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Abstract—We present a two-stage approach for learning dic-
tionaries for object classification tasks based on the principle
of information maximization. The proposed method seeks a
dictionary that is compact, discriminative, and generative. In the
first stage, dictionary atoms are selected from an initial dictionary
by maximizing the mutual information measure on dictionary
compactness, discrimination and reconstruction. In the second
stage, the selected dictionary atoms are updated for improved
reconstructive and discriminative power using a simple gradient
ascent algorithm on mutual information. Experiments using real
datasets demonstrate the effectiveness of our approach for image
classification tasks.

Index Terms—Dictionary learning, information theory, mutual
information, entropy, image classification.

I. INTRODUCTION

Sparse signal representations have recently drawn much
traction in vision, signal and image processing [1], [2], [3],
[4]. This is mainly due to the fact that signals and images of
interest can be sparse in some dictionary. Given a redundant
dictionary D and a signal y, finding a sparse representation
of y in D entails solving the following optimization problem

X = argmin ||x]||o subject toy = Dx, (1)

where the {, sparsity measure |x||o counts the number of
nonzero elements in the vector x. Problem (1) is NP-hard and
cannot be solved in a polynomial time. Hence, approximate
solutions are usually sought [3], [5], [6], [7].

The dictionary D can be either based on a mathematical
model of the data [3] or it can be trained directly from the
data [8]. It has been observed that learning a dictionary directly
from training rather than using a predetermined dictionary
(such as wavelet or Gabor) usually leads to better representa-
tion and hence can provide improved results in many practical
applications such as restoration and classification [1], [2], [4],
[9].

Various algorithms have been developed for the task of
training a dictionary from examples. One of the most com-
monly used algorithms is the K-SVD algorithm [10]. Given
a set of examples {y;}",, K-SVD finds a dictionary D that
provides the best representation for each example in this set
by solving the following optimization problem

(D, X) = arg min [|Y — DX|[% subject to Vi [|xi[lo < T,
(2)
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where x; represents the it" column of X, Y is the matrix

whose columns are y; and Ty is the sparsity parameter. Here,

the Frobenius norm is defined as [|Al|r = />, A7;. The

K-SVD algorithm alternates between sparse-coding and dic-
tionary update steps. In the sparse-coding step, D is fixed and
the representation vectors x;s are found for each example y;.
Then, the dictionary is updated atom-by-atom in an efficient
way.

Dictionaries can be trained for both reconstruction and
classification applications. In the late nineties, Etemand and
Chellappa proposed a linear discriminant analysis (LDA)
based basis selection and feature extraction algorithm for
classification using wavelet packets [11]. Recently, similar
algorithms for simultaneous sparse signal representation and
discrimination have also been proposed in [12], [13], [14],
[15]. Some of the other methods for learning discriminative
dictionaries include [16], [17], [18], [19], [20], [21], [12].
Additional techniques may be found within these references.

In this paper, we propose a general method for learning
dictionaries for image classification tasks via information
maximization. Unlike other previously proposed dictionary
learning methods that only consider learning only recon-
structive and/or discriminative dictionaries, our algorithm can
learn reconstructive, compact and discriminative dictionaries
simultaneously. Sparse representation over a dictionary with
coherent atoms has the multiple representation problem. A
compact dictionary consists of incoherent atoms, and encour-
ages similar signals, which are more likely from the same
class, to be consistently described by a similar set of atoms
with similar coefficients [21]. A discriminative dictionary
encourages signals from different classes to be described by
either a different set of atoms, or the same set of atoms but with
different coefficients [13], [15], [17]. Both aspects are critical
for classification using sparse representation. The additional
reconstructive requirement to a compact and discriminative
dictionary enhances the robustness of the discriminant sparse
representation [13]. All these three criteria are critical for
classification using sparse representation.

