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Latent Space Sparse and Low-rank
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Abstract—We propose three novel algorithms for simultaneous
dimensionality reduction and clustering of data lying in a union
of subspaces. Specifically, we describe methods that learn the
projection of data and find the sparse and/or low-rank coefficients
in the low-dimensional latent space. Cluster labels are then
assigned by applying spectral clustering to a similarity matrix
built from these representations. Efficient optimization methods
are proposed and their non-linear extensions based on the
kernel methods are presented. Various experiments show that
the proposed methods perform better than many competitive
subspace clustering methods.

Index Terms—Subspace clustering, sparse subspace clustering,
low-rank subspace clustering, kernel methods, non-linear sub-
space clustering, dimension reduction.

I. INTRODUCTION

Many practical computer vision and image processing
applications require processing and representation of high-
dimensional data. Often these high-dimensional data can be
represented by a low-dimensional subspace. For instance, it
is well known that the set of face images under all possible
illumination conditions can be well approximated by a 9-
dimensional linear subspace [1]. Similarly, trajectories of a
rigidly moving object in a video [2] and hand-written digits
with different variations [3] also lie in low-dimensional sub-
spaces. Therefore, one can view the collection of data from
different classes as samples from a union of low-dimensional
subspaces. In subspace clustering, given the data from a union
of subspaces, the objective is to find the number of subspaces,
their dimensions, the segmentation of the data and a basis for
each subspace (formal definition is given in Section II) [4].

Various algorithms have been proposed in the literature for
subspace clustering. Some of these algorithms are iterative
in nature [5], [6], [7] while the others are based on spectral
clustering [8], [9], [10], [11]. Statistical [12] and algebraic
[13], [14] approaches have also been proposed in the literature
for subspace clustering. In particular, sparse representation and
low-rank approximation-based methods for subspace cluster-
ing [15], [16], [11], [17], [18], [19], [20], [21], [22], [23], [24]
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Fig. 1: Overview of the proposed latent space sparse and low-
rank subspace clustering methods.

have gained a lot of traction in recent years. These methods
find a sparse or low-rank representation of the data and build a
similarity graph whose weights depend on the sparse or low-
rank coefficient matrix for segmenting the data. One of the
advantages of these methods is that they are robust to noise
and occlusion. Furthermore, some of these approaches do not
require the knowledge of the dimensions and the number of
subspaces. In particular, the Sparse Subspace Clustering (SSC)
algorithm [11], [17], Low-Rank Representation (LRR) based
algorithm [15] and Low-Rank Sparse Subspace Clustering
(LRSSC) method [23] are well supported by theoretical anal-
ysis [25] [18], [19], [23] and provide state-of-the-art results
on many publicly available datasets such as the Hopkins155
benchmark motion segmentation dataset [26].

Finding sparse or low-rank representation is very compu-
tationally demanding especially when the dimension of the
features is high [17]. This is one of the drawbacks of the sparse
and low-rank representation-based methods. To deal with this
problem, dimensionality reduction is generally applied on
the data prior to applying these algorithms. Dimensionality
reduction methods such as Principle Component Analysis
(PCA) and Random Projections (RP) can reduce the dimension
of data. However, a well learned projection matrix can lead to
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a higher clustering accuracy at a lower dimensionality. Several
works have been proposed in the literature that find a sparse
representation on a low-dimensional latent space [27], [28],
[29]. However, these methods are specifically designed for
classification tasks and not for clustering.

Motivated by some of the sparsity promoting dimensionality
reduction methods, in this paper, we propose methods for
simultaneous dimensionality reduction and subspace clustering
under the frameworks of SSC, LRR and LRSSC. We learn
the transformation of data from the original space onto a
low-dimensional space such that its manifold structure is
maintained. Efficient algorithms are proposed that simulta-
neously learn the projection and find the sparse or low-rank
coefficients in the low-dimensional latent space. Finally, the
segmentation of the data is obtained by applying spectral
clustering to a similarity matrix built from these representation
coefficients. Using kernel methods, the proposed algorithms
are also extended to non-linear manifolds. Figure 1 presents
an overview of our latent space subspace clustering methods.

Key contributions of our work are as follows:
• Simultaneous dimensionality reduction and low-rank

and/or sparse representation methods for subspace clus-
tering are proposed.

• Simple iterative procedures are introduced for solving the
proposed optimization problems.

• Nonlinear extensions of the proposed algorithms are
made through the use of Mercer kernels.

This paper is organized as follows. In Section II, we
provide a brief overview of the sparse and low-rank subspace
clustering methods. Sections III and IV give the details of our
linear and non-linear simultaneous dimensionality reduction
and subspace clustering approaches, respectively. Experimen-
tal results are presented in Section V and Section VI concludes
the paper with a brief summary and discussion.

II. BACKGROUND

In this section, we provide a brief background on sparse and
low-rank subspace clustering methods [17], [18], [19], [23].

