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Abstract—In unsupervised image-to-image translation, the goal
is to learn the mapping between an input image and an output
image using a set of unpaired training images. In this paper,
we propose an extension of the unsupervised image-to-image
translation problem to multiple input setting. Given a set of
paired images from multiple modalities, a transformation is
learned to translate the input into a specified domain. For this
purpose, we introduce a Generative Adversarial Network (GAN)
based framework along with a multi-modal generator structure
and a new loss term, latent consistency loss. Through various
experiments we show that leveraging multiple inputs generally
improves the visual quality of the translated images. Moreover,
we show that the proposed method outperforms current state-
of-the-art unsupervised image-to-image translation methods.

I. INTRODUCTION

The problem of unsupervised image-to-image translation
has made promising strides with the advent of Generative
Adversarial Networks (GAN) [6] in recent years. Given an
input from a particular domain, the goal of image-to-image
translation is to transform the input onto a specified sec-
ond domain. Recent works in image-to-image translation has
successfully learned this transformation across various tasks
including satellite images to map images, night images to day
images, greyscale images to color images etc. [30], [13], [12]
[27].

In this work, we propose an extension of the original prob-
lem from a single input image to multiple input images, called
multi-image-to-image translation (In2I). Given semantically
related multiple images across n number of different domains,
the goal of In2I is to produce the corresponding image in
a specified domain. For example, the traditional problem of
translating a greyscale image onto the RGB domain can be
extended into an In2I problem by providing the near infrared
(NIR) image of the same scene as an additional input. Now, the
objective would be to use information present in greyscale and
NIR domains to produce the corresponding output in the RGB
domain. We study the problem of In2I in the more generic
unsupervised setting and provide initial direction to solve the
problem.

Image-to-image translation is a challenging problem. For
a given input, there exists multiple possible representations
in the specified second domain. Having multiple inputs from
different image modalities reduces this ambiguity due to the
presence of complimentary information. Therefore, as we
show later in experimental results section, leveraging multiple

input images leads to an output of higher perceptual quality.
Multiple input modalities can be incorporated naively by con-
catenating all available modalities as channels and feeding into
an existing image-to-image translation algorithm. However,
when the input modalities are from incompatible domains,
such a fusion scheme results in incoherent reconstructions as
will be shown later. Therefore, we argue that unsupervised
multi-image-to-image translation should be treated as a unique
problem. In this work our main contributions are three-fold:
1) We introduce the problem of unsupervised multi-image-
to-image translation. We show that late fusion of multiple
modalities results in a better quality output in the desired
domain. 2) A GAN-based scheme is proposed to combine
information of multiple modalities to produce the correspond-
ing output from the desired domain. We introduce a new
latent consistency loss term, into the objective function. 3)
We propose a generalization to the GAN generator network
by introducing a multi-modal generator structure.

II. RELATED WORK

To the best of our knowledge, In2I problem has not been
previously addressed in the literature. In this section, we
outline previous work related to the proposed method.
Generative Adversarial Networks (GANs). The fundamental
idea behind GAN introduced in [6],[20] is to use two compet-
ing Fully Convolutional Networks (FCN [21]), the generator
and the discriminator, for generative tasks. Learning objective
of this problem is collectively called as the adversarial loss
[30]. Many applications have since employed GANs for var-
ious image generation tasks with success [18], [9], [11], [8],
[25], [29], [28], [14], [22], [13], [24], [4].
Unpaired image-to-image translation. Several recent meth-
ods have addressed the unsupervised image-to-image transla-
tion task when the input is a single image. Here, unlike in the
supervised setting, paired samples across the two domains do
not exist. In [30], image-to-image translation problem is tack-
led by having two generators and discriminators, one for each
domain. In addition to the adversarial loss, a cycle consistency
constraint is added to ensure that the semantic information is
preserved in the translation. A similar rationale is adopted in
DualGAN [27] which has been developed independently of
CycleGAN. In [12], the CoGAN framework [13] was extended
using GANs and variational autoencoders with the assumption
of a common latent space between the domains.