Our method of training dictionaries consists of two main
stages involving greedy atom selection and simple gradient
ascent atom updates, resulting in a highly efficient algorithm.
In the first stage, dictionary atoms are selected in a greedy way
from an initial dictionary by maximizing the mutual informa-
tion measure on dictionary compactness, discrimination and
reconstruction. In the second stage, the dictionary is updated
for improved discrimination and reconstruction via a simple
gradient ascent method that maximizes the mutual information
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Fig. 1: Sparse representation using dictionaries learned by different approaches (SOMP [22], MMI-1 and MMI-2 [21]). For
visualization, sparsity 3 is chosen, i.e., no more than three dictionary atoms are allowed in each sparse decomposition. When
signals are represented at once as a linear combination of a common set of atoms, sparse coefficients of all the samples become
points in the same coordinate space. Different classes are represented by different colors. The recognition accuracy is obtained
through linear SVMs on the sparse coefficients. Our approach provides more discriminative sparse representation which leads

to significantly better classification accuracy (best viewed in color).

(MI) between the signals and the dictionary, as well as the
sparse coefficients and the class labels.

Fig. 1 presents a comparison in terms of the discrimina-
tive power of the information-theoretic dictionary learning
approach presented in this paper with three state-of-the-art
methods. Scatter plots of sparse coefficients obtained using
the different methods show that our method provides more
discriminative sparse representation, leading to significantly
better classification accuracy.

The organization of the paper is as follows. Section II
defines and formulates the information theoretic dictionary
learning problem. In Section III, the proposed dictionary learn-
ing algorithm is detailed. Experimental results are presented
in Section IV and Section V concludes the paper with a brief
summary and discussion.

II. BACKGROUND AND PROBLEM FORMULATION

Suppose we are given a set of N signals (images) in an
n-dim feature space Y = [y1,...,yn], yi € R™. Given that
signals are from p distinct classes and N, signals are from
the c-th class, ¢ € {1,---,p}, we denote Y = {Y.}'_,,
where Y. = [yf,---,y%,] are signals in the c-th class.
When the class information is relevant, similarly, we define
X = {Xc}i_;, where X, = [xf,---,x% ] is the sparse
representation of Y.

Given a sample y at random, the entropy (uncertainty) of
the class label in terms of class prior probabilities is defined

) €)= S pie) g (p(l)> |

The mutual information which indicates the decrease in un-
certainty about the pattern y due to the knowledge of the
underlying class label c is defined as

I(Y;C) = H(Y) = H(Y|C),
where H(Y|C) is the conditional entropy defined as

HYIO) = 2_p(3:9 e (537 )

Given Y and an initial dictionary D° with ¢ normal-
ized columns, we aim to learn a compact, reconstructive
and discriminative dictionary D* via maximizing the mutual
information between D* and the unselected atoms D°\D* in
D°, between the sparse codes Xp~ associated with D* and
the signal class labels C, and finally between the signals Y
and D*, i.e

arg mDaX)\lI(D; D\D) + I (Xp;C) + A3I(Y;D) (3)

where {\1, A2, A3} are the parameters to balance the contri-
butions from compactness, discriminability and reconstruction
terms, respectively.

It is widely known that inclusion of additional criteria, such
as a discriminative term, in a dictionary learning framework



often involves challenging optimization algorithms [17], [18],
[12]. As discussed above, compactness, discriminability and
reconstruction terms are all critical for classification using
sparse representation. Maximizing mutual information enables
a simple way to unify all three criteria for dictionary learning.
As suggested in [23] and [21], maximizing mutual information
can also lead to a sub-modular objective function, i.e., a greedy
yet near-optimal approach, for dictionary learning.

A two-stage approach is adopted to satisfy (3). In the first
stage, each term in (3) is maximized in a unified greedy
manner and involves a closed-form evaluation, thus atoms can
be greedily selected from the initial dictionary while satisfying
(3). In the second stage, the selected dictionary atoms are
updated using a simple gradient ascent method to further
maximize

Al (Xp;C) + A31(Y;D).

