in Fig. 2 to obtain sparsdfioient matrixX
coefficients inx%- are allowed to vary and therefore the sparsities are given a fixed dictionan.
preserved [3] Stage 2 Dictionary update _ o _

Definew, as the group of indices pointing to examp{es(y.)} Fgr ‘:aChﬂfO'”mrk :fl" 2. o fﬁ ': A hi - update it tl’y< o Nk
that use the atort®(Y)A)x: wi, = {i|]1 < i < K, x%(i) # 0}. [)}e ine the group of examples that use this ata,= {i|1 < i < N,x7 (i) #
Let O be a matrix of sizer x |wy|, with ones on th€wy (), 7)-th - Define the representation error mati;,, by (7).
entries and zeros elsewhere. When muItipIying vith all zeros - Ij;astric\‘E;C by choosing only the columns correspondingtp, and obtairii)kR as
within the row vectorx® will be discarded resulting in the row vec- | Bx = Ex S

- . RN\T R — T
torx% of the lengthwy,|. The column-reduced matrices are obtained| ~APPY SVP decomposition to gas;, ) K(Y, Y)(E) = V A V. Choosg
updateda, = o; E;'vi, wherev, is the first vector ofV' corresponding to the

R _ . R _
asEj’ = EpQy; Mk‘, = M Q2. . . . largest singular value? = A(1, 1).
We can now modify the cost function in (6) so that its solution| -sets = J + 1
has the same support with the origing}: Output: A andX.
Fig. 3. The kernel K-SVD algorithm.

R R||? R k|2
H<I>(Y)Ek — &(Y)M} HF - H@(Y)Ek - @(Y)akaHF. ®)
) ) 3. EXPERIMENTAL RESULTS
Recall the fact thatb(Y)a,x"% is a rank-1 matrix. Therefore,
the optlmal solution of (8) can be obtained by first decompos+irst we present two synthetic experiments to examine teetife-
ing ®(Y)Ey into rank-1 matrices using SVD, and then equatingness of a learned dictionary in the feature space. The foltpwa-
(Y)arxk t0 the rank-1 matrix corresponding to the largest singu-rameters are used to learn dictionaries using both K-SVkarnk!

lar value. That is, K-SVD: dictionaries are learned with 30 atom&, = 3, polyno-
R T mial kernel of degree@ is used, the maximum number of training
®(Y)E, = UXV 9  iterations is set t&0.
(Y)arxh = comvi, (10) The first synthetic experiment is done with two classes ad.dat

In each class]500 data samples are randomly generated froga a
whereu; andv; are the first columns dff andV corresponding to  dimensional circlgy = [y1, y2] € R? | yf + y3 = r2}. The radius
the largest singular valug, = X(1, 1), respectively. A valid break- r of the first circle (class 1) is half that of the second circliags 2).
down for the assignment (10) is given. The reason for putfieg The first figure in the left column of Fig. 4 shows the color-edd
multiplier o1 in Eg. (11) instead of in Eq. (12) will become clearer map of error ratio obtained by dividing the reconstructioroes of
when solving foray,. Basically, such assignment guarantees that théhe second class by those of the first class for all points eiRth
resulting dictionary atom on the feature space is normaligaunit-  plane. Since data samples from the two classes lie roughthen

norm same linear subspace, which is the entire planR3ndictionaries
. ” learned using K-SVD are indistinguishable for the two assd his
XR = 01V} (11) is clearly seen from this figure where error ratios are quitelom

®(Y)ay = u;. (12) even for points lying on the circles.

On the contrary, as can be seen from the first figure in the secon
However, as mentioned before, we can not perform direct SVDow of Fig. 4, the error ratios corresponding to a dictiolaarned in
decomposition orp(Y)EE as in (9) since this matrix can have in- the feature space exhibit strong differences between thelwsses.
finitely large row dimension. A remedy for this issue comesifithe  In particular, error ratios are very high for points lyingsé to the



first class, and very small for points lying close to the selcclass.
Moreover, points on the same circle have similar error satibhis
observation implies that kernel K-SVD correctly learnsrbelinear
structure of the data and embeds this information into Ketiotio-