Image fusion. Although image fusion [15] operates on mul-
tiple input images, we note that our task is very different
from image fusion since the former does not involve a
domain translation process. In image fusion tasks, multiple
input modalities are combined in an informative latent space.
This space is usually found by a derived multi-resolution
transformation such as wavelets [17]. In [16] operating on
deep networks, a latent space is used to re-generate outputs of
multiple modalities. Motivated by this technique, we fuse mid-
level deep features from each input domain in the proposed
generator FCN.

III. PROPOSED METHOD

Notation. In this paper, we use the following notations.
Source domain and target domain are denoted by S and
T , respectively. The latent space is denoted by Z. In the
presence of multiple source domains, the set of source domains
{S1, . . . , Sn} are denoted collectively as S. A data sample
drawn from an arbitrary domain X is denoted as x. The
transformation between domains X and Y is denoted by the
function fX→Y . The transformation between the domains X
and the latent space Z is denoted by hX→Z .
Overview. In conventional image-to-image translation, the
objective is to translate images from an original domain S
to a target domain T using a learned transformation fS→T (.).
In the supervised setting of the problem, a set of image pairs
{(s1, t1), (s2, t2), . . . , (sp, tp)} are given, where si ∈ S and
ti ∈ T are paired images from the two domains. Image-to-
image translation task is less challenging in this scenario since
the desired output for a given input is known ahead of time.

Similar to the supervised version of the problem, images
from both target and source domains are provided in the
unsupervised image-to-image translation problem. However, in
this case, provided images of the two domains are not paired.
In other words, for a given source image si, the corresponding
ground truth image ti is not provided. In the absence of image
pairs from both domains, it is not possible to optimize over
a distance between the estimated output and the target. One
possible option is to introduce an adversarial loss to facilitate
reward if the generated image is from the same domain as the
target domain. However, having an adversarial loss alone does
not guarantee that the generated image will share semantics
with the input. Therefore, to successfully solve this problem,
additional constraints need to be imposed.

In [30], such a solution is sought by enforcing the cycle
consistency property. Here, an inverse transformation fT→S(.)
is learned along with fS→T (.). Then, the cycle consistency
ensures that the learned transformation yields a good approxi-
mation of the input si by comparing si with fT→S(fS→T (si)).
We develop our method based on the foundations of Cycle-
GAN proposed in [30]. Here, we briefly review the CycleGAN
method and we will draw differences between CycleGAN and
our method in succeeding sections. CycleGAN as shown in
Figure 1 (a) (top), contains a forward transformation from
source domain to target domain and a reverse transformation
from target to source. Two discriminators DS and DT are used

to asses whether a given input belongs to source or target,
respectively.
Multimodal Generator. The In2I problem accepts n inputs
and translates them into a single output. Therefore, in contrast
to CycleGAN, the proposed method deals with multiple inputs
in the forward transformation and multiple outputs in the
reverse transformation. In order to facilitate this operation, we
propose a generalization of the generator structure for multiple
inputs and outputs. The generic structure of the proposed
generator is shown in Figure 1(b). In general, it is possible for
the generator to have N inputs and M outputs. The generator
treats each input modality independently and extracts features
and fuses them prior to feeding them to the encoder. The
encoder maps resultant features to a latent space. Operating on
the latent space, M number of independent decoders generate
M output images.

For the specific application of In2I , two generators are used
for the forward and reverse transformations. When there are n
input images, M is set to be equal to one during the forward
transformation where the goal is to generate a single output
image (N = n,M = 1). In the reverse transformation, a single
input image is processed to generate n outputs thereby making
N = 1 and M = n. Therefore, generator networks used in
In2I are asymmetric in structure as shown in Figure 1 (a)
(bottom).