A. Problem Formulation

Let
Y = [y1, · · · ,yN ] ∈ RD×N

be a collection of N signals {yi ∈ RD}Ni=1 drawn from a
union of n linear subspaces

S1 ∪ S2 ∪ · · · ∪ Sn
of dimensions {d`}n`=1 in RD. Let Y` ∈ RD×N` be a sub-
matrix of Y of rank d` with N` > d` points that lie in S`
with N1 +N2 + · · ·+Nn = N. Given Y, the task of subspace
clustering is to cluster the signals according to their subspaces.

B. Sparse Subspace Clustering

It is easy to see that each data point in Y can be efficiently
represented by a linear combination of at most d` other points
in Y. That is, one can represent yi as follows

yi = Yci, cii = 0, ‖ci‖0 ≤ d`

where ci = [ci1, ci2, · · · , ciN ]T ∈ RN are the coefficients and
‖x‖0 is the sparsity measure that counts the number of non-
zero elements in x. Often N` > d`. As a result the following
`1-minimization problem is solved to obtain the coefficients

min ‖c‖1 such that yi = Yci, cii = 0, (1)

where ‖x‖1 =
∑N
i=1 |xi| is the `1-norm of x ∈ RN .

Considering all the data points i = 1, · · · , N , in matrix form,
the above optimization problem can be rewritten as

min ‖C‖1 subject to Y = YC, diag(C) = 0, (2)

where C = [c1, · · · , cN ] ∈ RN×N is the coefficient matrix
whose column ci is the sparse representation vector corre-
sponding to yi, diag(C) ∈ RN is the vector containing the
diagonal elements of C and 0 ∈ RN is an N -dimensional
vector containing zeros as its elements.

In some applications, the data lie in a union of affine rather
than linear subspaces. To deal with affine subspaces, we use
the fact that any point yi in an affine subspace S` of dimension
d` can be written as an affine combination of d`+1 other points
from S` [17]. In other words, one can represent yi as follows

yi = Yci, cTi 1 = 1, cii = 0,

where 1 is a vector of dimension N containing ones as its
elements. In the case where the data is contaminated by some
arbitrary noise Z, i.e. Y = YC + Z, and considering the fact
that data may lie in a union of affine subspaces, the following
problem can be solved to obtain C

min ‖C‖1 +
τ

2
‖Y −YC‖2F ,

such that diag(C) = 0, CT1 = 1, (3)

where τ is a regularization parameter. The above problems can
be efficiently solved by using the classical alternating direction
method of multipliers (ADMM) [30], [17].

C. Low-Rank Representation-based Subspace Clustering

The LRR algorithm for subspace clustering is very similar
to the SSC algorithm except that a low-rank representation
is found instead of a sparse representation. This makes
sense because in the case of n independent subspaces of
dimensions τ = {d`}n`=1, the rank of the data matrix Y is∑n
`=1 d`. A collection of subspaces {S`}n`=1 is independent if

dim(
⊕n

`=1 S`) =
∑n
`=1 dim(S`), where

⊕
denotes the direct

sum operator. In the case when the data is noise free, the
following rank minimization problem is considered

min
C

rank(C) such that Y = YC. (4)

As a common practice in rank minimization problems, the rank
of C is replaced by its nuclear norm ‖C‖∗ which is defined
as the sum of its singular values. As a result, the following
convex problem is solved

min
C
‖C‖∗ such that Y = YC. (5)

It was shown in [18] that the solution to (5) is also a solution
to (4). In particular, the following theorem shows that when
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Y is noise free and drawn from n independent subspaces, the
optimal solution to (5) can be obtained in closed form [18].

Theorem 1: Suppose the rank r SVD of Y is U1Σ1V
T
1 ,

then the minimizer to (5) is uniquely given by

Ĉ = V1V
T
1 .

In the case, when data is contaminated by noise, the
following problem can be solved to approximate C

min
C
‖C‖∗ +

τ

2
‖Y −YC‖2F . (6)

The closed-form solution to this problem has been derived in
[16], [19].

Theorem 2: Let Y = UΣVT be the SVD of Y and let σi
be the ith singular value of Y. The optimal solution to (6) is

Ĉ = V1(I− 1

τ
Σ−21 )VT

1 ,

where U = [U1U2],Σ = diag(Σ1Σ2), and V = [V1V2]
are partitioned according to the sets I1 = {i : σi >

1√
τ
} and

I2 = {i : σi ≤ 1√
τ
}.

D. Low-rank Sparse Subspace Clustering

The representation matrix C is often simultaneously sparse
and low-rank. As a result, instead of looking for only sparse
or low-rank C, one can directly find C that is both sparse and
low-rank. In LRSSC, the following optimization problem is
solved to find C

min
C
‖C‖∗+λ‖C‖1 +

τ

2
‖Y −YC‖2F

such that diag(C) = 0, CT1 = 1. (7)

This problem can be efficiently solved using the ADMM
method [23], [30].