III. INFORMATION-THEORETIC DICTIONARY LEARNING

In this section, we present the details of our Information-
theoretic Dictionary Learning (ITDL) approach for classifica-
tion tasks. The dictionary learning procedure is divided into
two main steps: Information-theoretic Dictionary Selection
(ITDS) and Information-theoretic Dictionary Update (ITDU).
In what follows, we describe these steps in detail.

A. Dictionary Selection

Given input signals Y and an initial dictionary D°, we se-
lect a subset of dictionary atoms D* from D¢ via information
maximization, i.e., maximizing (3), to encourage the signals
from the same class to have very similar sparse representation
yet have the discriminative power. In this section, we illustrate
why each term in (3) describes the dictionary compactness,
discrimination and representation, respectively. We also show
that how each term in (3) can be maximized in a unified greedy
manner that involves closed-form computations. Therefore, if
we start with D* = (), and greedily select the next best atom
d* from D°\D* which provides an information increase to
(3), we obtain a set of dictionary atoms that is compact,
reconstructive and discriminative at the same time. To this
end, we consider in detail each term in (3) separately.

1) Dictionary compactness I1(D*; D°\D*): The dictionary
compactness [(D*;D°\D*) has been studied in our early
work [21]. We summarize [21] to complete our information-
driven dictionary selection discussion. [21] suggests dictionary
compactness is required to avoid the multiple sparse represen-
tation problem for better classification performance. In [21],
we first model sparse representation through a Gaussian Pro-
cess model to define the mutual information 7(D*; D°\D*).
A compact dictionary can be then obtained as follows: we start
with D* = () and iteratively choose the next best dictionary
item d* from D°\D* which provides a maximum increase in
mutual information, i.e.,

arg MaXg«cpe\p+ I(D*ud*; D°\(D*ud*))—

“4)
It has been proved in [23] that the above greedy algorithm
serves a polynomial-time approximation that is within (1 —
1/e) of the optimum.

I(D*;D°\D*).

2) Dictionary Discrimination I(Xp+;C): Using any pur-
suit algorithm such as OMP [6], we initialize the sparse
coefficients Xpo for input signals Y and an initial dictionary
De°. Given Xp- are sparse coefficients associated with the
desired set of atoms D* and C are the class labels for input
signals Y, based on [24], an upper bound on the Bayes error
over sparse representation F(Xp-«) is obtained as

S(H(O)

This bound is minimized when [(Xp-~;C) is maximized.
Thus, a discriminative dictionary D* is obtained via

~ I(Xp-:C)).

argr%%xI(XD*;C). (5)

We maximize (5) using a greedy algorithm initialized by D* =
() and iteratively choosing the next best dictionary atom d*
from D°\D* which provides a maximum mutual information
increase, i.e.,

arg max I(Xp-ya+;C) — I(Xp+;O), (6)

d*eD°\D~
where I(Xp-;C) is evaluated as follows

I(XD*,C) = H(XD*) —H(XD*

C) (7

= H(Xp-) — Zp(c)H(XD* c).

Entropy measures in (7) involve computation of probability
density functions p(Xp-) and p(Xp-|c). We adopt the kernel
density estimation method [25] to non-parametrically estimate
the probability densities. Using isotropic Gaussian kernels (i.e.
> = 021, where I is the identity matrix), the class dependent
density for the c-th class can be estimated as

ZKGx X ,0°T), (8)

where K¢ is a d-dim Gaussian kernel defined as

1 1
Kg(x,2) = ——F—Fex —XTE_lx) . )
¢ (x, %) EEST p( 5

With p(c) = Je, we can estimate p(x) as

= p(xle)p(e)

3) Dictionary Representation I(Y;D*): A representative
dictionary D* maximizes the mutual information between
dictionary atoms and the signals, i.e.,

arg II]IDaXI(Y;D*). (10)
We obtain a representative dictionary via a similar greedy
manner as discussed above. That is, we iteratively choose the
next best dictionary atom d* from D°\D* which provides the
maximum increase in mutual information,

arg max I(Y;D*ud*) - I(Y;D"). (11)

d*eDe\D*



By assuming the signals are drawn independently and using
the chain-rule of entropies, we can evaluate 7(Y;D*) as