The proposed method treats n inputs independently initially
in the forward transformation and then extracted features
are fused together. The fused feature is first transformed
into a latent space Z as shown in in Figure 1 (a) (bottom)
and then transformed into the target domain. In the reverse
transformation, the single input is mapped back to the same
latent space first. Then, the latent space representation is
used to produce n outputs belonging to n source domains.
In this formulation, n + 1 discriminators are used, one for
each domain as opposed to CycleGAN. In addition, a latent
space consistency loss is added to ensure that the same concept
in all domains have a common latent space representation.
Problem Formulation. Formally, given n number of input
modalities S = {S1, S2, . . . , Sn}, the objective is to learn
a transformation fS→T (.). Here, we note that the input to
the forward transformation is a set of images, where the
output of the transformation is a single image. Similarly, the
backward transformation fT→S(.) takes a single image input
and produces n output images.

In order to approach the solution to this problem, first we
view all input images and the desired output image as different
representations of the same concept. Motivated by the tech-
niques used in domain adaptation [1],[5],[23] we hypothesize
the existence of a latent representation that can be derived
using the provided representations. With this assumption, we
treat our original problem as a series of sub-problems where
the requirement is to learn the transformation and the inverse
transformation to the latent representation from each domain.
If the latent representation is Z, we will attempt to learn
transformations hI→Z and hZ→I , where I ∈ {S, T} and
hI→Z = h−1Z→I . With this formulation, the forward transform
fS→T becomes fS→T (.) = hZ→T (hS→Z(.)) and the reverse
transformation fT→S becomes fT→S(.) = hZ→S(hT→Z(.)).
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Fig. 1. (a) Network structure used for unsupervised image-to-image translation. Top: CycleGAN, Bottom: Proposed method for In2I . (b) Multi-modal
generator: generalization of the generator for multiple inputs and multiple outputs.

Adversarial Loss. In order to learn transformation fS→T ,
we use an adversarial generator-discriminator pair {fS→T (.),
DT (.)} [6]. Denoting the data distributions of domains S and
T as Pdata(s) and Pdata(t), respectively, the generator func-
tion tries to learn the transformation fS→T . The discriminator
is trained to differentiate real images from the target domain S
from generated images fS→T (s). This procedure is captured
in the adversarial loss as follows:

LGAN,S→T = Et∼pdata(t)[logDT (t)]

+ Es∼pdata(s)[1− log DT (fS→T (s))]. (1)
Similarly, to learn fT→S we use a single generator fT→S .

However, since there exists n input domains in total, we
require n discriminators {Dsi}, where i = 1, 2, . . . , n, one
for each domain. With this formulation, the total adversarial
loss in backward transformation becomes a summation of n
adversarial terms as follows:

(2)
LGAN,T →S =

n∑
i=1

Esi∼pdata(si)[logDSi(si)]

+

n∑
i=1

Et∼pdata(t)[1− logDSi(fT→Si(t))].

Latent Consistency Loss. As briefly discussed above, the
adversarial loss only ensures that the generated image looks
realistic in the target domain. Therefore, adversarial loss alone
is inadequate to result in a transformation which preserves
semantic information of the input. However, based on the
assumption that both input and target domains share a common
latent representation, it is possible to enforce a more strict
constraint to ensure semantics between the input and the
output are preserved. This is done by forcing the latent
representation obtained during the forward transformation to
be equal to the latent representation obtained during the reverse
transformation for the same input.

More specifically, for a given input s, a set of latent
representations hs→Z(s) are recorded. Then, this recorded
vector is compared against the latent representation obtained
during the reverse transformation hT→Z(fS→T (s)). The latent
consistency loss in the forward transformation is defined as,

(3)Llatent,S →T = Es∼pdata(s)‖hS→Z(s)− hT→Z(fS→T (s))‖1.