In SSC, LRR and LRSSC, once C is found, spectral
clustering methods [31] are applied on the affinity matrix

W = |C|+ |C|T

to obtain the segmentation of the data Y into
Y1,Y2, · · · ,Yn, where |C| denotes the modulus of
C.

III. LATENT SPACE SUBSPACE CLUSTERING

Different from the traditional sparse and low-rank
representation-based subspace clustering methods, we develop
algorithms that embed signals into a low-dimensional space
and simultaneously find the sparse and/or low-rank represen-
tation in that space. Let P ∈ Rt×D be a matrix representing a
linear transformation that maps signals from the original space
RD to a latent output space of dimension t. We can learn
the mapping and find the sparse or low-rank representation
simultaneously by minimizing the following cost function

[P∗,C∗] = arg min
P,C

J1(C) + J2(P,C,Y)

subject to PPT = I, diag(C) = 0,
(8)

where

J2(P,C,Y) = λ1‖PY −PYC‖2F + λ2‖Y −PTPY‖2F
(9)

and J1(C) depends on whether we find sparse, low-rank or
both sparse and low-rank representations. In particular, when
sparsity is enforced as is done in SSC, J1(C) = ‖C‖1.
Similar to LRR, when low-rank representation is sought,
J1(C) = ‖C‖∗. Note that in this case, the second constraint
diag(C) = 0 is not required. Finally, one can find both sparse
and low-rank representation as is done in LRSSC by setting
J1(C) = ‖C‖∗ + λ‖C‖1, where λ controls the trade-off
between satisfying sparse and low-rank representation.

The second term of J2 is a PCA-like regularization term,
ensures that the projection does not lose too much information
available in the original domain. λ1 and λ2 are non-negative
constants that control sparsity and regularization, respectively.
Furthermore, we require the rows of P to be orthogonal
and normalized to unit norm. This prevents the solution
from becoming degenerate and the leads to a computationally
efficient scheme for optimization. Note that the optimization
problem (8) is non-convex. However, numerical simulations
have shown that the algorithm usually converges to a local
minimum in a few iterations.

The above formulation can be extended so that it can deal
with data that lie in a union of affine subspaces. This can
be simply done by adding a constraint in the optimization
problem (8) as follows

[P∗,C∗] = arg min
P,C

J1(C) + J2(P,C,Y)

subject to PPT = I,CT1 = 1, diag(C) = 0.
(10)

A. Optimization
With the above definitions, one can prove the following

proposition.
Proposition 1: There exists an optimal solution P∗ to (8)

that has the following form

P∗ = ΨTYT

for some Ψ ∈ RN×t.
Intuitively, the above proposition says that the projection can

be written as a linear combination of the data samples. This
formulation has been used under the framework of dictionary
learning in [32] and [33]. The proof of the above proposition
can be found in the Appendix.

With this proposition, the cost function J2 can be written
as

J2(Ψ,C,Y) = λ1‖ΨTK(I−C)‖2F
+ λ2‖Y(I−ΨΨTK)‖2F ,

(11)

where K = YTY. The equality constraint now becomes

PPT = ΨTKΨ = I. (12)

As a result, the optimization problem (8) can be re-written as

[Ψ∗,C∗] = arg min
Ψ,C

J1(C) + J2(Ψ,C,Y)

subject to ΨTKΨ = I, diag(C) = 0.
(13)

This formulation allows the update of P via Ψ. Furthermore,
as will become apparent later, this form of the cost function
makes it easier to extend the algorithm to non-linear manifolds
using kernel methods. We can solve the above optimization
problem by optimizing over Ψ and C iteratively.
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B. Update step for Ψ

In this step, we assume that C is fixed. So J1 can be
removed and the following problem needs to be solved

λ1‖ΨTK(I−C)‖2F + λ2‖Y(I−ΨΨTK)‖2F
subject to ΨTKΨ = I. (14)

The cost function can be expanded as follows

trace
(
λ1(I−C)(I−C)TKTQTK

)
+ trace

(
λ2(K− 2KTQTK + KTQTKQK)

)
, (15)

where Q = ΨΨT ∈ RN×N . The constraint ΨTKΨ = I
leads to the new constraint

ΨΨTKΨΨT = ΨΨT

or QKQT = Q. The objective function (15) can be further
simplified as

trace
((
λ1(I−C)(I−C)T − λ2I

)
KTQTK

)
, (16)

where we have made use of the equality constraint and used
the fact that trace(K) is constant. Using the eigen decompo-
sition of K = VSVT , we get

KTQTK = VS
1
2 MMTS

1
2 VT ,

where M = S
1
2 VTΨ. As a result, (16) can be rewritten as

trace
(
MTS

1
2 VT

(
λ1(I−C)(I−C)T − λ2I

)
VS

1
2 M

)
.