I(Y;D*) = H(Y) — H(Y|D*)

—ZH(inD*)-

H(Y) is independent of dictionary selection and can be
ignored. To evaluate H(y;|D*) in (12), we define p(y;|D*)
through the following relation holding for each input signal

Yi,

12)

*
=D X7;—|—I'i,

where r; is a Gaussian residual vector with variance 2. Such
a relation can be written in a probabilistic form as,

* 2
D*x;||%).

1
D ——ly: —
p(yi|D*) oc exp( 20—3”5'

4) Selection of M1, Ay and \3: The parameters A1, A2 and
As in (3) are data dependent and estimated as respective ratios
between the maximal information gained from an dictionary
atom to the compactness, discrimination and reconstruction
measures, i.e.,

A =1, (13)
max; I(Xgq,;C)
max; I(ds; D°\d;)’

max; I(Y;d;)
max; [ (dj; Do\d;)’
For each term in (3), only the first greedily selected atom based
on (4), (6) and (11), respectively are involved in parameter
estimation. In more detail, the first greedily selected atom
using (4) alone provides the value of max; I(d;; D°\d;), the
first atom using (6) provides max; I(Xgq,;C), and the first
atom using (11) provides max; I(Y;d;). This leads to an
efficient process in finding parameters.

Ay =

B. Dictionary Update

A representative and discriminative dictionary D produces
the maximal MI between the sparse coefficients and the class
labels, as well as the signals and the dictionary, i.e.,

mgx)\QI(XD;C) + X31(Y; D).

In the dictionary update stage, we update the set of selected
dictionary atoms D to further enhance the discriminability and
representation.

To achieve sparsity, we assume the cardinality of the set
of selected atoms D is much smaller than the dimension of
the signal feature space. Under such an assumption, the sparse
representation of signals Y can be obtained as Xp = DY
which minimizes the representation error ||[Y — DXpl%,
where

D' = (DTD)"'DT.

Thus, updating dictionary atoms for improving discriminabil-
ity while maintaining representation is transformed into find-
ing DT that maximizes

I(D'Y;0).

1) A Differentiable Objective Function: To enable a simple
gradient ascent method for dictionary update, we first ap-
proximate I(D'Y;C) using a differentiable objective func-
tion. I(X;C) can be viewed as the Kullback-Leibler (KL)
divergence D(p|lq) between p(X,C) and p(X)p(C), where
X = DY. Motivated by [26], we approximate the KL di-
vergence D(pl|q) with the quadratic divergence (QD), defined
as

Qpllg) = / (p(t) — q(t))? dt,

t

making I(X;C) differentiable. Due to the property that

D(pllq) > 5Q(pllq),

by maximizing the QD, one can also maximize a lower bound
to the KL divergence. With QD, I(X; C') can now be evaluated
as,

(14)

In order to evaluate the individual terms in (14), we need to
derive expressions for the kernel density estimates of various
density terms appearing in (14). Observe that for the two
Gaussian kernels in (9), the following holds

/ Kc;(X—SZ‘7 El)Kg(X—S% 22) dx = Kg(si—Sj, El +22)
) (15)

Using (8), p(c) = % and p(x, ¢) = p(x|c)p(c), we have

ZKGX X ,oT).