Similarly, the latent consistency loss in the reverse transfor-
mation is defined as,

(4)Llatent,T →S = Et∼pdata(t)‖hT→Z(t)− hS→Z(fT→S(t))‖1.
Cycle Consistency Loss. If the input and the transformed
image do not share semantic information, it is impossible to
regenerate the input using the transformed image. Therefore
by forcing the learned transformation to have a valid inverse
transform, it is further possible to force the generated image
to share semantics with the input. Based on this rationale,
in [30] cycle consistency loss is introduced to ensure that
the transformed image shares semantics with the input image.
Since this argument is equally valid for the multi-input case,
we adopt cycle consistency loss [30] in our formulation.
Proposed backward cycle consistency loss is similar to that
of [30] in definition. We define the reverse cycle consistency
loss as:

(5)Lcyc,T →S = Et∼pdata(t)[‖fS→T (fT→S(t))− t‖1].
However, in comparison, the forward cycle consistency loss

takes into account n inputs and compares the distance among
the n reconstructions as opposed to [30]. The forward cycle
consistency loss is defined as,

(6)Lcyc,s→T = Es∼pdata(s)[‖FT→s(Fs→T (s))− s‖1].

Cumulative Loss. The final objective function is the addition
of all three losses introduced in this section. The cumulative
loss Ltotal is defined as follows:

(7)
Ltotal = LGAN,S→T + LGAN,T→S

+ λ1(Lcyc,T→S + Lcyc,∫→T )

+ λ2(Llatent,S→T + Llatent,T→S),

where, λ1 and λ2 are constants.
Limiting Case. It is interesting to investigate the behavior of
the proposed network in the limiting case when n = 1. In this
case, both the number of input and output modalities of the
network becomes one; i.e. N = 1 and M = 1. Therefore S
becomes S in equations (1), (2), (5) and (6). In addition, with
n = 1, summation in (2) reduces to a single statement. If we
disregard the latent consistency loss by forcing λ2 = 0, the



total objective reduces to,
Ltotal = Et∼pdata(T )[logDT (t)] + Es∼pdata(S)[logDS(s)]

+ Es∼pdata(s)[1− log DT (fs→T (s))]

+ Et∼pdata(T )[1− logDS(t)]

+ Et∼pdata(t)[‖fs→T (fT→s(t))− t‖1]

+ Es∼pdata(s)[‖FT→s(Fs→T (s))− s‖1].
This reduced objective is identical to the total objective in

CycleGAN. Therefore, in the limiting case when n = 1, the
proposed method reduces to the cycleGAN formulation when
the latent consistency loss is disregarded.
Network Architecture. In this section, we describe the net-
work architecture of the proposed Generator by considering
the case where two input modalities are used; i,e when n = 2.
The resulting two generators in this case is illustrated in
Figure 2. It should be noted that the Convolutional Neural
Network (CNN) architectures used in both forward and re-
verse transformations here are in coherence with the generic
structure shown in Figure 1 (b). In principle, the generator
can be based on any backbone architecture. In our work, we
used ResNet [7] with nine resnet blocks as the backbone. In
our proposed network, a CNN is used for each module in
Figure 1(b). These CNNs are typically convolutions/transposed
convolutions followed by nonlinearities, batch-normalization
layers and possibly with skip connections.

Two input images (from the two input domains) are present
as the input of the forward transformation. These images are
subjected to two parallel CNNs to extract features from each
modality. Then, the extracted features are fused to generate
an intermediate feature representation. In our work, feature
fusion is performed by concatenating feature maps of feature
extraction stage and using a convolution operation to reduce
the dimension. This feature is then subjected to a set of
convolution operations to arrive at the latent space. Finally, the
latent space representation is subjected to a series of CNNs
with transposed convolution operations to generate a single
output image (from the target domain).

During the backward transformation, a single input is
present. A CNN with convolution operations is used to trans-
form the input into the latent space. It should be noted that
since there is only a single input, there is no notion of fusion
in this case. Two parallel CNNs consisting of transposed
convolutions branch out from the latent space to produce two
outputs corresponding to domains S1 and S2.

This architecture can be extended n modalities. In this case,
the core structure will be similar to that of Figure 2 except
that there will be n parallel branches instead of two at either
ends of the network. For the discriminator networks we use
PatchGANs proposed in [8].