Using the fact that, ΨTKΨ = MTM and with the following
change of variable

∆ = S
1
2 VT

(
λ1(I−C)(I−C)T − λ2I

)
VS

1
2 ,

we arrive at the following optimization problem, which is
equivalent to (14)

M∗ = min
M

trace
(
MT∆M

)
such that MTM = I. (17)

Problem (17) is the classical minimum eigenvalue problem
whose solution is given by the ` eigenvectors associated with
the first ` smallest eigenvalues of ∆ [34]. Once the optimal
M∗ is found, the optimal Ψ∗ can be recovered as

Ψ∗ = VS−
1
2 M∗.

Hence, we have proved the following proposition:
Proposition 2: The optimal solution of (13) when C is fixed

is
Ψ∗ = VS−

1
2 M∗, (18)

where V and S come from the eigen decomposition of
K = VSVT , and M∗ ∈ RN×t is the optimal solution of
the following minimum eigenvalues problem

M∗ = min
M

trace
(
MT∆M

)
such that MTM = I. (19)

where

∆ = S
1
2 VT

(
λ1(I−C)(I−C)T − λ2I

)
VS

1
2 .

C. Update step for C

For a fixed Ψ, we have to solve the following problem to
obtain C :

min
C
J1(C) + λ1‖B−BC‖2F such that diag(C) = 0, (20)

where B = ΨTK. Depending on the choice of J1, this
problem can be solved in many different ways.

1) Sparse Representation: In the case when sparsity is
enforced, we have to solve the following problem

min
C
‖C‖1 + λ1‖B−BC‖2F such that diag(C) = 0. (21)

This problem is the same as the SSC problem, except that
the data matrix Y is replaced by the B matrix. Therefore, it
can be solved by the ADMM method [30], [17]. We call the
resulting algorithm Latent Space Sparse Subspace Clustering
(LS3C).

2) Low-rank Representation: When low-rank representa-
tion is sought, J1(C) = ‖C‖∗ and the following optimization
problem needs to be solved

min
C
‖C‖∗ + λ1‖B−BC‖2F . (22)

From Theorem 2, the closed-form solution to this problem
can be computed from the SVD of B. We call the resulting
algorithm Latent Space Low-rank Representation (LSLRR)
based clustering.

3) Sparse and Low-rank Representation: One can also look
for a representation that is simultaneously sparse and low-rank
by solving the following problem

min
C
‖C‖∗ + λ‖C‖1+λ1‖B−BC‖2F

such that diag(C) = 0. (23)

This problem is similar to the LRSSC problem which can be
efficiently solved using the ADMM method [30], [23]. We
refer to this method as the Latent Space Low-rank and Sparse
Subspace Clustering (LSLRSSC).

IV. NON-LINEAR LATENT SPACE SUBSPACE CLUTERING

In many subspace clustering problems, projecting the orig-
inal features onto a latent space may not be good enough
due to non-linearity in data. One approach to dealing with
nonlinear manifolds is to transform the data into a high-
dimensional feature space using kernel methods. In particular,
kernel-based representations have been exploited before in
the context of compressed sensing [35], sparse coding [36],
dictionary learning [37], [33] and low-rank representation [38].
It has been shown that the non-linear mapping using the kernel
trick can group the data with the same distribution and make
them linearly separable. The resulting sparse and low-rank
representation can provide better clustering.

Let Φ : RD → H be a mapping from the input space to the
reproducing kernel Hilbert space H. The non-linear mapping
P can be characterized by a compact linear operator P : H →
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Rt. Let K ∈ RN×N be a positive semidefinite kernel Gram
matrix whose elements are computed as

[K(Y,Y)]i,j = [〈Φ(Y),Φ(Y)〉H]i,j

= Φ(yi)
TΦ(yj)

= κ(yi,yj),

(24)

where κ : RD × RD → R is the kernel function and

Φ(Y) = [Φ(y1),Φ(y2), · · · ,Φ(yN )].

Some commonly used kernels include polynomial kernels

κ(x,y) = (〈x,y〉+ a)
b

and Gaussian kernels

κ(x,y) = exp
(
−σ‖x− y‖2

)
,

where a, b and σ are the parameters of the kernel functions.
With the above definitions, the latent space subspace clus-

tering methods can be made non-linear by writing the cost
functions as follows

J1(C) + λ1‖PΦ(Y)−PΦ(Y)C‖2F (25)

+ λ2‖Φ(Y)−PTPΦ(Y)‖2F .

This formulation is the same as that in (8) except that Y is
now replaced by Φ(Y). Furthermore, similar to Proposition 1,
it can be shown that the optimal projection takes the following
form

P∗ = ΨTΦ(Y)T . (26)

As a result, we get the following cost function

J1(C) + λ1‖ΨTK(I−C)‖2F
+ λ2trace

(
(I−ΨΨTK)TK(I−ΨΨTK)

) (27)

and the constraint PPT = I becomes ΨTKΨ = I. This
optimization problem can be solved in the same way as the
linear case. The update steps for Ψ and C remain the same
except that K is now replaced with K. We refer to the nonlin-
ear versions of the LS3C, LSLRR and LSLRSSC algorithms
as NLS3C, NLSLRR and NLSLRSSC, respectively.