nary atoms.
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Fig. 4. Left: Comparison of error ratio for K-SVD and kernel K-
SVD (common logarithm scale). Right: Comparison betweean co
tours of linear K-SVD and kernel K-SVD for three differenttio-
nary atoms. In both figures, the first row corresponds to K-Svib
the second row corresponds to kernel K-SVD.
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In the second synthetic experiment, we learn a dictionamnfr
1500 data samples generated from a 2-dimensional parghola
[y1,92] € R? | y2 = y}}. Columns 2-4 in Fig. 4 show level curves
of the projection coefficients for three different dictiopaatoms.
The level curves are obtained as follows. First, we projeerye

pointy € R? onto the selected dictionary atom to get the projection

coefficients. Then, points with the same projection coeffits are

grouped together and are shown with the same color map. Coeffg]

cients of the kernel K-SVD (Bottom row of columns 2-4 in Fig. 4
change most dramatically along the main directions of datati-
ation, while coefficients of the linear K-SVD do not. Agaijg
observation implies that our dictionary learning method peovide
good representation for data with non-linear structures.
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Fig. 5. Comparison of digit recognition accuracies for different
methods in the presence of Gaussian noise and missingefiets.
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The first experiment presents the results for the situatibara
test samples are corrupted by random Gaussian noise wigneif
standard deviations as shown in Fig. 5(a). Fig. 5(b) shoesahults
obtained when pixels are randomly removed from the test @nag
In both experiments, Kernel K-SVD and kernel MOD considient
outperform linear K-SVD and kernel PCA. As the distortiondein-
creases the performance difference between kernel dictemand
linear dictionaries become more dramatic.

4. DISCUSSION AND CONCLUSION

We have presented two non-linear dictionary learning élgms

that exploit sparsity of data in high dimensional featurecsp
through an appropriate choice of kernel. It is shown thahéer
ethods improve the separating margin between dictionannel

low better tolerance against different types of degiadat Ex-

perimental results indicate that exploiting nonlinearrsjpg via

learning dictionaries in the feature domain can provideebetis-

crimination than the traditional linear approaches anddéePCA.
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[1] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictiones for sparse

representation modelingProceedings of the |IEEE, submitted 2009.

K. Engan, S. O. Aase, and J. H. Husoy, “Method of optima¢clions
for frame design,Proc. |IEEE Int. Conf. Acoust., Speech, Sgnal Pro-
cess, vol. 5, pp. 2443-2446, 1999.

M. Aharon, M. Elad, and A. M. Bruckstein, “The k-svd: argatithm
for designing of overcomplete dictionaries for sparse esentation,”
IEEE Trans. Sgnal Process., vol. 54, no. 11, pp. 4311-4322, 2006.

S. Gao, I. W. Tsang, and L.-T. Chia, “Kernel sparse repméstion for
image classification and face recognition,"Haropean Conference on
Computer Vision, vol. 6314, 2010.

X.-T. Yuan and S. Yan, “Visual classification with muttisk joint
sparse representation,” @omp. Vision and Pattern Recognition, 2010.

[6] H. Qi and S. Hughes, “Using the kernel trick in compresséensing:
Accurate signal recovery from fewer measurementd,EEE Int. Conf.
on Acoustics, Speech and Sgnal Proc., may 2011, pp. 3940 —3943.

R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsLearning
sparse dictionaries for sparse signal approximatigigfial Processing,
|EEE Transactions on, vol. 58, no. 3, pp. 1553 —1564, march 2010.

S. Chen, D. Donoho, and M. Saunders, “Atomic decompasitly ba-
sis pursuit,”"SSAM J. Sci. Comp., vol. 20, no. 1, pp. 33-61, 1998.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Ogtreal matching
pursuit: recursive function approximation with applicaits to wavelet
decomposition,”1993 Conference Record of the 27th Asilomar Confer-
ence on Sgnals, Systems and Computers, pp. 40-44, 1993.

J. A. Tropp, “Greed is good: Algorithmic results for spaapproxima-

tion,” IEEE Trans. Info. Theory, vol. 50, no. 10, pp. 2231-2242, Oct.
2004.

[4]

(5]

[7]

(10]