IV. EXPERIMENTAL RESULTS

We test the proposed method on two publicly available
multi-modal image datasets across two tasks against state-of-
the-art unsupervised image-to-image translation methods. The
training was carried out adhering to principles of unsupervised

learning1. Even when ground truth images of the desired
translation were available, they were not used during training.
When available, ground truth images were used during testing
to quantify the structural distortion introduced by each method
through calculating PSNR and SSIM [26] metrics.

As the benchmark for performance comparison, we use
CycleGAN [30] and UNIT [12] frameworks. Since both of
these methods are specifically designed for single inputs,
we used all available image modalities, one at a time to
produce the corresponding outputs. In addition, we present the
following two additional baseline comparisons: 1. CycleGAN
(Concat). Input of multiple modalities are concatenated as
channels. Operating on the concatenated input, cycleGAN
is used to find the relevant transformation. 2. CycleGAN
(Wavelet). Input images are first fused using a wavelet-based
image fusion technique. Then, CycleGAN is operated on the
fused image.

In the implementation of the proposed method, λ1 and λ2
in (7) are set equal to 10 and 1, respectively. Learning is
performed using the Adam optimizer[10] with a batch size of
1. Initial learning rates of generators and discriminators were
set equal to 0.0002 and 0.0001, respectively. Training was
conducted for 200 epochs, where learning rate was linearly
decayed in the last 100 epochs.
Image Colorization. The EPFL NIR-VIS dataset [2] includes
477 images in 9 categories captured in the RGB and the Near-
infrared (NIR) image modalities across diverse scenes. Scenes
included in this dataset are categorized as country, field, forest,
indoor, mountain, old building, street, urban and water. We
use this dataset to simulate the image colorization task. We
generated greyscale images from the RGB visible images
and use greyscale and NIR images as the input modalities
with the aim of producing the corresponding RGB image. We
randomly selected 50 images to be the test images and used
the remaining images for training.

First we trained CycleGAN [30] and UNIT [12] models for
each input modality independently. Then, the proposed method
was used to train a model based on both input modalities.
Obtained results for these cases are shown in Figure 3. Ob-
tained PSNR and SSIM values for each method on the test data
are tabulated in Table I. By inspection, CycleGAN operating
on greyscale images and both images were able to identify
segments in the image but failed to assign correct colors.
For example, in the first row, the tree is correctly segmented
but with a wrong color. In comparison, CycleGAN with NIR
images have resulted in a much better colorization. Since the
amount of energy a color reflects depends on the wavelength
of the color, a NIR signal contains some information about the
color of the object. This could be the reason why NIR images
have performed better colorization compared to greyscale.
The same trend can be observed in the outputs of the UNIT
method.

On the other hand, the proposed method has produced a
colorization very similar to the ground truth. As an example

1Code is available at https://github.com/PramuPerera/In2I



Fig. 2. Generator architecture of for In2I when two input modalities are used.

we wish to draw the attention of the reader to the color of the
tree and the field in the first row, colors of the building and
the tree in the last row. It has also recorded a superior PSNR
and SSIM values compared with the other baselines as shown
in Table I. It should be noted that PSNR and SSIM values
only reflect how well the structure of objects in images have
been preserved. It is not meant to be an indication of how well
colorization task has been carried out.

TABLE I
QUALITATIVE EVALUATION OF COLORIZATION AND

HYPERSPECTRAL-TO-REAL IMAGE TRANSLATION TASKS.

EPFL NIR-VIS
Method PSNR SSIM
Ours (NIR+Grey) 23.113 (9.147) 0.739 (0.008)
UNIT (Grey) 8.324 (2.219) 0.041 (0.018)
UNIT (NIR) 15.331 (9.088) 0.544 (0.012)
CycleGAN (Grey) 8.438 (2.939) 0.056 (0.018)
CycleGAN (NIR) 17.381 (9.345) 0.657 (0.018)
CycleGAN (Concat) 8.597 (2.653) 0.054 (0.025)
CycleGAN (Wavelet) 8.597 (2.653) 0.054 (0.025)

Synthetic-to-Real Image Translation. In this subsection,
we experiment on generating real images using synthetic
images. For this purpose, we use two datasets, Synthia [19]
and CityScapes [3], respectively as the source and the target
domains. The Cityscapes dataset contains images taken across
fifty urban cities during daytime. We use 1525 images from
the validation set of the dataset to represent the target domain
in the synthetic-to-real translation task. The Synthia dataset
contains graphical simulations of an urban city. For our work,
we only use the summer day light subset of the dataset which
includes 901 images for training. The Synthia dataset provides
RGB image intensities as well as the depth information of the
scene. Hence, we use these as the two input modalities.