Note that the dimension of the output space is upper
bounded by the number of training samples. Both the linear
and non-linear methods for finding the sparse and low-rank co-
efficient matrices in the latent space along with the projection
matrix are summarized in Algorithm 1.

Similar to the SSC, LRR and LRSSC methods, once the
coefficient matrix C is found, spectral clustering is applied on
the affinity matrix W = |C|+|C|T to obtain the segmentation
of the data in the low-dimensional latent space. The proposed
latent space subspace clustering methods are summarized in
Algorithm 2.

Note that a learned transformation-based approach for sub-
space clustering and classification was recently proposed in
[20], but we differ from this work in a few key areas. Unlike
[20], our method does not require the leaned projection to
be D × D. Furthermore, the optimization approach of [20]
requires the cluster labels of each point. As a result they rely
on standard subspace clustering methods to assign points to

Algorithm 1: Simultaneous dimension reduction and subspace
clustering for both linear and non-linear cases.

Input: Kernel matrix K ∈ RN×N , λ1, λ2, λ.
Initialization:
- Set iteration J = 1. Perform eigen decomposition K = VSVT .
- Set Ψ = V(:, I), where I is the index set of the d largest
eigenvalues of K.
Stage 1: Fix Ψ and update C
- Compute B = ΨTK.
- NLS3C: Solve the optimization problem (21) to obtain C.
- NLSLRR: Solve the optimization problem (22) to obtain C.
- NLSLRSSC: Solve the optimization problem (23) to obtain C.
Stage 2: Fix C and update Ψ

- Compute ∆ = S
1
2 VT

(
λ1(I−C)(I−C)T − λ2I

)
VS

1
2 .

- Perform eigen decomposition of ∆ = UΛUT .
- Set M = U(:, IJ ), where IJ is the index set of the d smallest
eigenvalues of ∆.

- Update Ψ = VS−
1
2 M.

- Increment J = J + 1. Repeat from stage 1 until stopping
conditions reached.
Output: C and Ψ.

Algorithm 2: Latent Space Subspace Clustering for both linear
and non-linear cases.

Input: Kernel matrix K ∈ RN×N , λ1, λ2, λ.
Algorithm:
- Apply Algorithm 1 to find the sparse coefficient matrix C.
- Normalize the columns of C as ci ← ci

‖ci‖∞
.

- Form a similarity graph with N nodes and set the weights on the
edges between the nodes by W = |C|+ |C|T .
- Apply spectral clustering to the similarity graph.
Output: Cluster labels for all signals.

clusters before learning the transformation. In our formulation,
we jointly find the optimal transformation and the sparse
and/or low-rank representation. Furthermore, our method is
applicable to LRR, SSC and LRSSC algorithms and can deal
with data that lie in a union of affine subspaces. Also, we
present nonlinear extensions of the proposed algorithms using
the kernel trick.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed methods on both
synthetic and real datasets. In particular, the effectiveness
of our linear and non-linear subspace clustering methods is
evaluated on two computer vision tasks: motion segmentation
and hand-written digit clustering. We compare our methods
with several state-of-the-art subspace clustering algorithms
such as SSC [17], LRR [15], Low-Rank Subspace Clustering
(LRSC) [16], Local Subspace Affinity (LSA) [10] and Spectral
Curvature Clustering (SCC) [8]. For all the experiments, we
set the maximum number of iteration in our Algorithm 1 to
J = 3. We set λ1 = λ2 = 50. All the experiments are done
on an OS X system with 2.6 GHz Intel Core i7 processor
using Matlab. Subspace clustering error is used to measure
the performance of different algorithms. It is defined as

subspace clustering error =
#of misclassified points

total#of points
× 100.

A. Synthetic Data

In this section, we generate a synthetic data to study the
performance of LS3C and NLS3C when the data in each
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Fig. 2: Subspace clustering errors and subspace-sparse recovery errors for three randomly generated disjoint subspaces with
different smallest principle angles and different number of points.

subspace and the smallest principle angle between subspaces
are small. We follow the same experimental setting as in
[17]. We consider n = 3 subspaces of dimension d = 3
embedded in D = 50 dimensional space. We generate the
bases {Ti ∈ RD×d}3i=1 such that rank ([T1,T2,T3]) = 2d.
Also, the subspaces are generated such that θ12 = θ23 = θ.
Furthermore, we generate the same number of points, Ng, in
each subspace at random and change the value of Ng.