Similarly, since p(x) =) _p(x,c), we have

| X
=¥ ZKg(X —x;,0°T).
i=1

Inserting expressions for p(x, ¢) and p(x) into (14) and using
(15), we get the following closed form

1 p N. N.
=53 22 D> Kalxi —x{,20°T)
c=1k=11[1=1
2 N, Je X
—QZ— ZKGX — Xy, 202 I)
N c=1 N j=1k=1
1 P ]\]-C 2 N N
(z (N S K — x1,20°0).
c=1 k=11=1

(16)



2) Gradient Ascent Update: For simplicity, we define a new
matrix ¢ as
2 (DHT

Once we have estimated I (X; C) as a function of the data set
in a differential form, where X = ®TY, we can use gradient
ascent on Ig(X; C') to search for the optimal ® maximizing
the quadratic mutual information with

0l

5 1#=m

where v > 0 defining the step size, and

0lg 0x§
ZZ < 0%} 90

Since x¢ = ®Ty¢, we get

Qi1 =P +v—

aIQ

8X? c\T
Note that
0 (x; — x;)

O, Ka(x; — x;,20°1) = Kg(x; — x;,20°1) 202 =

We have
) 1 &
_ c c 2 c c
—8){?[@ = N2g2 ;Kg(xk —x5,20°T)(x; — x5)

P 2 N
e <Z (%) ) > Ko = 20°T) s = )

c=1

Nk—FN c c
N202 Z ZKG j = X5 207 ) () = x)).

a7

Once @ is updated, the dictionary D can be updated using
the relation ® = (D)T. Each update step requires O(N?)
operations. Such dictionary updates guarantee convergence to
a local maximum due to the fact that the quadratic divergence
is bounded [27].

C. Dictionary Learning Framework

Given a dictionary D?, a set of signals Y, the class labels
C and a sparsity level T, the supervised sparse coding method
given in Algorithm 1 represents these signals at once as
a linear combination of a common subset of 7' atoms in
D, where T is much smaller than the dimension of the
signal feature space to achieve sparsity. We obtain a sparse
representation as each signal has no more than 7" coefficients
in its decomposition. The advantage of simultaneous sparse
decomposition for classification has been discussed in [13].
Such simultaneous decompositions extract the internal struc-
ture of given signals and neglects minor intra-class variations.
The ITDS stage in Algorithm 1 ensures such common set of
atoms are compact, discriminative and reconstructive.

When the internal structures of signals from different classes
can not be well represented in a common linear subspace, Al-
gorithm 2 illustrates supervised sparse coding with a dedicated
set of atoms per class. It is noted in Algorithm 2 that both the

Input: Dictionary D°, signals Y, class labels C, sparsity level
T

Output: sparse coefficients X, reconstruction Y

begin

Initialization stage:

1. Initialize X with any pursuit algorithm,

i=1,---,N miny, ||ly; — D°x;||3 s.t. |x:]jo < T.

ITDS stage (shared atoms):
2. Estimate A1, A2 and A3 from Y, X and C;
3. Find 7" most compact, discriminative and reconstructive
atoms:
D"+ (0, T« 0;
for t=1 to T do
d* + argder]glz}i(D*)\l[I(D Ud; D°\(D*ud))

I(D*; D\D")] + A2[I(Xp*ua; C) — I(Xp+; C)] +
A[I(Y;D*ud) - I(Y;D")];

D* « D*Jd*;

I' < TU~", v is the index of d* in D° ;

end

4. Compute sparse codes and reconstructions:
X + pinv(D*)Y;
Y « D*X;

5.return X, Y, D*, T ;

end
Algorithm 1: Sparse coding with global atoms.

Input: Dictionary D°, signals Y = {Y.}-_,, sparsity level T’
Output: sparse coefficients {X.}*_,, reconstruction {¥.}*_,
begin

Initialization stage:

1. Initialize X with any pursuit algorithm,

i=1,---,N miny, ||y: — D°xi||3 s.t. [|xillo < T.