Results are shown in Figure 4. In this particular task, UNIT
method has only changed the generic color scheme of the
scene with incorrect association; for example note that skies
look brown instead of blue in resulting images. In addition,
objects in the scene continues to possess the characteristics
of synthetic images. In contrast, CycleGAN has attempted to
convert appearance of synthetic images to real. However, in
the process it has distorted the structure of objects. When only

depth information is used, the cycleGAN method is unable to
preserve the structure of objects in the scene. For example,
lines along the roads have ended up being warped in the
learned representation in Figure 4. The CycleGAN model
based on the visible images preserves the overall structure
to an extent. However, vital details are either missing or
misleading. For example, pavements are missing from images
shown in rows 2 and 3 in Figure 4. The absence of a shadow
on the road in row 2, addition of clutter in the left pavement
in row 3 and disappearance of the telephone pole in row 4
are some of the notable incoherences. We note that despite of
having more information, CycleGAN(concat) has produced a
similar output of that of CycleGAN(Visible). Comparatively,
fusion of both visible and depth information using proposed
method has resulted in a more realistic translation. It should
be noted that synthetic-to-real translation is a challenging
problem in practice and when certain concepts were missing in
either of source or target domains, the model found it difficult
to learn such concepts. For example, training images from
Cityscape did not have zebra crossings in any of the images.
Therefore, the concept of zebra crossings is not learned well
by the model as shown in row 1.

Impact of Multiple Inputs. Two experiments performed in
this section are of different levels of difficulty. The colorization
task is challenging due to the availability of diverse scenes.
As a result, a single modality was not able to perform
colorization satisfactorily. In this case, multi-image-to-image
translation was able to induce a high improvement in terms
of visual quality by using two informative input modalities.
The second case, synthetic-to-real image translation, is more
challenging. We note that the depth modality in this case is
not very informative since it leads to image constructions
of sub-standard quality. In comparison, the RGB synthetic
image modality resulted in better translations. Using both
modalities has improved the visual quality of the output. But
this improvement was marginal as compared to the case of the
colorization task. In summary, multiple modalities generally
improve the visual quality of the output image; specially when
the translation is more challenging. However, the amount of
improvement introduced was dependent on the informativeness
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of the second modality.
Pixel-level Fusion vs Feature Fusion In the proposed net-
work, information of input modalities are fused at the be-
ginning of the encoder sub-network. In principle, fusion can
carried out as pixel-level fusion, feature fusion or decision
fusion [15]. Since the task in hand takes the form of image
reconstruction, decision fusion is not applicable. In principle,
it is also possible to use pixel-level fusion for this task
as in CycleGAN (concat) and CycleGAN(Wavelet) methods.
However, when the input modalities are from incompatible do-

mains, pixel-level fusion results in incoherent reconstructions
as shown in experimental results. In contrast, in the proposed
method, images are first transformed into a latent space where
both domains are compatible before fusion is performed. As a
result the proposed method is able to produce images of higher
perceptual quality compared with alternative fusion schemes.

V. CONCLUSION

We introduced multi-image-to-image translation problem.
We proposed a multi-modal generator structure and a GAN



based framework as the initial direction to solve the problem.
We tested the proposed method across two tasks against state-
of-the-art unsupervised image-to-image translation methods.
We showed that using multiple image modalities improves the
visual quality of the output compared with results generated by
the state-of-the-art methods. We analyzed the behavior of the
proposed method in the limiting case and provided discussion
as to when the use of multiple image modalities is most suited.
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