For a fixed value of d, we change the minimum angle
between subspaces, θ, as well as the number of points in
each subspace Ng . For each pair of (θ,Ng), we compute the
subspace clustering error. Since the performance of LS3C and
NLS3C methods are based on how well the sparse coefficients
are found, we also calculate the subspace sparse recovery error.
For the data points {yi}

3Ng

i=1 , the sparse recovery error ESR is
given by

ESR =
1

3Ng

3Ng∑
i=1

(
1− ‖ciqi‖1

‖ci‖1

)
,

where cTi = [ci1
T , ci2

T , ci3
T ] represents the sparse coeffi-

cients of yi ∈ Sqi and cij corresponds to the points in Sj .
We vary the smallest principle angle between subspaces and

the number of points in each subspace as θ ∈ [6, 60] and Ng ∈
[d+ 1, 20d], respectively. For each pair (θ,Ng), we calculate
the average subspace clustering error as well as the average
ESR over 20 trials. In each trial we randomly generate data
points and subspaces. Results of this experiment are shown in
Figure 2. When θ and Ng decrease both the sparse recovery
and clustering errors of all the methods increase. Also, the
clustering error is highly dependent on the sparse recovery
error and both errors follow the same pattern. In other words,
clustering results are highly dependent on how well the sparse
coefficients are recovered. By comparing the decay of errors,

one can see that in the case where both θ and Ng are small, our
methods perform better than the SSC method. The error decays
faster in the case of LS3C and NLS3C than SSC. This can
be explained by the fact that our method finds the projection
directly from data and preserves the sparse structure of data
in the latent space. In this experiment, for NLS3C we used a
polynomial kernel with parameters b = 3 and a = 0.

B. Motion Segmentation

In motion segmentation, the idea is to segment a video
sequence into multiple spatiotemporal regions corresponding
to different rigid body motions. Suppose that we have tracked
N feature points over F frames in a video sequence, {xij},
where i = 1, · · · , N and j = 1 · · · , F . Each feature trajectory
yi ∈ R2F is obtained by stacking the feature points in the
video, i.e

yTi = [xT1i,x
T
2i, · · · ,xTFi].

Then, the objective is to separate these feature trajectories
according to their motions. It has been shown that trajectories
of a general rigid motion under affine projection span a
4n-dimensional linear subspace [2]. In other words, feature
trajectories of n rigid motions lie in a union of n-dimensional
subspaces of R2F . Hence, the problem of clustering the
trajectories according to the different motion is equivalent to
the problem of clustering affine subspaces.

We apply our non-linear subspace clustering frameworks
to the Hopkins155 motion segmentation database [26]. The
dataset contains 155 video sequences where 120 video se-
quences contain 2 motions and 35 video sequences have 3
motions. For each sequence, a tracker is used to extract the
point trajectories and the outliers are extracted manually [26].
On average, each sequence of 2 motions has 266 feature
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Fig. 3: Sample video frames from the Hopkins155 dataset.

trajectories and 30 frames and each sequence of 3 motions has
398 feature trajectories and 29 frames. Sample frames from
this dataset are shown in Fig. 3. A polynomial kernel with
parameters a = 0.3 and b = 2 is used in these experiments.

Table I compares the performance of different methods. For
the subspace clustering algorithms other than the proposed
methods, the data is first projected onto the 4n-dimensional
subspace using PCA [17]. As can be seen from this table, on
average the proposed latent space subspace clustering methods
perform better than SSC, LRR and LRSSC. They are able
to learn the projection directly from the data better than
PCA for clustering. The LS3C method performs the best on
both 2 motion and 3 motion sequences. The proposed non-
linear subspace clustering methods also obtain small clustering
errors compared to the other competitive subspace clustering
algorithms.

In the second set of experiments with the Hopkins155
dataset, we study the performance of different methods as
we vary the subspace dimensions. We project the data onto
the following dimensional subspaces: {2n, 6n, 8n, 10n}. For
the LRR, SSC and LRSSC methods, we project the data
onto the low-dimensional space using random projections and
PCA. Random projections have been used for dimensionality
reduction in many sparsity-based algorithms [39], [11] and
they have been shown to preserve the sparsity of data provided
certain conditions are met [40]. Let P be an t × D random
matrix with t ≤ D such that each entry pi,j of P is an
independent realization of q, where q is a random variable on a
probability measure space (Ω, ρ). It has been shown that given
any set of points Λ, the following are some of the matrices
that provide the sparsest solution via `1 minimization problem
provided that enough measurements are taken [40]:
• RP1: t × D random matrix P whose entries pi,j are

independent realizations of Gaussian random variables
pi,j ∼ N

(
0, 1t
)
.

• RP2: Independent realizations of ±1 Bernoulli random
variables

pi,j
.
=

{
+1/
√
t, with probability 1

2

−1/
√
t, with probability 1

2 .

We use both RP1 and RP2 to project the data points onto
a low-dimensional space. The average clustering error results
are summarized in Table II. It can be seen from this table
that NLS3C, NLSLRR and NLSLRSSC methods consistently
outperform their linear counterparts in all dimensions. It is

also interesting to note that the performance of SSC, LRR
and LRSSC varies depending on the projection matrix used
for dimensionality reduction. In other words, features are
important for SSC, LRR and LRSSC. In contrast, our method
automatically learns the features directly from the data and
consistently performs better than LRR, SSC and LRSSC.