ITDS stage (dedicated atoms):
for c=1 to p do
2. Ce < {ciles = 1if y; € Yo, O otherwise } ;
3. Estimate A1, A2 and A3 from Y., X and C¢;
4. Find T most compact, discriminative and
reconstructive atoms for class c:
D"« 0;T«0;
for =1 to T do
d* <~ arg max \[I(D*ud;D°\(D*U
deDo\D*
d)) — I(D*; D\D*)] + Ao [I(Xp-ua; C:) -
[(Xp+; Co)] + MalI(Ye; D" Ud) — [(Ye; DY)):
D* + D*|yd"
'« T'YU~v", ~" is the index of d* in D° ;
end
D« D" T.«T;
5. Compute sparse codes and reconstructions:
X « pinv(D2)Ye;
Y.« DX,

end
6. return {Xc}7_;, {Y Yoo ADSo AT s

end

Algorithm 2: Sparse coding with atoms per class.

discriminative and reconstructive terms in ITDS are handled
on a class by class basis.

A sparse dictionary learning framework, such as K-SVD
[10] which learns a dictionary that minimizes the reconstruc-
tion error, usually consists of sparse coding and update stages.



Input: Dictionary D°, signals Y = {Y.}?_,, class labels C,
sparsity level 7', update step v
QOutput: Learned dictiongry D, sparse coefficients X,
reconstruction Y
begin
Sparse coding stage:
Use supervised sparse coding to obtain {D}}7_,.

ITDU stage:
foreach class ¢ do
[In the shared atom case, use the global label C
instead of C¢, and one iteration is required as the same
D} is used for all classes.]
Ce + {ciles =1 if y; € Y, O otherwise } ;
&« pinv(D2)T;
X + pinv(D})Y;
repeat
Prp1 =P+ v
D* + pinv(®{,,);
X + pinv(D*)Y;
until convergence;
D! + D*;

81g(X,Ce) | .
— %% |®=% ;

end
foreach class ¢ do
X + pinv(D})Ye;

Y.+ D:X,;

end
return {X.}?

c=1>

{Yc}gzlv {DZ}_s
end

Algorithm 3: Sparse coding with atom updates.

In K-SVD, at the coding stage, a pursuit algorithm is employed
to select a set of atoms for each signal; and at the update stage,
the selected atoms are updated through SVD for improved
reconstruction. Similarly, in Algorithm 3, at the coding stage,
ITDS is employed to select a set of atoms for each class of
signals; and at the update stage, the selected atoms are updated
through ITDU for improved reconstruction and discrimination.
Algorithm 3 is also applicable to the case when sparse coding
is achieved using global atoms.

IV. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation on three
public datasets: the Extended YaleB face dataset [28], the
USPS handwritten digits dataset [29], and the 15-Scenes
dataset [30]. The Extended YaleB dataset contains 2414 frontal
face images for 38 individuals. This dataset is challenging
due to varying illumination conditions and expressions. The
USPS dataset consists of 8-bit 16x16 images of “0” through
“9” and 1100 examples for each class. The 15-Scenes dataset
contains 4485 images falling into 15 scene categories. The 15
categories include images of living rooms, kitchens, streets,
industrials, etc.. In all of our experiments, linear SVMs on
the sparse coefficients are used for classifiers. First, we thor-
oughly evaluate the basic behaviors of the proposed dictionary
learning method. Then we evaluate the discriminative power
of the ITDL dictionary over the full Extended YaleB dataset,
the full USPS dataset, and the 15-Scenes dataset.

A. Evaluation with Illustrative Examples

To enable visualized illustrations, we conduct the first set of
experiments on the first four subjects in the Extended YaleB
face dataset and the first four digits in the USPS digit dataset.
Half of the data are used for training and the rest is used for
testing.

1) Comparing Atom Selection Methods: We initialize a
128 sized dictionary using the K-SVD algorithm [10] on
the training face images of the first four subjects in the
Extended YaleB dataset. A K-SVD dictionary only minimizes
the reconstruction error and is not yet optimal for classification
tasks. As shown later, one can also initialize the dictionary
directly with training samples or even with random noise.
Due to the fact that an ITDL dictionary converges to a local
maximum, a better initial dictionary generally helps ITDL in
terms of classification performance.