C. Rotated Hand-written Digit Clustering

The rotated MNIST benchmark [41] contains gray scale
images of hand-written digits of size 28 × 28 pixels. The
images were originally taken from the MNIST dataset intro-
duced in [42], and transformed in several ways to create more
challenging classification problems. In the first dataset, called
the mnist-rot, digits are rotated by random angles generated
uniformly between 0 and 2π radians. The second dataset,
called the mnist-rot-back-image, is created by inserting
random backgrounds into mnist-rot dataset. The mnist-
back-rand dataset is created by inserting random backgrounds
in the original MNIST digit images. For all 3 datasets, there
are 10000, 2000, and 50000 images for training, validation,
and testing, respectively. Figure 4 shows sample images from
the above datasets.

Fig. 4: Sample digits from the rotated MNIST dataset. (a)
Digits with random rotations, (b) Digits with random rotations
and image backgrounds, (c) Digits with random backgrounds.

We evaluate the clustering performance of various meth-
ods on this challenging dataset. It was shown in [3] that
handwritten digits with some variations lie on 12-dimensional
subspaces. Hence, n hand-written digits can be modeled as
data points lying close to a union of 12-dimensional subspaces.
Since this dataset contains a large amount of samples (about
62,000 samples), we only use samples from the training
and the validation sets (12,000 samples) for clustering. In



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, MONTH 20XX 8

Algorithms
(2 Motions)

SSC LRR LRSSC SCC LSA LRSC LS3C NLS3C LSLRR NLSLRR LSLRSSC NLSLRSSC

Mean 1.83 3.41 3.07 3.04 3.61 2.57 1.62 1.79 2.55 2.56 3.34 3.28
Median 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Algorithms
(3 Motions)

SSC LRR LRSSC SCC LSA LRSC LS3C NLS3C LSLRR NLSLRR LSLRSSC NLSLRSSC

Mean 4.40 4.86 6.68 7.91 7.65 6.62 4.38 4.89 7.04 5.29 8.89 8.34
Median 0.56 1.47 0.81 1.14 1.27 1.76 0.56 0.85 2.20 1.22 4.99 4.01

Algorithms
(All)

SSC LRR LRSSC SCC LSA LRSC LS3C NLS3C LSLRR NLSLRR LSLRSSC NLSLRSSC

Mean 2.41 3.74 5.68 4.14 4.52 3.47 2.31 2.56 3.67 3.29 4.89 4.51
Median 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE I: Clustering errors on the Hopkins155 dataset with the 4n-dimensional data points. The top performing method in
each experiment is shown in boldface.

Algorithms
(2 Motions)

SSC
(PCA)

LRR
(PCA)

LRSSC
(PCA)

SSC
(RP2)

SSC
(RP1)

LRR
(RP2)

LRR
(RP1)

LRSSC
(RP2)

LRSSC
(RP1)

LS3C NLS3C LSLRR NLSLRR LSLRSSC NLSLRSSC

2n-Dim 3.33 7.09 13.75 5.08 4.29 13.91 12.73 13.76 13.19 3.23 3.86 7.09 4.76 8.70 4.57
6n-Dim 2.34 4.21 12.25 2.40 2.65 8.35 8.44 12.01 12.11 2.31 2.57 3.70 3.39 5.67 3.99
8n-Dim 2.33 4.20 10.09 2.60 2.92 7.79 7.36 11.70 11.01 2.29 2.57 3.69 3.38 5.67 3.98
10n-Dim 2.33 4.19 9.08 2.40 2.59 7.90 7.74 10.41 10.12 2.29 2.57 3.69 3.38 5.67 3.98

TABLE II: Average clustering errors on the Hopkins155 dataset with different dimensional data points. The top performing
method in each experiment is shown in boldface.

particular, we select 10 samples per digit and generate a small
subset containing 100 samples from 10 digits. We use these
samples for clustering and repeat the process 120 times so that
all the samples from the training and the validation sets are
used for clustering.

We report the average clustering performances of different
methods in Table III. As can be seen from this table, in all
cases, NLS3C performances compare favorably to the state-
of-the-art. By non-linearly projecting the data, we are able
to capture the compact structure of data that is more robust
against noise. Polynomial kernel with a = 1, b = 4 is used in
this experiment. The performance of LS3C is also comparable
to that of SSC. Even though LRR, SSC and LRSSC methods
can separate the background and remove noise from the data,
they do not perform well on this dataset. This is the case
because these methods can not find the sparse and low-rank
representation of the samples when the data contains random
rotations. In contrast, our non-linear projection learns the
rotation mapping directly from the data. Figure 5 displays
the transformations learned by our methods on the mnist-
rot dataset. Each subplot of Figure 5 corresponds to a row
of the matrix P = ΨTYT . They have a strong similarity to
circular harmonic functions, thus, can capture more rotational
invariant features. These transformations make a good sense
given that the dataset consists of a lot of variations along the
circular direction.

Two most computationally heavy steps of our methods are
the computation of sparse and/or low-rank coefficients and
spectral clustering. The average times are shown in the last
row of Table III. On average NLS3C and NLSLRSSC methods
take about 13 seconds to cluster 100 digits of size 28 × 28,
whereas SSC and LRSSC methods take about 14 seconds. The
LSLRR and NLSLRR methods are the most computationally
heavy methods compared to LS3C and LSLRSSC because they

require taking the SVD of large matrices in each iteration of
the algorithms. Figure 6(a)-(c) show the cost functions with
iterations for the proposed methods. It can be seen that both the
linear and non-linear algorithms converge in a few iterations.
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Fig. 6: The objective function value as a function of iteration
number for the experiments with the rotated MNIST dataset.
(a) LS3C and NLS3C. (b) LSLRSSC and NLSLRSSC. (c)
LSLRR and NLSLRR.

VI. CONCLUSION

We have proposed three simultaneous dimensionality re-
duction and sparse and low-rank representation methods in
the low-dimensional latent space for SSC, LRR and LRSSC.
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Dataset SSC LRR LRSSC LS3C NLS3C LSLRR NLSLRR LSLRSSC NLSLRSSC
(a) 67.75 75.48 68.38 67.62 66.49 67.56 68.79 66.90 68.33
(b) 74.31 80.06 74.08 74.30 72.38 75.83 74.90 73.48 73.48
(c) 58.59 77.75 62.28 58.68 54.63 80.36 66.10 62.73 56.23

Avg. Time (sec) 13.86 12.56 13.89 13.06 13.10 76.25 76.28 13.41 13.42

TABLE III: Average clustering errors on the rotated MNIST datasets: (a) mnist-rot, (b) mnist-rot-back-image, (c) mnist-
back-rand. The top performing method in each experiment is shown in boldface.

(a) (b) (c)

Fig. 5: Example of transformations learned by (a) the LS3C method (b) the LSLRSSC method and (c) the LSLRR method
from the rotated MNIST dataset.

Efficient optimization algorithms are presented. Furthermore,
the methods are kernalized so that they can deal with non-
linear manifolds. Through extensive clustering experiments on
several datasets, it was shown that the proposed methods are
robust and can perform significantly better than many state-
of-the-art subspace clustering methods.
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APPENDIX

Proof of Proposition 1:

Using the orthogonal decomposition of P∗, we have

P∗ = P‖ + P⊥,

where P‖ = (YΨ)T and P⊥Y = 0 (27)

for some Ψ ∈ RN×t. Using this, we can write the first term
of J2(P,C.Y) as

λ1‖P∗Y −P∗YC‖2F = λ1‖P∗Y(I−C)‖2F
= λ1‖(P‖ + P⊥)Y(I−C)‖2F
= λ1‖P‖Y(I−C)‖2F
= trace

(
λ1P‖Y(I−C)(I−C)TYTPT

‖

)
. (28)

The second term of J2(P,C.Y) can be written as

λ2‖Y −PTPY‖2F
= λ2trace

(
YTY −YT (P‖ + P⊥)T (P‖ + P⊥)Y

)
= λ2trace

(
YTY −YTPT

‖P‖Y
)

= trace
(
λ2Y

TY − λ2P‖YYTPT
‖

)
, (29)

where in the first step of the derivation, we have used the fact
that P∗P∗T = I. Putting equations (27), (28) and (29) and
letting K = YTY, we get the following objective function

trace(λ2K)

− trace
(
P‖Y

(
λ2I− λ1(I−C)(I−C)T

)
YTPT

‖

)
= trace(λ2K)− trace

(
ΨTVS

1
2 ∆̃S

1
2 VTΨ

)
, (30)

where

∆̃ = S
1
2 VT

(
λ2I− λ1(I−C)(I−C)T

)
VS

1
2 ,

K = VSVT . Let M = S
1
2 VTΨ, then (30) can be written as

trace(λ2K)− trace
(
MT ∆̃M

)
≥ trace(λ2K)−

t∑
j=1

βj , (31)

where βj is the j-th largest eigenvalue of ∆̃. In order for
the objective function to achieve its minimum, columns of M
have to be the same with the eigenvectors corresponding to
the largest eigenvalues of ∆̃. Hence,

MTM = ΨTKΨ = P‖P
T
‖ = I−P⊥PT

⊥ = I.

In other words, P⊥ = 0. Hence, the optimal solution has the
following form

P∗ = P‖ = ΨTYT .
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René Vidal (S’01-M’03-SM’11-F’14) received his
B.S. degree in Electrical Engineering (valedictorian)
from the Pontificia Universidad Católica de Chile in
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