In Fig. 2, we present the recognition accuracy and the
reconstruction error with different sparsity on the first four
subjects in the Extended YaleB dataset. The Root Mean Square
Error (RMSE) is employed to measure the reconstruction error.
To illustrate the impact of the compactness, discrimination
and reconstruction terms in (3), we keep one term at a
time for the three selection approaches, i.e., the compact, the
discriminative and the reconstructive method. The compact
method is equivalent to MMI-1 discussed in [21].

Parameters A1, Ao and A3 in (3) are estimated as discussed in
Section III-A4. As the dictionary learning criteria becomes less
critical when sparsity increases, i.e., more energies in signals
are actually preserved and good atoms are selected anyway, we
focus on curves in Fig. 2 when sparsity<20. Although sparse
coding methods generally perform well for face recognition,
it is still easy to notice that the proposed ITDS method using
all three terms (red) significantly outperforms those which
optimize just one of the three terms, compactness (black),
discrimination (blue), and representation (green), in terms of
recognition accuracy. For example, the discrimination term
alone (blue) leads to a better initial but poor overall recog-
nition performance. The proposed ITDS method also provides
moderate reconstruction error. In Fig. 2, it is interesting to
note that the reconstructive term in (3) delivers nearly identical
recognition accuracy and RMSE to SOMP [22] with both the
shared and dedicated atoms, given the different formulations
of two methods. The proposed dictionary selection using all
three terms provides a good local optimum to converge at the
dictionary update stage.

2) Enhanced Discriminability with Atom Update: We illus-
trate how the discriminability of dictionary atoms selected by
the ITDS method can be further enhanced using the proposed
ITDU method. We initialize a 128 sized K-SVD dictionary
for the face images and a 64 sized K-SVD dictionary for the
the digit images. Sparsity 2 is adopted for visualization, as the
non-zero sparse coefficients of each image can now be plotted
as a 2-D point. In Fig. 3, with a common set of atoms shared
over all classes, sparse coefficients of all samples become
points in the same 2-D coordinate space. Different classes are
represented by different colors. The original images are also
shown and placed at the coordinates defined by their non-zero
sparse coefficients. The atoms to be updated in Fig. 3a and
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Fig. 2: Recognition accuracy and RMSE on the YaleB dataset using different dictionary selection methods. We vary the sparsity
level, i.e., the maximal number of dictionary atoms that are allowed in each sparse decomposition. In (a) and (b), a global set
of common atoms are selected for all classes. In (c) and (d), a dedicated set of atoms are selected per class. In both cases, the

proposed ITDS (red lines) provides the best recognition performance and moderate reconstruction error.

3d are selected using ITDS. We can see from Fig. 3 that the
proposed ITDU method makes sparse coefficients of different
classes more discriminative, leading to significantly improved
classification accuracy. Fig. 4 shows that the ITDU method
also enhances the discriminability of atoms dedicated to each
class. It is noted that, though the dictionary update sometimes
only converges after a considerable number of iterations, based
on our experience, the first 50 to 100 iterations in general bring
significant improvement in classification accuracy.

3) Enhanced Reconstruction with Atom Update: From
Fig. 5d, we notice obvious errors in the reconstructed digits,
shown in Fig. 5c with atoms selected from the initial K-
SVD dictionary using ITDS. After 30 ITDU iterations, Fig. Se
shows that all digits are reconstructed correctly with a unified
intra-class structure and limited intra-class variation. This
leads to a more accurate classification as shown in Fig. 4.
It is noted that Fig. 5 and Fig. 4 are results from the same
set of experiments. As can be seen from Fig. 5f, after ITDU
converges, all digits are reconstructed correctly with the true
underlying intra-class structures, i.e., the left-slanted and right-
slanted styles for both digits “1” and “0”. Fig. 5b shows the
images in Fig. 5¢ with 60% missing pixels.

4) Dictionary Initialization: In the experiments above, we
initialize a dictionary using the K-SVD algorithm. In fact, one
can also initialize a dictionary directly with randomly selected
training samples, or even with random noises. As shown in
Fig. 6 and Fig. 7, with random sample or random noise
initialized dictionaries, we obtain comparable recognition and
reconstruction performance to the K-SVD dictionary in Fig. 5.
Due to the fact that an ITDL dictionary converges to a local
maximum shown in Fig. 8, a better initial dictionary generally
helps ITDL in terms of classification performance.

B. Discriminability of ITDL Dictionaries

We evaluate the discriminative power of ITDL dictionaries
over the complete USPS dataset, where we use 7291 images
for training and 2007 images for testing, and the Extended
YaleB face dataset, where we randomly select half of the

TABLE I: Classification rate (%) on the USPS dataset.

[ Method [ Accuracy (%) |
k-NN 94.80
SVM-Gauss | 95.80
SRC [31] 87.23
SRC* [31] 96.10
SDL-D [18] | 96.44
SRSC [15] 93.95
FDDL [12] 96.31

[ Proposed [ 98.28 |

TABLE II: Classification rate (%) on the 15 scenes dataset.

[ Method [ Accuracy (%) |
SRC [31] 70.58
SRC* [31] 76.04
ScSPM [32] | 80.28
KSPM [30] 76.73
KC [33] 76.67
LSPM [32] 65.32
[ Proposed [ 81.13

images as training and the other half for testing, and finally
the 15-Scenes dataset, where we randomly use 100 images per
class for training and used the remaining data for testing.

For each dataset, we initialize a 512 sized dictionary from
K-SVD and set the sparsity to be 30. Then we perform 30 it-
erations of dictionary update and report the peak classification
performance. Here we adopt a dedicated set of atoms for each
class and input the concatenated sparse representation into a
linear SVM classifier. For the Extended YaleB face dataset,
we adopt the same experimental setup in [20], and the results
for other compared methods are also taken from [20]. It is
noted that SRC [31] uses training samples as the dictionary.
For a fair comparison, we need to constrain the total number
of training samples used in SRC based on the dictionary size
in other compared methods. For completeness, we also include
SRC with all training samples and denote it as SRC*, which
though is not a fair comparison.

As shown in Table I, Table II, and Table III, our method
outperforms some of the competitive discriminative dictionary
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(d) Before update (Acc.= 73.54 %)

(e) After 50 updates (Acc.= 84.45%)

(f) Converge after 171 updates (Acc.= 87.75%)

Fig. 3: Information-theoretic dictionary update with global atoms shared over classes. For a better visual representation, sparsity
2 is chosen and a randomly selected subset of all samples are shown. The recognition rate associated with (a), (b), and (c) are:
30.63%, 42.34% and 51.35%. The recognition rate associated with (d), (e), and (f) are: 73.54%, 84.45% and 87.75%. Note
that the proposed ITDU effectively enhances the discriminability of the set of common atoms (best viewed in color).

TABLE III: Classification rate (%) on the Extended YaleB face
dataset.

[ Method [ Accuracy (%) |
SRC [31] 80.50
SRC* [31] 97.20
D-KSVD [19] 94.10
LC-KSVD [20] | 95.00
K-SVD [10] 93.10
LLC [34] 90.70

[ Proposed [ 9539 |

learning algorithms such as SDL-D [18], SRSC [15], D-KSVD
[19], LC-KSVD [20], and FDDL [12]. Note that, our method
is flexible enough that it can be applied over any dictionary
learning schemes to enhance the discriminability.

V. CONCLUSION

We have presented an information theoretic approach to
dictionary learning that seeks a dictionary that is compact,
reconstructive and discriminative for the task of image classi-
fication. The algorithm consists of dictionary selection and

update stages. In the selection stage, an objective function
is maximized using a greedy procedure to select a set of
compact, reconstructive and discriminative atoms from an
initial dictionary. In the update stage, a gradient ascent al-
gorithm based on the quadratic mutual information is adopted
to enhance the selected dictionary for improved reconstruction
and discrimination. Both the proposed dictionary selection and
update methods can be easily applied for other dictionary
learning schemes.
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